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Motivation

Motivations

Increasing field of investigation on quantum information
processing or transmission.

Necesitate the use of quantum information measures, or of
quantum entropies.

There exist some definitions: von Neumann, quantum versions of
Rényi, Tsallis, Kaniadakis types, . . .

no trivially connected; with common properties.

Note

In the classical context, there exists a generalized family proposed by
Salicrú (Csiszàr); Contains the Shannon entropy, that of Rényi,
Havrda-Charvát (Daróczy, Vajda, Tsallis, . . . ) among others.
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Havrda-Charvát (Daróczy, Vajda, Tsallis, . . . ) among others.

S. Zozor et al. Generalized quantum entropies: a definition and some properties



Motivations & goals
Classical (h, φ)-entropies

Quantum (h, φ)-entropies
Composite quantum systems

Relative (h, φ)-entropies
Conclusions

Motivation

Motivations

Increasing field of investigation on quantum information
processing or transmission.

Necesitate the use of quantum information measures, or of
quantum entropies.

There exist some definitions: von Neumann, quantum versions of
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Rényi, Tsallis, Kaniadakis types, . . .
no trivially connected; with common properties.

Note

In the classical context, there exists a generalized family proposed by
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Goals

To define a generalized family of quantum entropies.

To study their properties (common or specific).

To apply them in quantum information processing.
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Definition

Definition

Let p = [p1 · · · pN ] ∈ [0 ; 1]N ,
∑

k pk = 1

H(h,φ) (p) = h

(∑
k

φ(pk)

)
φ : [0 ; 1]→ R y h : R→ R,

φ is concave and h is increasing, or

φ is convex and h is decreasing

Moreover

φ(0) = 0 (no elementary uncertainty associated to the probability 0)

h(φ(1)) = 0 (no uncertainty associated to a deterministic state)

Salicru et al., Asymptotic distribution of (h, φ)-entropies, Comm. in Stat.: Th. Meth. (1993)
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Famous examples

φ h H(h,φ) (p)

Shannon −x lnx x −
∑

k pk ln pk

Rényi xα lnx
1−α

ln(
∑
k p

α
k )

1−α

HCT xα x−1
1−α

∑
k p

α
k − 1

1−α

Unified xr xs−1
(1−r) s

(
∑
k p

r
k)
s−1

(1−r) s

Kaniadakis x1−κ−x1+κ

2κ x
∑
k(p

1−κ
k −p1+κ

k )
2κ
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Basic properties

For any pair of entropic functional (h, φ),

Basic properties

Invariance to a permutation of the pk’s

Expansibility: H(h,φ) ([p1 · · · pN 0]) = H(h,φ) ([p1 · · · pN ])

(consequence of φ(0) = 0)

Fusion: H(h,φ) ([p1 p2 · · · pN ]) ≥ H(h,φ) ([p1 + p2 · · · pN ])

(Petković’s inequality φ(a+ b) ≤ φ(a) + φ(b) for concave φ with φ(0) = 0)

S. Zozor et al. Generalized quantum entropies: a definition and some properties
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Majorization

Definition

p, p′ proba. vectors, with components increasingly arranged,

p ≺ p′ (p is majorized by p′)

if

n∑
k=1

pk ≤
n∑
k=1

p′k ∀n < max(N,N ′) &

max(N,N ′)∑
k=1

pk =

max(N,N ′)∑
k=1

p′k

Majorization is a partial order relationship

Examples

For any p, of dimension N ,[
1
N · · ·

1
N

]
≺
[

1
‖p‖0 · · ·

1
‖p‖0 0 · · · 0

]
≺ [1 0 · · · 0]
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Properties linked to the majorization

For any pair of entropic functionals (h, φ),

Schur-concavity

p ≺ p′ ⇒ H(h,φ) (p) ≥ H(h,φ) (p′) (equality iif p ≡ p′)
(consequence of the Karamata’s theorem)

Reciprocal if for all pairs (h, φ)

Bounds

0 ≤ H(h,φ) (p) ≤ h
(
‖p‖0 φ

(
1
‖p‖0

))
≤ h

(
Nφ

(
1
N

))
certainty uniform

(consequence of majorization relationships)
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Quantum (h, φ)-entropy: definition

Let ρ be a density operator acting on HN

(ρ ≥ 0 hermitian, with Tr ρ = 1)

Definition

H(h,φ) (ρ) = h (Trφ(ρ))

with φ : [0 ; 1]→ R, φ(0) = 0 & h : R→ R, h(φ(1)) = 0,

φ is concave and h is increasing, or

φ is convex and h is decreasing

(for ρ =
∑
k λk |ek〉〈ek|, φ(ρ) =

∑
k φ(λk) |ek〉〈ek|)

S. Zozor et al. Generalized quantum entropies: a definition and some properties
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Quantum vs classical (h, φ)-entropy

Diagonal form

ρ =
∑
k

λk |ek〉〈ek|

where

{|ek〉} is the orthonomal base of HN that diagonalizes ρ,

λ = [λ1 · · · λN ] ∈ [0 ; 1]N ,
∑

k λk = 1 the eigenvalues of ρ

Quantum vs classical

H(h,φ) (ρ) = H(h,φ) (λ)
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Properties linked to the majorization

By definition, ρ ≺ ρ′ means that λ ≺ λ′

For any pair of entropic functionals (h, φ),

Schur-concavidad (& recip.)

ρ ≺ ρ′ ⇒ H(h,φ) (ρ) ≥ H(h,φ)

(
ρ′
)

equality iif ρ′ = UρU † or ρ = Uρ′ U † with U isometry (U †U = I)

Bounds

0 ≤ H(h,φ) (ρ) ≤ h
(

rank ρ φ
(

1
rank ρ

))
≤ h

(
Nφ

(
1
N

))
pure state |ψ〉〈ψ| max. mixed I

N
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Properties specific to the quantum context

Concavity

If h is concave, then H(h,φ) (·) is concave,

H(h,φ)

(
ωρ+ (1− ω)ρ′

)
≥ ωH(h,φ) (ρ) + (1− ω)H(h,φ)

(
ρ′
)

(Peierls’s inequality, Tr(ρ) ≤
∑
k φ(〈fk| ρ |fk〉) & φ concave)

Mixture

ρ =
∑
k

pk |ψk〉〈ψk| ⇒ H(h,φ) (ρ) ≤ H(h,φ) (p)

(Schrödinger’s mixture p = Bλ, B bistoch., Hardy-Littlewood-Pólya p ≺ λ)

Entropy vs diagonal

pE(ρ) diag. ρ in E = {ek} orth. base: H(h,φ) (ρ) ≤ H(h,φ)

(
pE(ρ)

)
(Schur-Horn’s theorem: pE(ρ) ≺ λ)
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Effect of a transform or a measure

Transform

Invariance to a unitary transf. U (e.g., time evolution)

H(h,φ)

(
UρU †

)
= H(h,φ) (ρ)

Decrease s.t. bistochastic operation (e.g., general measure):

E(ρ) =
∑

k AkρA
†
k,

∑
k A
†
kAk = I =

∑
k AkA

†
k (complete)

H(h,φ) (E(ρ)) ≥H(h,φ) (ρ) (information degradation)

Equality iif E(ρ) = UρU †, U unitary
(Hardy-Littlewood-Pólya: E(ρ) ≺ ρ)

Consequence

{Ek} ∈ E rank one POVM, pE(ρ) = Tr(Ekρ),

H(h,φ) (ρ) = min
E
H(h,φ)

(
pE(ρ)

)

S. Zozor et al. Generalized quantum entropies: a definition and some properties
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Consequence

{Ek} ∈ E rank one POVM, pE(ρ) = Tr(Ekρ),

H(h,φ) (ρ) = min
E
H(h,φ)

(
pE(ρ)

)
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Additivities, pure state

Let HA ⊗HB, ρAB, ρA = TrB ρ
AB, ρB = TrA ρ

AB

(Sub)additivity

If (i) φ(ab) = φ(a)b+ aφ(b) and h(x+ y) = h(x) + h(y), or

If

(ii) φ(ab) = φ(a)φ(b) and h(xy) = h(x) + h(y), then

H(h,φ)

(
ρA ⊗ ρB

)
= H(h,φ)

(
ρA
)

+ H(h,φ)

(
ρB
)

(e.g., von Neuman, Rényi)

H(h,φ)

(
ρAB

)
≤H(h,φ)

(
ρA ⊗ ρB

)
⇔ φ(x) = −x lnx

(counterexample, except if φ satisfies a functional eq.. . . )

Pure states

ρAB = |ψ〉〈ψ| ⇒ H(h,φ)

(
ρA
)

= H(h,φ)

(
ρB
)

(Schmidt’s decomposition)
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Separable states

Separable states:

ρAB =
∑
m

ωm
∣∣ΨA

m

〉〈
ΨA
m

∣∣⊗ ∣∣ΨB
m

〉〈
ΨB
m

∣∣ ωm ≥ 0,
∑
m

ωm = 1

Separability inequality

If ρAB is separable, then

H(h,φ)

(
ρAB

)
≥ max

{
H(h,φ)

(
ρA
)
, H(h,φ)

(
ρB
)}

(ρAB ≺ ρA & ρAB ≺ ρB)

Generalizable to multipartite systems and
totally separable states
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Entanglement Detection: an example

Werner: ρAB = ω |Ψ−〉〈Ψ−|+ (1− ω) I4 , |Ψ−〉 = |00〉−|11〉√
2

Entangled iif ω > 1
3 ; ρA = ρB = I

2

φ(x) = xα, h(x) = f(x)
1−α

Detection

Criterion:
f
(
3
(
1−ω
4

)α
+
(
1+3ω

4

)α)− f (21−α)
α− 1

> 0 ⇒ entangled
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Quantum context

Relative entropy and mutual information

Conditional probability: pA|B=b =
pABa,b
pBb

From the conditional probability

Relative entropy: HJ(h,φ) (A|B) =
∑

b p
B
b H(h,φ)

(
pA|B=b

)
Mutual information: J(h,φ)(A;B) = H(h,φ) (A)−HJ(h,φ) (A|B)

h concave guarantees that J(h,φ) ≥ 0. . . J(h,φ) not symmetrical. . .

From the chain rule

Relative entropy: HI(h,φ) (A|B) = H(h,φ) (A,B)−H(h,φ) (B)

Mutual information: I(h,φ)(A;B) = H(h,φ) (A)−HI(h,φ) (A|B)

I(h,φ) symmetrical, but with no guarantee that I(h,φ) ≥ 0. . .
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Relative entropy and mutual information

{
ΠB
}

local projective measurement:

pBj = Tr
(
I ⊗ΠB

j ρ
AB
)
, ρA|Π

B
j =

I⊗ΠBj ρ
AB I⊗ΠBj
pBj

From the conditional state

Relative entropy vs ΠB: HJ(h,φ)

(
A|ΠB

)
=
∑

j p
B
j H(h,φ)

(
ρA|Π

B
j

)
Relative entropy vs B: HJ(h,φ) (A|B) = min{ΠB}H

J
(h,φ)

(
A|ΠB

)
From the chain rule

Relative entropy: HI(h,φ) (A|B) = H(h,φ) (A,B)−H(h,φ) (B)
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Summary

We proposed an extension of the (h, φ)-entropies for the quantum
systems (that extends the trace-entropies).

These extensions are based on two entropic functionals φ & h,
and encompass various famous entropies such that the von
Neuman’s, Tsallis’s, Rényi’s (thanks to h), unified, trace
entropies or not.

We proposed possibles associated measures such that relative
entropies and mutual informations; a unified point of view is still
missing; there properties remain to be investigated.
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Conclusions

Summary

We studied various properties shared by the whole family; the
main ones rely on the notion of majorization.

In particular, the Schur-concavity appears to be crucial in the
quantum context.

We studied the effect of quantum operations (unitary transform,
measures) on these entropies.

We studied their properties for composite systems: they allow to
propose entanglement detection criteria.

G. M. Bosyk, S. Zozor, F. Holik, M. Portesi & P. W. Lamberti,
A family of generalized quantum entropies: definition and properties,
Quantum Info. Process., 15(8):3393-4220, August 2016
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