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Situation A Situation B

Which situation has less uncertainty?
Game 1: what color is the ball? — A
Game 2: what color is NOT the ball? — B

How to compare probability vectors
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Majorization

Def' n |t|on [Marshall, Olkin y Arnold, Inequalities: Theory of Majorization and Its Applications]

Let p = [p1,...pn]" and g = [q1, ... qn]" be probability vectors: p;, q; > 0
N N
and Z,‘:1 pi=1= Z,’:1 qi-
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Majorization

Def'n't'on [Marshall, Olkin y Arnold, Inequalities: Theory of Majorization and Its Applications]
Let p = [p1,...pn]" and g = [q1, ... qn]" be probability vectors: p;, q; > 0

N N
and > i pi=1=31",q.
p is majorized by g, denoted as p < g, if

n n
prﬁZqiLVnzl...N—l
i=1 i=1
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Def'n't'on [Marshall, Olkin y Arnold, Inequalities: Theory of Majorization and Its Applications]
Let p = [p1,...pn]" and g = [q1, ... qn]" be probability vectors: p;, q; > 0

N N
and > i pi=1=31",q.
p is majorized by g, denoted as p < g, if

Sorf <Y atva=1.N-1
i=1 i=1

1 1]t .
Sal - 1,0...01' v
[N N]<p<[, 1" Vp
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Alternative definitions

p = g sii
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Alternative definitions

p = g sii
there exist a double stochastic matrix D such that

p=Dqwith > Dj=> Dj=1
i j

Z,I-V:;l o(pi) < vazl ¢(q;) for all concave function ¢

Schur-concavity and entropies

¢ : RN+ R is Schur-concave if p < g = ®(p) > d(q)

» Shannon entropy: H(p) = —>_ pilnp;

>pl-1
1—q

» Tsallis entropy: Tq(p) =
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Alternative definitions

p = g sii
there exist a double stochastic matrix D such that

p=Dqwith > Dj=> Dj=1
i j

Z,I-V:;l o(pi) < vazl ¢(q;) for all concave function ¢

Schur-concavity and entropies
¢ : RN+ R is Schur-concave if p < g = ®(p) > d(q)
» Shannon entropy: H(p) = —>_ pilnp;

a_

u Tsallis entropy: T4(p) = le)iq :
n 9

u Rényi entropy: Rq(p) = %‘-
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Majorization lattice: POSET + infimum and supreumum
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Majorization lattice: POSET + infimum and supreumum

Set of probability vectors

Let oy = {[Pl,u-,PN]t :pi > pi+1 =0, and vazl pi=12> Pi}

GM Bosyk (IFLP&UNICA) AMQI 2016 03/11/16 6 /21



Majorization lattice: POSET + infimum and supreumum

Set of probability vectors
Let oy = {[Pl,-'-,PN]t :pi > pi+1 =0, and vazl pi=12> Pi}

Partially ordered set (POSET)
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Majorization lattice: POSET + infimum and supreumum

Set of probability vectors

Let oy = {[P1a~--7PN]t :pi > pi+1 =0, and vazl pi=12> Pi}

Partially ordered set (POSET)

For all p,q,r € dn one has
» reflexivity: p < p
= antisymmetry: if p < g and g < p, then p=g¢q
» transitivity: if p<qgand g <r, thenp<r

Majorization is NOT a total order
If p=1[0.6,0.2,0.2]* and ¢ = [0.5,0.4,0.1]%, then p £ g and g 4 p.
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Majorization lattice: POSET + infimum and supremum

MaJOr'Zat'on |att|ce [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let (On, <, A, V), where for all p, g € iy there exists the infimum p A q
and the supremum pV q.
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Majorization lattice: POSET + infimum and supremum

MaJOr'Zat'on |att|ce [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let (On, <, A, V), where for all p, g € iy there exists the infimum p A q
and the supremum pV q.

By defintion, one has
infimum: p A q iff

pAg<pand pAg<gands<pAgq
for all s such that s < pand s < g

p q
PAg

S

Infimum
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Majorization lattice: POSET + infimum and supremum

MaJOr'Zat'on |att|ce [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let (On, <, A, V), where for all p, g € iy there exists the infimum p A q
and the supremum pV q.

By defintion, one has

infimum: p A q iff supremum: pV g sii

pAg=<pandpAg<qgands<pAq p=<pVgyg<pAgandpVg=<s
for all s such that s < pand s < g for all s such that p<sand g<s

p q s
PAq pVyq
s p q
Infimum Supremum
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Calculating the infimum
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Calculating the infimum

Infimum

Let p, g € Oy, the infimum s = p A g is such that

i i i—1
sll'nf = min ZPMZQI _Zsll'nf:
=1 =1

=1 =

with sif = 0.
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Calculating the supremum
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Calculating the supremum

Supremum

Let p, g € dp, the supremum, s%'P = pV q, is obtained as follows
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Calculating the supremum

Supremum

Let p, g € dp, the supremum, s%'P = pV q, is obtained as follows

s = [51""75N]t1 s = maX{Pl,ch} and
s; = max {Z}Zl PI 211 CII} — Y01 s with i € [2,N]
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Calculating the supremum

Supremum

Let p, g € dp, the supremum, s%'P = pV q, is obtained as follows

s = [51,. "’SN]tZ s = maX{Pl,ch} and
s; = max {Z}Zl PI 211 CII} — Y01 s with i € [2,N]
r=1[r,...,ml"

(a) let j be the smallest integer in [2, N] such that r; > rj_;
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Calculating the supremum

Supremum

Let p, g € dp, the supremum, s%'P = pV q, is obtained as follows

s=[s1,...,sn]": s1 = max{p1,q1} and
. . - o
Sj = max {Z;:l Pis Y11 QI} — > j=1 51 with i € [2, N]
r= [rla"'er]t:
(a) let j be the smallest integer in [2, N] such that r; > rj_;

(b) let k be the greatest integer in [1,j — 1] such that r,_; > szfﬁ =a
with rp > 1
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Calculating the supremum

Supremum

Let p, g € dp, the supremum, s%'P = pV q, is obtained as follows

s=[s1,...,sn]": s1 = max{p1,q1} and
. . - o
Sj = max {Z;:l Pis Y11 QI} — > j=1 51 with i € [2, N]
r=1[r,...,ml"
(a) let j be the smallest integer in [2, N] such that r; > rj_;

(b) let k be the greatest integer in [1,j — 1] such that r,_; > szfﬁ =a
with rp > 1
(c) let t the probability vector given by

=12 for =k k+1,...,j
"= otherwise.
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Calculating the supremum

Supremum

Let p, g € dp, the supremum, s%'P = pV q, is obtained as follows

s=[s1,...,sn]": s1 = max{p1,q1} and
. . - o
Sj = max {Z;:l Pis Y11 CII} — > j=1 51 with i € [2, N]
r=1[r,...,ml"
(a) let j be the smallest integer in [2, N] such that r; > rj_;

(b) let k be the greatest integer in [1,j — 1] such that r,_; > %ﬁ =a
with rp > 1
(c) let t the probability vector given by

A for =k k+1,...,j
"= otherwise.

Applying transformations 2.(a) — 2.(¢) with the input probability

vector s, one obtains the supremum in no more than N — 1 iterations.
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Continuation

If p=[0.6,0.15,0.15,0.1]* y g = [0.5,0.25,0.20, 0.05]¢, then
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Continuation

If p=[0.6,0.15,0.15,0.1]t y q = [0.5,0.25,0.20, 0.05]¢, then
» pAg=][0.5,0.25,0.150.1]*
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Continuation

If p=1[0.6,0.15,0.15,0.1]' y g = [0.5,0.25,0.20, 0.05]¢, then
» pAg=][0.5,0.25,0.150.1]*
= pVq=1[0.6,0.175,0.175,0.05]
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If p=1[0.6,0.15,0.15,0.1]' y g = [0.5,0.25,0.20, 0.05]¢, then
» pAg=][0.5,0.25,0.150.1]*
= pVq=1[0.6,0.175,0.175,0.05]

Properties

]t

=2l

= bottom element: s? = [%
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If p=1[0.6,0.15,0.15,0.1]' y g = [0.5,0.25,0.20, 0.05]¢, then
» pAg=][0.5,0.25,0.150.1]*
= pVq=1[0.6,0.175,0.175,0.05]

Properties

]t

=2l

= bottom element: s? = [%

= top element: s1=[1,0...0]"
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Continuation

Example

If p = [0.6,0.15,0.15,0.1]° y g = [0.5,0.25,0.20, 0.05]¢, then
» pAg=][0.5,0.25,0.150.1]*
= pVq=1[0.6,0.175,0.175,0.05]

Properties

]t

t Ve

=2l

» bottom element: s0 = [%
= top element: s1=[1,0...0]
= majorization lattice is NOT modular:

fr<qg#rVv(pAg) =(rVp)Aq

PAq
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Local operations and classical communication (LOCC)
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Local operations and classical communication (LOCC)

» Alice y Bob share an initial entangled pure state |¢))

= Goal: obtain the target entangled pure state |¢) by using
local operations and classical communications (LOCC)
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Local operations and classical communication (LOCC)

» Alice y Bob share an initial entangled pure state |¢))

= Goal: obtain the target entangled pure state |¢) by using
local operations and classical communications (LOCC)

= which is the condition for this process of entanglement
transformation to be possible?
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Entanglement transformation and majorization
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Entanglement transformation and majorization

Nielsen Theorem (phys. Rev. Letr. 83, 436 (1009)]

Let consider the Schmidt decomposition of the states:

w initial: [) = SN Vi i) [iB) con o = [4h1, ..., 9¥n] € O
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Entanglement transformation and majorization

Nielsen Theorem (phys. Rev. Letr. 83, 436 (1009)]

Let consider the Schmidt decomposition of the states:
w initial: [9) = SN VA [i4) |iB) con ¢ = [, ..., ¢hw] € O
= target: |¢) = L1 /9 %) i®) con ¢ = [1,..., é] € O

|1} LO—C>C |¢) if and only if ¢ < &

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general
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Entanglement transformation and majorization

Nielsen Theorem (phys. Rev. Letr. 83, 436 (1009)]

Let consider the Schmidt decomposition of the states:
w initial: [9) = SN VA [i4) |iB) con ¢ = [, ..., ¢hw] € O
= target: |¢) = L1 /9 %) i®) con ¢ = [1,..., é] € O

|1} LO_()]C |¢) if and only if ¢ < &

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

= |¢) = v/0.6|00) ++/0.15 |11) + +/0.15 |22) + 1/0.1|33)
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Entanglement transformation and majorization

Nielsen Theorem (phys. Rev. Letr. 83, 436 (1009)]

Let consider the Schmidt decomposition of the states:
w initial: [9) = SN VA [i4) |iB) con ¢ = [, ..., ¢hw] € O
= target: |¢) = L1 /9 %) i®) con ¢ = [1,..., é] € O

|1} LO_()]C |¢) if and only if ¢ < &

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

= |¢) = v/0.6|00) ++/0.15 |11) + +/0.15 |22) + 1/0.1|33)
w |¢) = +/0.5]|00) + 1/0.25 |11) 4 /0.2 |22) + 1/0.05|33)
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Entanglement transformation and majorization

Nielsen Theorem (phys. Rev. Letr. 83, 436 (1009)]

Let consider the Schmidt decomposition of the states:
w initial: [9) = SN VA [i4) |iB) con ¢ = [, ..., ¢hw] € O
= target: |¢) = L1 /9 %) i®) con ¢ = [1,..., é] € O

|1} LO_()]C |¢) if and only if ¢ < &

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

= |¢) = v/0.6|00) ++/0.15 |11) + +/0.15 |22) + 1/0.1|33)
w |¢) = +/0.5]|00) + 1/0.25 |11) 4 /0.2 |22) + 1/0.05|33)
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Entanglement transformation and majorization

Nielsen Theorem (phys. Rev. Letr. 83, 436 (1009)]

Let consider the Schmidt decomposition of the states:
w initial: [9) = SN VA [i4) |iB) con ¢ = [, ..., ¢hw] € O
= target: |¢) = L1 /9 %) i®) con ¢ = [1,..., é] € O

|1} LO_()]C |¢) if and only if ¢ < &

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

= |¢) = v/0.6|00) ++/0.15 |11) + +/0.15 |22) + 1/0.1|33)
w |¢) = +/0.5]|00) + 1/0.25 |11) 4 /0.2 |22) + 1/0.05|33)

one has [¢)) < |¢) duetoy) A ¢and d Ay
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Approximate entanglement transformations

initial state target state

%) |6)
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Approximate entanglement transformations

initial state target state
%) \ [
Ix1)
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Approximate entanglement transformations

initial state target state
%) \ [
Ix1)
IXm)

Goal: find |x) closest to |¢)
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Approximate entanglement transformations with Fidelity

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let |¢) and |¢) be the initial and target such that |¢) |#).

_/9
LOCC
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Let |¢)) and |¢) be the initial and target such that |¢)) e o).
They define |x°P) as the closest to the target in the sense of maximal
fidelity:

GM Bosyk (IFLP&UNICA) AMQI 2016 03/11/16 15 / 21



Approximate entanglement transformations with Fidelity

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let |¢) and |¢) be the initial and target such that |¢) e |#).

They define |x°P) as the closest to the target in the sense of maximal
fidelity:

IX°P*) = argmax  F(|9),|x)).
I8 = X

LOCC

where F(|¢),|x)) = | (¢|x) |? is the fidelity between the states |¢) and |x)
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Approximate entanglement transformations with Fidelity

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let |¢) and |¢) be the initial and target such that |¢) e |#).

They define |x°P) as the closest to the target in the sense of maximal
fidelity:

IX°P*) = argmax  F(|9),|x)).
X)) = Ix)

LOCC

where F(|¢),|x)) = | (¢|x) |? is the fidelity between the states |¢) and |x)

Equivalent problem

Pt — arg max F(¢,
X g max F(¢:x)

where F(¢,x) = (3; \/gb,'x,-)z is the fidelity between the vectors ¢ and
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Expression of the optimum: Pt
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Expression of the optimum: Pt

¢Ik = ¢1
rk :
Gl_1—1
XOpt _ ¢./2
(Z)/z_l—l
on
n
i Oh_-1 =N | |
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Expression of the optimum: y°P

¢/k = ¢1
Ik : : . .
p with /i the least integer in 1,/ — 1]
"f—l_l such that
t " o BO)-EL)
yOPt = " : 1e[th-1-1] Ei(¢) — Ej_,(9)
Phy-1 where Ej(¢) = S 4y for all
bi I=1,...,N
n
X Phy-1=0¢n | |
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Does the lattice structure of majorization play some role?
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Relationship with the supremum

Does the lattice structure of majorization play some role?

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let |¢) and |¢) the initial and target states, one has
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Does the lattice structure of majorization play some role?

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let |¢) and |¢) the initial and target states, one has

¢ < Xsup =< Xopt

where Y =y V ¢
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Relationship with the supremum

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let |¢) and |¢) the initial and target states, one has

¢ ~ Xsup =< Xopt

where x*'P = ¢ V ¢
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Relationship with the supremum

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let |¢) and |¢) the initial and target states, one has

¢ < Xsup =< Xopt

where Y'P =y V ¢

Case 1: if |¢) Lot |o)

¢ — Xsup — Xopt

¥
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Relationship with the supremum

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let |¢) and |¢) the initial and target states, one has

¢ < Xsup =< Xopt

where Y'P =y V ¢

Case 2: i [9) | = |0) and [9) & |0)
Xopt
=X

¢

GM Bosyk (IFLP&UNICA) AMQI 2016 03/11/16 18 / 21



Relationship with the supremum

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let |¢) and |¢) the initial and target states, one has

¢ < Xsup =< Xopt
where Y'P =y V ¢

Case 3: [¢p) « |o)

LOCC
(a) Xsup 74 Xopt and Xopt 74 Xsup (b) Xopt < Xsup (C) Xsup < Xopt
Xopt
Xsup Xopt Xsup Xsup
Xopt
4 G 4 G Y G
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Fidelity vs. majorization
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Fidelity vs. majorization

Let:
» ¢ =10.6,0.15,0.15,0.1]*
» ¢ =10.5,0.25,0.2,0.5]

one has

= Y°P' = [0.6,0.2,0.16,0.4] with fidelity F(¢, x°P") ~ 0.989

GM Bosyk (IFLP&UNICA) AMQI 2016 03/11/16 19 / 21



Fidelity vs. majorization

Let:
» ¢ =10.6,0.15,0.15,0.1]*
» ¢ =10.5,0.25,0.2,0.5]
one has
u x°P' =[0.6,0.2,0.16,0.4]" with fidelity F(¢, x°P!) ~ 0.989
» x*"P =[0.6,0.175,0.175,0.05]" with fidelity F(¢, x*"P) ~ 0.987

GM Bosyk (IFLP&UNICA) AMQI 2016 03/11/16 19 / 21



Fidelity vs. majorization

Let:
» ¢ =10.6,0.15,0.15,0.1]*
» ¢ =10.5,0.25,0.2,0.5]
one has
u x°P' =[0.6,0.2,0.16,0.4]" with fidelity F(¢, x°P!) ~ 0.989
» x*"P =[0.6,0.175,0.175,0.05]" with fidelity F(¢, x*"P) ~ 0.987

GM Bosyk (IFLP&UNICA) AMQI 2016 03/11/16 19 / 21



Fidelity vs. majorization

Example

Let:
» ¢ =10.6,0.15,0.15,0.1]*
» ¢ =10.5,0.25,0.2,0.5]
one has
u x°P' =[0.6,0.2,0.16,0.4]" with fidelity F(¢, x°P!) ~ 0.989
» x*"P =[0.6,0.175,0.175,0.05]" with fidelity F(¢, x*"P) ~ 0.987

But, we have seen that:
¢_<Xsup =< Xopt
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Fidelity vs. majorization

Example

Let:
» ¢ =10.6,0.15,0.15,0.1]*
» ¢ =10.5,0.25,0.2,0.5]
one has
u x°P' =[0.6,0.2,0.16,0.4]" with fidelity F(¢, x°P!) ~ 0.989
» x*"P =[0.6,0.175,0.175,0.05]" with fidelity F(¢, x*"P) ~ 0.987

But, we have seen that:
¢ _<Xsup =< Xopt

Fidelity does not respect the majorization order in general
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Intepreting the supreum
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:
d(p,q) = H(p) + H(q) — 2H(p V q) con H(p) = Zp, In p;
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:

d(p,q) = H(p) + H(q) — 2H(p V q) con H(p) = Zp, In p;
= positivity: d(p,q) > 0 with d(p,q) =0iff p=gq
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:
d(p,q) = H(p) + H(q) — 2H(p v q) con H(p) = Zp, In p;
= positivity: d(p,q) > 0 with d(p,q) =0iff p=gq
= symmetry: d(p,q) = d(q,p)
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:
d(p,q) = H(p) + H(q) — 2H(p v q) con H(p) = Zp, In p;
= positivity: d(p,q) > 0 with d(p,q) =0iff p=gq

= symmetry: d(p,q) = d(q,p)
= triangle inequality: d(p,r) + d(r,q) > d(p,q)
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:
d(p,q) = H(p) + H(q) — 2H(p v q) con H(p) = Zp, In p;
positivity: d(p,q) > 0 with d(p,q) =0iff p=g
symmetry: d(p,q) = d(q, p)
triangle inequality: d(p,r) + d(r,q) > d(p, q)
compatible with the lattice: if p < g < r = d(p,r) = d(p,q) + d(q,r)
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Intepreting the supreum
Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:

d(p,q) = H(p) + H(q) — 2H(p V q) con H(p) = = > p;Inp;
positivity: d(p,q) > 0 with d(p,q) =0iff p=g i
symmetry: d(p,q) = d(q, p)
triangle inequality: d(p,r) + d(r,q) > d(p, q)
compatible with the lattice: if p < g < r = d(p,r) = d(p,q) + d(q,r)

Supremum state

sup\ — sup | A\ [:B . sup _
) | G2 X >—; XU ) with P =9y V¢
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:

d(p,q) = H(p) + H(q) — 2H(p V q) con H(p) = = > p;Inp;
positivity: d(p,q) > 0 with d(p,q) =0iff p=g i
symmetry: d(p,q) = d(q, p)
triangle inequality: d(p,r) + d(r,q) > d(p, q)
compatible with the lattice: if p < g < r = d(p,r) = d(p,q) + d(q,r)

Supremum state

Supy = sup Ay | B H sup —
[9) | 52, D) = D 0/XG U LB) with x*P = ¢ v o

u is the closest to target in thesense of minimal distance d:

sup

= argmin d(|#) , 1x))

Ix)tlw)Lo—écbﬁ

Ix
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Intepreting the supreum

Distance on the majorization lattice

Let two proability vectors p, g € dy. A distance d is defined as:

d(p,q) = H(p) + H(q) — 2H(p V q) con H(p) = = > p;Inp;
positivity: d(p,q) > 0 with d(p,q) =0iff p=g i
symmetry: d(p,q) = d(q, p)
triangle inequality: d(p,r) + d(r,q) > d(p, q)
compatible with the lattice: if p < g < r = d(p,r) = d(p,q) + d(q,r)

Supremum state

Supy = sup Ay | B H sup —
[9) | 52, D) = D 0/XG U LB) with x*P = ¢ v o

u is the closest to target in thesense of minimal distance d:

sup

= argmin d(|#) , 1x))

Ix)tlw)Lo—écbﬁ

Ix

m it has more entanglement entropy than the optimum
Recall: Entropy of Schmidt coefficients is the entanglement entropy
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Grazie mille!!!
Questions, comments...

GM Bosyk (IFLP&UNICA) AMQI 2016
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