

Università degli Stud **Cagliari**

Majorization and Entanglement transformations

Gustavo Martín Bosyk

Instituto de Física La Plata, UNLP, CONICET, La Plata, Argentina Università degli studi di Cagliari, Cagliari, Italia

In collaboration with: GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo, arXiv:1608.04818v1 [quant-ph] (2016)

November 3, 2016

Part I

 ${\sf Majorization}$

Situation B

Situation B

Which situation has less uncertainty?

Situation B

Which situation has less uncertainty? Game 1: what color is the ball? \rightarrow A

Situation B

Which situation has less uncertainty?

Game 1: what color is the ball? ightarrow A

Game 2: what color is NOT the ball? \rightarrow B

Situation B

Which situation has less uncertainty?

Game 1: what color is the ball? o A

Game 2: what color is **NOT** the ball? \rightarrow B

How to compare probability vectors

Definition [Marshall, Olkin y Arnold, Inequalities: Theory of Majorization and Its Applications]

Let
$$p = [p_1, \dots p_N]^t$$
 and $q = [q_1, \dots q_N]^t$ be probability vectors: $p_i, q_i \ge 0$ and $\sum_{i=1}^N p_i = 1 = \sum_{i=1}^N q_i$.

Definition [Marshall, Olkin y Arnold, Inequalities: Theory of Majorization and Its Applications]

Let $p = [p_1, \dots p_N]^t$ and $q = [q_1, \dots q_N]^t$ be probability vectors: $p_i, q_i \ge 0$ and $\sum_{i=1}^N p_i = 1 = \sum_{i=1}^N q_i$. p is **majorized** by q, denoted as p < q, if

$$\sum_{i=1}^{n} p_i^{\downarrow} \leq \sum_{i=1}^{n} q_i^{\downarrow} \ \forall n = 1 \dots N-1$$

Definition [Marshall, Olkin y Arnold, Inequalities: Theory of Majorization and Its Applications]

Let $p = [p_1, \dots p_N]^t$ and $q = [q_1, \dots q_N]^t$ be probability vectors: $p_i, q_i \ge 0$ and $\sum_{i=1}^N p_i = 1 = \sum_{i=1}^N q_i$. p is **majorized** by q, denoted as $p \prec q$, if

$$\sum_{i=1}^{n} p_i^{\downarrow} \leq \sum_{i=1}^{n} q_i^{\downarrow} \ \forall n = 1 \dots N-1$$

Example

$$\left[\frac{1}{N}\dots\frac{1}{N}\right]^t \prec \rho \prec [1,0\dots0]^t \ \forall \rho$$

Definitions

 $p \prec q$ sii

Definitions

$$p \prec q \sin$$

1 there exist a double stochastic matrix D such that

$$p = Dq$$
 with $\sum_i D_{ij} = \sum_j D_{ij} = 1$

Definitions

 $p \prec q \sin$

1 there exist a double stochastic matrix D such that

$$p = Dq$$
 with $\sum_{i} D_{ij} = \sum_{j} D_{ij} = 1$

 $\sum_{i=1}^N \phi(p_i) \leq \sum_{i=1}^N \phi(q_i)$ for all concave function ϕ

Definitions

 $p \prec q \sin$

 \blacksquare there exist a double stochastic matrix D such that

$$p = Dq$$
 with $\sum_{i} D_{ij} = \sum_{j} D_{ij} = 1$

 $\sum_{i=1}^{N} \phi(p_i) \leq \sum_{i=1}^{N} \phi(q_i)$ for all concave function ϕ

Schur-concavity and entropies

 $\Phi: \mathbb{R}^{N} \mapsto \mathbb{R}$ is Schur-concave if $p \prec q \Rightarrow \Phi(p) \geq \Phi(q)$

Definitions

 $p \prec q \sin$

1 there exist a double stochastic matrix D such that

$$p = Dq$$
 with $\sum_{i} D_{ij} = \sum_{j} D_{ij} = 1$

 $\sum_{i=1}^{N} \phi(p_i) \leq \sum_{i=1}^{N} \phi(q_i)$ for all concave function ϕ

Schur-concavity and entropies

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}$ is Schur-concave if $p \prec q \Rightarrow \Phi(p) \geq \Phi(q)$

Shannon entropy: $H(p) = -\sum p_i \ln p_i$

Definitions

 $p \prec q \sin$

 \blacksquare there exist a double stochastic matrix D such that

$$p = Dq$$
 with $\sum_{i} D_{ij} = \sum_{j} D_{ij} = 1$

 $\sum_{i=1}^{N} \phi(p_i) \leq \sum_{i=1}^{N} \phi(q_i)$ for all concave function ϕ

Schur-concavity and entropies

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}$ is Schur-concave if $p \prec q \Rightarrow \Phi(p) \geq \Phi(q)$

- Shannon entropy: $H(p) = -\sum p_i \ln p_i$
- Tsallis entropy: $T_q(p) = \frac{\sum p_i^q 1}{1 q}$

Definitions

 $p \prec q \sin$

1 there exist a double stochastic matrix D such that

$$p = Dq$$
 with $\sum_{i} D_{ij} = \sum_{j} D_{ij} = 1$

 $\sum_{i=1}^{N} \phi(p_i) \leq \sum_{i=1}^{N} \phi(q_i)$ for all concave function ϕ

Schur-concavity and entropies

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}$ is Schur-concave if $p \prec q \Rightarrow \Phi(p) \geq \Phi(q)$

- Shannon entropy: $H(p) = -\sum p_i \ln p_i$
- Tsallis entropy: $T_q(p) = \frac{\sum p_i^q 1}{1 q}$
- Rényi entropy: $R_q(p) = \frac{\ln \sum p_i^q}{1-q}$

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N\right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

For all $p, q, r \in \delta_N$ one has

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

For all $p,q,r\in\delta_{N}$ one has

• reflexivity: $p \prec p$

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

For all $p,q,r\in\delta_N$ one has

- reflexivity: $p \prec p$
- lacksquare antisymmetry: if $p \prec q$ and $q \prec p$, then p = q

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

For all $p, q, r \in \delta_N$ one has

- reflexivity: $p \prec p$
- lacksquare antisymmetry: if $p \prec q$ and $q \prec p$, then p=q
- lacksquare transitivity: if $p \prec q$ and $q \prec r$, then $p \prec r$

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

For all $p, q, r \in \delta_N$ one has

- reflexivity: $p \prec p$
- lacksquare antisymmetry: if $p \prec q$ and $q \prec p$, then p=q
- lacksquare transitivity: if $p \prec q$ and $q \prec r$, then $p \prec r$

Set of probability vectors

Let
$$\delta_N = \left\{ \left[p_1, \dots, p_N \right]^t : p_i \geq p_{i+1} \geq 0, \text{ and } \sum_{i=1}^N p_i = 1 \geq p_i \right\}$$

Partially ordered set (POSET)

For all $p, q, r \in \delta_N$ one has

- reflexivity: $p \prec p$
- lacksquare antisymmetry: if $p \prec q$ and $q \prec p$, then p = q
- lacksquare transitivity: if $p \prec q$ and $q \prec r$, then $p \prec r$

Majorization is **NOT** a total order

If
$$p = [0.6, 0.2, 0.2]^t$$
 and $q = [0.5, 0.4, 0.1]^t$, then $p \not\prec q$ and $q \not\prec p$.

◆ロト ◆問 ▶ ◆ 恵 ▶ ◆ 恵 ● り へ ○

Majorization lattice [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let $\langle \delta_N, \prec, \wedge, \vee \rangle$, where for all $p, q \in \delta_N$ there exists the *infimum* $p \wedge q$ and the *supremum* $p \vee q$.

Majorization lattice [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let $\langle \delta_N, \prec, \wedge, \vee \rangle$, where for all $p, q \in \delta_N$ there exists the *infimum* $p \wedge q$ and the *supremum* $p \vee q$.

By defintion, one has

Majorization lattice [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let $\langle \delta_N, \prec, \wedge, \vee \rangle$, where for all $p, q \in \delta_N$ there exists the *infimum* $p \wedge q$ and the *supremum* $p \vee q$.

By defintion, one has infimum: $p \land q$ iff $p \land q \prec p$ and $p \land q \prec q$ and $s \prec p \land q$ for all s such that $s \prec p$ and $s \prec q$

Infimum

Majorization lattice [Cicalese y Vaccaro, IEEE Trans. Inf. Theory 48,933 (2002)]

Let $\langle \delta_N, \prec, \wedge, \vee \rangle$, where for all $p, q \in \delta_N$ there exists the infimum $p \wedge q$ and the supremum $p \vee q$.

By defintion, one has infimum: $p \wedge q$ iff

 $p \land q \prec p$ and $p \land q \prec q$ and $s \prec p \land q$ $p \prec p \lor q \lor q \prec p \land q$ and $p \lor q \prec s$

supremum: $p \lor q$ sii for all s such that $s \prec p$ and $s \prec q$ for all s such that $p \prec s$ and $q \prec s$

Infimum

Supremum

Calculating the infimum

Calculating the infimum

<u>Infim</u>um

Let $p,q\in\delta_N$, the infimum $s^{\inf}\equiv p\wedge q$ is such that

$$s_i^{\inf} = \min \left\{ \sum_{l=1}^i p_l, \sum_{l=1}^i q_l \right\} - \sum_{l=1}^{i-1} s_i^{\inf},$$

with $s_0^{inf} \equiv 0$.

Supremum

Let $p,q\in\delta_{N}$, the supremum, $s^{\mathsf{sup}}\equiv pee q$, is obtained as follows

Supremum

Let $p,q\in\delta_{\mathit{N}}$, the supremum, $s^{\mathsf{sup}}\equiv pee q$, is obtained as follows

I
$$s = [s_1, \dots, s_N]^t$$
: $s_1 = \max\{p_1, q_1\}$ and $s_i = \max\left\{\sum_{l=1}^i p_l, \sum_{l=1}^i q_l\right\} - \sum_{l=1}^{i-1} s_l \text{ with } i \in [2, N]$

Supremum

Let $p,q\in\delta_{N}$, the supremum, $s^{\sup}\equiv p\vee q$, is obtained as follows

- I $s = [s_1, \dots, s_N]^t$: $s_1 = \max\{p_1, q_1\}$ and $s_i = \max\left\{\sum_{l=1}^i p_l, \sum_{l=1}^i q_l\right\} \sum_{l=1}^{i-1} s_l \text{ with } i \in [2, N]$
- $[r_1, \ldots, r_N]^t$:

Supremum

Let $p,q\in\delta_{N}$, the supremum, $s^{\mathsf{sup}}\equiv p\lor q$, is obtained as follows

- I $s = [s_1, ..., s_N]^t$: $s_1 = \max\{p_1, q_1\}$ and $s_i = \max\left\{\sum_{l=1}^i p_l, \sum_{l=1}^i q_l\right\} \sum_{l=1}^{i-1} s_l \text{ with } i \in [2, N]$
- $[r_1, \ldots, r_N]^t$
 - (a) let j be the smallest integer in [2, N] such that $r_j > r_{j-1}$

Supremum

Let $p,q\in\delta_{N}$, the supremum, $s^{\mathsf{sup}}\equiv p\lor q$, is obtained as follows

- I $s = [s_1, ..., s_N]^t$: $s_1 = \max\{p_1, q_1\}$ and $s_i = \max\left\{\sum_{l=1}^i p_l, \sum_{l=1}^i q_l\right\} \sum_{l=1}^{i-1} s_l \text{ with } i \in [2, N]$
- $[r_1, \ldots, r_N]^t$:
 - (a) let j be the smallest integer in [2, N] such that $r_j > r_{j-1}$
 - (b) let k be the greatest integer in [1,j-1] such that $r_{k-1} \geq \frac{\sum_{j=k}^{j} r_{l}}{j-k+1} = a$ with $r_{0}>1$

Supremum

Let $p,q\in\delta_{N}$, the supremum, $s^{\sup}\equiv p\vee q$, is obtained as follows

- I $s = [s_1, ..., s_N]^t$: $s_1 = \max\{p_1, q_1\}$ and $s_i = \max\left\{\sum_{l=1}^i p_l, \sum_{l=1}^i q_l\right\} \sum_{l=1}^{i-1} s_l \text{ with } i \in [2, N]$
- $[2] r = [r_1, \ldots, r_N]^t$
 - (a) let j be the smallest integer in [2, N] such that $r_j > r_{j-1}$
 - (b) let k be the greatest integer in [1,j-1] such that $r_{k-1}\geq \frac{\sum_{j=k}^{j}n}{j-k+1}=a$ with $r_0>1$
 - (c) let t the probability vector given by

$$t_l \equiv \left\{ egin{array}{ll} a & ext{for } l=k,k+1,\ldots,j \\ r_l & ext{otherwise}. \end{array}
ight.$$

Supremum

Let $p,q\in\delta_{N}$, the supremum, $s^{\sup}\equiv p\vee q$, is obtained as follows

- I $s = [s_1, ..., s_N]^t$: $s_1 = \max\{p_1, q_1\}$ and $s_i = \max\left\{\sum_{l=1}^i p_l, \sum_{l=1}^i q_l\right\} \sum_{l=1}^{i-1} s_l \text{ with } i \in [2, N]$
- $[r_1, \ldots, r_N]^t$:
 - (a) let j be the smallest integer in [2, N] such that $r_j > r_{j-1}$
 - (b) let k be the greatest integer in [1,j-1] such that $r_{k-1}\geq \frac{\sum_{j=k}^{j}n}{j-k+1}=a$ with $r_0>1$
 - (c) let t the probability vector given by

$$t_I \equiv \left\{ egin{array}{ll} a & ext{for } I=k,k+1,\ldots,j \ r_I & ext{otherwise.} \end{array}
ight.$$

Applying transformations 2.(a) - 2.(c) with the input probability vector s, one obtains the supremum in no more than N-1 iterations.

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then $p \wedge q = [0.5, 0.25, 0.15, 0.1]^t$

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

- $p \land q = [0.5, 0.25, 0.15, 0.1]^t$
- $p \lor q = [0.6, 0.175, 0.175, 0.05]^t$

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

- $p \land q = [0.5, 0.25, 0.15, 0.1]^t$
- $p \lor q = [0.6, 0.175, 0.175, 0.05]^t$

Continuation Continuation

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

- $p \land q = [0.5, 0.25, 0.15, 0.1]^t$
- $p \lor q = [0.6, 0.175, 0.175, 0.05]^t$

Properties

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

- $p \land q = [0.5, 0.25, 0.15, 0.1]^t$
- $p \lor q = [0.6, 0.175, 0.175, 0.05]^t$

Properties

• bottom element: $s^0 \equiv \left[\frac{1}{N} \dots \frac{1}{N}\right]^t$

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

- $p \land q = [0.5, 0.25, 0.15, 0.1]^t$
- $p \lor q = [0.6, 0.175, 0.175, 0.05]^t$

Properties

- bottom element: $s^0 \equiv \left[\frac{1}{N} \dots \frac{1}{N}\right]^t$
- top element: $s^1 \equiv [1, 0 \dots 0]^t$

Example

If $p = [0.6, 0.15, 0.15, 0.1]^t$ y $q = [0.5, 0.25, 0.20, 0.05]^t$, then

- $p \land q = [0.5, 0.25, 0.15, 0.1]^t$
- $p \lor q = [0.6, 0.175, 0.175, 0.05]^t$

Properties

- bottom element: $s^0 \equiv \left[\frac{1}{N} \dots \frac{1}{N}\right]^t$
- top element: $s^1 \equiv [1, 0 \dots 0]^t$
- majorization lattice is **NOT** modular: if $r \prec q \Rightarrow r \lor (p \land q) = (r \lor p) \land q$

Part II

Entanglement transformations

lacksquare Alice y Bob share an *initial* entangled pure state $|\psi
angle$

- lacksquare Alice y Bob share an *initial* entangled pure state $|\psi
 angle$
- Goal: obtain the *target* entangled pure state $|\phi\rangle$ by using local operations and classical communications (LOCC)

- lacksquare Alice y Bob share an initial entangled pure state $|\psi
 angle$
- Goal: obtain the *target* entangled pure state $|\phi\rangle$ by using local operations and classical communications (LOCC)
- which is the condition for this process of entanglement transformation to be possible?

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

$$lacksquare$$
 initial: $|\psi
angle = \sum_{i=1}^N \sqrt{\psi_i} \, |i^A
angle \, |i^B
angle \, \operatorname{con} \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

- initial: $|\psi\rangle = \sum_{i=1}^N \sqrt{\psi_i} |i^A\rangle |i^B\rangle$ con $\psi = [\psi_1, \dots, \psi_N] \in \delta_N$
- \blacksquare target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

- initial: $|\psi\rangle = \sum_{i=1}^N \sqrt{\psi_i} |i^A\rangle |i^B\rangle$ con $\psi = [\psi_1, \dots, \psi_N] \in \delta_N$
- \blacksquare target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

- lacksquare initial: $|\psi
 angle = \sum_{i=1}^N \sqrt{\psi_i} \, |i^A
 angle \, |i^B
 angle \, \operatorname{con} \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$
- \blacksquare target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

$$|\psi\rangle \underset{\text{LOCC}}{\rightarrow} |\phi\rangle$$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

$$lacksquare$$
 initial: $|\psi
angle = \sum_{i=1}^N \sqrt{\psi_i} \, |i^A
angle \, |i^B
angle \, {
m con} \, \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$

$$\blacksquare$$
 target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

$$|\psi
angle \underset{ ext{LOCC}}{
ightarrow} |\phi
angle \,$$
 if and only if

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

- lacksquare initial: $|\psi
 angle = \sum_{i=1}^N \sqrt{\psi_i} \, |i^A
 angle \, |i^B
 angle \, \operatorname{con} \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$
- \blacksquare target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

$$|\psi
angle \underset{
m LOCC}{
ightarrow} |\phi
angle \,$$
 if and only if $\psi \prec \phi$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

Let consider the Schmidt decomposition of the states:

- lacksquare initial: $|\psi
 angle = \sum_{i=1}^{N} \sqrt{\psi_i} \, |i^A
 angle \, |i^B
 angle \, {
 m con} \, \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$
- \blacksquare target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

$$|\psi\rangle\underset{\mathrm{LOCC}}{
ightarrow}|\phi\rangle$$
 if and only if $\psi\prec\phi$

This condition does not depend on the Schmidt basis

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

Let consider the Schmidt decomposition of the states:

- lacksquare initial: $|\psi
 angle = \sum_{i=1}^N \sqrt{\psi_i} \, |i^A
 angle \, |i^B
 angle \, \operatorname{con} \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$
- \blacksquare target: $|\phi\rangle=\sum_{j=1}^N\sqrt{\phi_j}\,|j^A\rangle\,|j^B\rangle$ con $\phi=[\phi_1,\ldots,\phi_N]\in\delta_N$

$$|\psi
angle \underset{
m LOCC}{
ightarrow} |\phi
angle \,$$
 if and only if $\psi\prec\phi$

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

Let consider the Schmidt decomposition of the states:

- lacksquare initial: $|\psi\rangle = \sum_{i=1}^N \sqrt{\psi_i} |i^A\rangle |i^B\rangle$ con $\psi = [\psi_1, \dots, \psi_N] \in \delta_N$
- target: $|\phi\rangle = \sum_{j=1}^N \sqrt{\phi_j} \, |j^A\rangle \, |j^B\rangle$ con $\phi = [\phi_1, \dots, \phi_N] \in \delta_N$

$$|\psi
angle \underset{
m LOCC}{
ightarrow} |\phi
angle \,$$
 if and only if $\psi\prec\phi$

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

Example

$$\qquad |\psi\rangle = \sqrt{0.6} \left|00\right\rangle + \sqrt{0.15} \left|11\right\rangle + \sqrt{0.15} \left|22\right\rangle + \sqrt{0.1} \left|33\right\rangle$$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

Let consider the Schmidt decomposition of the states:

- lacksquare initial: $|\psi\rangle=\sum_{i=1}^{N}\sqrt{\psi_{i}}\,|i^{A}\rangle\,|i^{B}\rangle$ con $\psi=[\psi_{1},\ldots,\psi_{N}]\in\delta_{N}$
- target: $|\phi\rangle = \sum_{j=1}^N \sqrt{\phi_j} |j^A\rangle |j^B\rangle$ con $\phi = [\phi_1, \dots, \phi_N] \in \delta_N$

$$|\psi
angle \underset{
m LOCC}{
ightarrow} |\phi
angle \,$$
 if and only if $\psi\prec\phi$

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

Example

$$|\psi\rangle = \sqrt{0.6} \, |00\rangle + \sqrt{0.15} \, |11\rangle + \sqrt{0.15} \, |22\rangle + \sqrt{0.1} \, |33\rangle$$

$$\qquad |\phi\rangle = \sqrt{0.5} \, |00\rangle + \sqrt{0.25} \, |11\rangle + \sqrt{0.2} \, |22\rangle + \sqrt{0.05} \, |33\rangle$$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

Let consider the Schmidt decomposition of the states:

- lacksquare initial: $|\psi\rangle=\sum_{i=1}^{N}\sqrt{\psi_{i}}\,|i^{A}\rangle\,|i^{B}\rangle$ con $\psi=[\psi_{1},\ldots,\psi_{N}]\in\delta_{N}$
- target: $|\phi\rangle = \sum_{j=1}^N \sqrt{\phi_j} |j^A\rangle |j^B\rangle$ con $\phi = [\phi_1, \dots, \phi_N] \in \delta_N$

$$|\psi
angle \underset{
m LOCC}{
ightarrow} |\phi
angle \,$$
 if and only if $\psi\prec\phi$

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

Example

$$|\psi\rangle = \sqrt{0.6} \, |00\rangle + \sqrt{0.15} \, |11\rangle + \sqrt{0.15} \, |22\rangle + \sqrt{0.1} \, |33\rangle$$

$$\qquad |\phi\rangle = \sqrt{0.5} \, |00\rangle + \sqrt{0.25} \, |11\rangle + \sqrt{0.2} \, |22\rangle + \sqrt{0.05} \, |33\rangle$$

Nielsen Theorem [Phys. Rev. Lett. 83, 436 (1999)]

Let consider the Schmidt decomposition of the states:

- lacksquare initial: $|\psi
 angle = \sum_{i=1}^N \sqrt{\psi_i} \, |i^A
 angle \, |i^B
 angle \, \operatorname{con} \, \psi = [\psi_1,\ldots,\psi_N] \in \delta_N$
- target: $|\phi\rangle = \sum_{j=1}^N \sqrt{\phi_j} |j^A\rangle |j^B\rangle$ con $\phi = [\phi_1, \dots, \phi_N] \in \delta_N$

$$|\psi
angle \underset{
m LOCC}{
ightarrow} |\phi
angle \,$$
 if and only if $\psi\prec\phi$

This condition does not depend on the Schmidt basis

As it is expected, the Nielsen condition is not satisfied in general

Example

$$|\psi\rangle = \sqrt{0.6} |00\rangle + \sqrt{0.15} |11\rangle + \sqrt{0.15} |22\rangle + \sqrt{0.1} |33\rangle$$

$$|\phi\rangle = \sqrt{0.5} \, |00\rangle + \sqrt{0.25} \, |11\rangle + \sqrt{0.2} \, |22\rangle + \sqrt{0.05} \, |33\rangle$$

one has $|\psi\rangle \underset{\rm LOCC}{\longleftrightarrow} |\phi\rangle$ due to $\psi\not\prec\phi$ and $\phi\not\prec\psi$

Approximate entanglement transformations

initial state target state $|\psi\rangle \hspace{1.5cm} |\phi\rangle$

Goal: find $|\chi\rangle$ closest to $|\phi\rangle$

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let $|\psi\rangle$ and $|\phi\rangle$ be the initial and target such that $|\psi\rangle\underset{\mathrm{LOCC}}{
ightarrow}|\phi\rangle.$

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let $|\psi\rangle$ and $|\phi\rangle$ be the initial and target such that $|\psi\rangle \underset{\text{LOCC}}{\nrightarrow} |\phi\rangle$.

They define $|\chi^{\rm opt}\rangle$ as the closest to the target in the sense of maximal fidelity:

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let $|\psi\rangle$ and $|\phi\rangle$ be the initial and target such that $|\psi\rangle \underset{\text{LOCC}}{\nrightarrow} |\phi\rangle$.

They define $|\chi^{\rm opt}\rangle$ as the closest to the target in the sense of maximal fidelity:

$$|\chi^{\mathrm{opt}}\rangle = \underset{|\chi\rangle:|\psi\rangle}{\arg\max} F(|\phi\rangle\,,|\chi\rangle),$$

where $F(|\phi\rangle, |\chi\rangle) = |\langle \phi|\chi\rangle|^2$ is the fidelity between the states $|\phi\rangle$ and $|\chi\rangle$

Vidal et. al Criterion [Phys. Rev. A 62, 012304 (2000)]

Let $|\psi\rangle$ and $|\phi\rangle$ be the initial and target such that $|\psi\rangle \xrightarrow[LOCC]{} |\phi\rangle$.

They define $|\chi^{\rm opt}\rangle$ as the closest to the target in the sense of maximal fidelity:

$$|\chi^{\mathrm{opt}}\rangle = \underset{|\chi\rangle:|\psi\rangle}{\arg\max} F(|\phi\rangle\,,|\chi\rangle),$$

where $F(|\phi\rangle, |\chi\rangle) = |\langle \phi|\chi\rangle|^2$ is the fidelity between the states $|\phi\rangle$ and $|\chi\rangle$

Equivalent problem

$$\chi^{\mathrm{opt}} = \arg\max_{\chi: \psi \prec \chi} F(\phi, \chi)$$

where $F(\phi,\chi) = \left(\sum_i \sqrt{\phi_i \chi_i}\right)^2$ is the fidelity between the vectors ϕ and χ

Expression of the optimum: $\chi^{
m opt}$

Expression of the optimum: $\chi^{ m opt}$

$$\chi^{\text{opt}} = \begin{bmatrix} r_k \begin{bmatrix} \phi_{I_k} = \phi_1 \\ \vdots \\ \phi_{I_{k-1}-1} \end{bmatrix} \\ \vdots \\ r_2 \begin{bmatrix} \phi_{I_2} \\ \vdots \\ \phi_{I_{2-1}-1} \end{bmatrix} \\ r_1 \begin{bmatrix} \phi_{I_1} \\ \vdots \\ \phi_{I_{1-1}-1} = \phi_N \end{bmatrix} \end{bmatrix}$$

Expression of the optimum: χ^{opt}

$$\chi^{\mathrm{opt}} = \begin{bmatrix} r_k \begin{bmatrix} \phi_{I_k} = \phi_1 \\ \vdots \\ \phi_{I_{k-1}-1} \end{bmatrix} \\ r_2 \begin{bmatrix} \phi_{I_2} \\ \vdots \\ \phi_{I_{2-1}-1} \end{bmatrix} \\ r_1 \begin{bmatrix} \phi_{I_1} \\ \vdots \\ \phi_{I_{1-1}-1} = \phi_N \end{bmatrix} \end{bmatrix} \text{ with } I_k \text{ the least integer in } [1, I_k - 1] \\ \text{such that} \\ r_k = \min_{I \in [1, I_{k-1}-1]} \frac{E_I(\psi) - E_{I_{k-1}}(\psi)}{E_I(\phi) - E_{I_{k-1}}(\phi)} \\ \text{where } E_I(\psi) = \sum_{I'=I}^N \psi_{I'} \text{ for all } I = 1, \dots, N$$

$$r_k = \min_{l \in [1, l_{k-1} - 1]} \frac{E_l(\psi) - E_{l_{k-1}}(\psi)}{E_l(\phi) - E_{l_{k-1}}(\phi)}$$

where
$$E_l(\psi) = \sum_{l'=l}^{N} \psi_{l'}$$
 for all $l = 1, \dots, N$

Does the lattice structure of majorization play some role?

Does the lattice structure of majorization play some role?

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let $|\psi\rangle$ and $|\phi\rangle$ the initial and target states, one has

Does the lattice structure of majorization play some role?

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let $|\psi\rangle$ and $|\phi\rangle$ the initial and target states, one has

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

where
$$\chi^{\sup} \equiv \psi \lor \phi$$

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let $|\psi\rangle$ and $|\phi\rangle$ the initial and target states, one has

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

where
$$\chi^{\sup} \equiv \psi \lor \phi$$

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let $|\psi\rangle$ and $|\phi\rangle$ the initial and target states, one has

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

where $\chi^{\sup} \equiv \psi \vee \phi$

Case 1: if
$$|\psi\rangle \underset{LOCC}{\rightarrow} |\phi\rangle$$

$$\phi \phi = \chi^{\text{sup}} = \chi^{\text{opt}}$$

$$\phi \psi$$

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let $|\psi\rangle$ and $|\phi\rangle$ the initial and target states, one has

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

where $\chi^{\sup} \equiv \psi \vee \phi$

Case 2: if
$$|\psi\rangle \underset{\text{LOCC}}{\rightarrow} |\phi\rangle$$
 and $|\psi\rangle \underset{\text{LOCC}}{\leftarrow} |\phi\rangle$

Theorem [GMB, G. Sergioli, H. Freytes, F. Holik and G. Bellomo]

Let $|\psi\rangle$ and $|\phi\rangle$ the initial and target states, one has

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

where $\chi^{\sup} \equiv \psi \vee \phi$

Case 3:
$$|\psi\rangle \underset{\text{LOCC}}{\leftrightarrow} |\phi\rangle$$

(a)
$$\chi^{\sup} \not\prec \chi^{\operatorname{opt}}$$
 and $\chi^{\operatorname{opt}} \not\prec \chi^{\sup}$ (b) $\chi^{\operatorname{opt}} \prec \chi^{\sup}$

Example

Let:

 $\psi = [0.6, 0.15, 0.15, 0.1]^t$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

one has

 $\chi^{\mathrm{opt}} = [0.6, 0.2, 0.16, 0.4]^t$ with fidelity $F(\phi, \chi^{\mathrm{opt}}) \approx 0.989$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

one has

- $\chi^{
 m opt} = [0.6, 0.2, 0.16, 0.4]^t$ with fidelity $F(\phi, \chi^{
 m opt}) pprox 0.989$
- $\mathbf{z}^{\mathrm{sup}} = [0.6, 0.175, 0.175, 0.05]^t$ with fidelity $F(\phi, \chi^{\mathrm{sup}}) pprox 0.987$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

one has

- $\chi^{
 m opt} = [0.6, 0.2, 0.16, 0.4]^t$ with fidelity $F(\phi, \chi^{
 m opt}) pprox 0.989$
- $\mathbf{z}^{\mathrm{sup}} = [0.6, 0.175, 0.175, 0.05]^t$ with fidelity $F(\phi, \chi^{\mathrm{sup}}) pprox 0.987$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

one has

- $\chi^{\mathrm{opt}} = [0.6, 0.2, 0.16, 0.4]^t$ with fidelity $F(\phi, \chi^{\mathrm{opt}}) \approx 0.989$
- $\mathbf{z}^{\mathrm{sup}} = [0.6, 0.175, 0.175, 0.05]^t$ with fidelity $F(\phi, \chi^{\mathrm{sup}}) pprox 0.987$

But, we have seen that:

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

Example

Let:

- $\psi = [0.6, 0.15, 0.15, 0.1]^t$
- $\phi = [0.5, 0.25, 0.2, 0.5]^t$

one has

- ullet $\chi^{
 m opt} = [0.6, 0.2, 0.16, 0.4]^t$ with fidelity $F(\phi, \chi^{
 m opt}) pprox 0.989$
- $\mathbf{z}^{\mathrm{sup}} = [0.6, 0.175, 0.175, 0.05]^t$ with fidelity $F(\phi, \chi^{\mathrm{sup}}) pprox 0.987$

But, we have seen that:

$$\phi \prec \chi^{\text{sup}} \prec \chi^{\text{opt}}$$

Fidelity does not respect the majorization order in general

Distance on the majorization lattice

Distance on the majorization lattice

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \text{ con } H(p) = -\sum_{i} p_{i} \ln p_{i}$$

Distance on the majorization lattice

Let two proability vectors $p, q \in \delta_N$. A distance d is defined as:

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

lacksquare positivity: $d(p,q) \geq 0$ with d(p,q) = 0 iff p=q

Distance on the majorization lattice

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- lacksquare positivity: $d(p,q) \geq 0$ with d(p,q) = 0 iff p = q
- symmetry: d(p,q) = d(q,p)

Distance on the majorization lattice

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- lacksquare positivity: $d(p,q) \geq 0$ with d(p,q) = 0 iff p = q
- symmetry: d(p,q) = d(q,p)
- lacksquare triangle inequality: $d(p,r)+d(r,q)\geq d(p,q)$

Distance on the majorization lattice

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- lacksquare positivity: $d(p,q) \geq 0$ with d(p,q) = 0 iff p = q
- \blacksquare symmetry: d(p,q)=d(q,p)
- lacksquare triangle inequality: $d(p,r)+d(r,q)\geq d(p,q)$
- lacksquare compatible with the lattice: if $p \prec q \prec r \Rightarrow d(p,r) = d(p,q) + d(q,r)$

Distance on the majorization lattice

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- lacksquare positivity: $d(p,q) \geq 0$ with d(p,q) = 0 iff p = q
- \blacksquare symmetry: d(p,q)=d(q,p)
- lacksquare triangle inequality: $d(p,r)+d(r,q)\geq d(p,q)$
- lacksquare compatible with the lattice: if $p \prec q \prec r \Rightarrow d(p,r) = d(p,q) + d(q,r)$

Distance on the majorization lattice

Let two proability vectors $p, q \in \delta_N$. A distance d is defined as:

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \text{ con } H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- **p** positivity: $d(p,q) \ge 0$ with d(p,q) = 0 iff p = q
- symmetry: d(p,q) = d(q,p)
- lacksquare triangle inequality: $d(p,r)+d(r,q)\geq d(p,q)$
- lacksquare compatible with the lattice: if $p \prec q \prec r \Rightarrow d(p,r) = d(p,q) + d(q,r)$

Supremum state

$$|\psi\rangle\underset{ ext{LOCC}}{
ightarrow}|\chi^{ ext{sup}}
angle \equiv \sum_{j} \sqrt{\chi_{j}^{ ext{sup}}} |j^{A}\rangle |j^{B}\rangle \text{ with } \chi^{ ext{sup}} \equiv \psi \lor \phi$$

Distance on the majorization lattice

Let two proability vectors $p, q \in \delta_N$. A distance d is defined as:

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- **p** positivity: $d(p,q) \ge 0$ with d(p,q) = 0 iff p = q
- symmetry: d(p,q) = d(q,p)
- lacksquare triangle inequality: $d(p,r)+d(r,q)\geq d(p,q)$
- lacksquare compatible with the lattice: if $p \prec q \prec r \Rightarrow d(p,r) = d(p,q) + d(q,r)$

Supremum state

$$\left|\psi\right\rangle \underset{\mathrm{LOCC}}{\rightarrow}\left|\chi^{\mathrm{sup}}\right\rangle \equiv\sum\sqrt{\chi_{j}^{\mathrm{sup}}}\left|j^{A}\right\rangle \left|j^{B}\right\rangle \text{ with }\chi^{\mathrm{sup}}\equiv\psi\vee\phi$$

 \blacksquare is the closest to target in the sense of minimal distance d:

$$|\chi^{\sup}\rangle = \operatorname*{argmin}_{|\chi\rangle:|\psi\rangle} \underset{\mathrm{LOCC}}{\rightarrow} d(|\phi\rangle\,,|\chi\rangle)$$

Distance on the majorization lattice

Let two proability vectors $p, q \in \delta_N$. A distance d is defined as:

$$d(p,q) = H(p) + H(q) - 2H(p \lor q) \operatorname{con} H(p) = -\sum_{i} p_{i} \ln p_{i}$$

- **p** positivity: $d(p,q) \ge 0$ with d(p,q) = 0 iff p = q
- symmetry: d(p,q) = d(q,p)
- lacksquare triangle inequality: $d(p,r)+d(r,q)\geq d(p,q)$
- **ompatible** with the lattice: if $p \prec q \prec r \Rightarrow d(p,r) = d(p,q) + d(q,r)$

Supremum state

$$\left|\psi\right\rangle \underset{\mathrm{LOCC}}{\rightarrow}\left|\chi^{\mathrm{sup}}\right\rangle \equiv\sum\sqrt{\chi_{j}^{\mathrm{sup}}}\left|j^{A}\right\rangle \left|j^{B}\right\rangle \text{ with }\chi^{\mathrm{sup}}\equiv\psi\vee\phi$$

is the closest to target in the sense of minimal distance d:

$$|\chi^{\sup}
angle = \mathop{\mathsf{argmin}}_{|\chi
angle:|\psi
angle} d(|\phi
angle \, , |\chi
angle)$$

it has more entanglement entropy than the optimum Recall: Entropy of Schmidt coefficients is the entanglement entropy

