INTERLACING PROPERTIES OF GENERALIZED LAGUERRE ZEROS AND SOME APPLICATIONS

D. Occorsio

Department of Mathematics and Computer Science University of Basilicata V.le dell'Ateneo Lucano 10, Potenza, Italy donatella.occorsio@unibas.it

Let $w(x) = e^{-x^{\beta}}x^{\alpha}$, $\alpha > -1$, $\beta > \frac{1}{2}$ be a Generalized Laguerre weight, and denote by $\{p_m(w)\}$ the corresponding sequence of orthonormal polynomials. Setting $\bar{w}(x) = xw(x)$, let $\{p_m(\bar{w})\}$ the sequence of orthonormal polynomials corresponding to \bar{w} . We prove that the polynomial $Q_{2m+1} = p_{m+1}(w)p_m(\bar{w})$ has simple zeros and that they are also well distributed in some sense.

In view of this property we propose two different applications: the *ex*tended interpolation polynomial $L_{2m+2}(w, \bar{w}, f)$, defined as the Lagrange polynomial interpolating a given function f at the zeros of Q_{2m+1} and on additional knots, estimating the Lebesgue constants in some weighted spaces. Moreover, we propose a method to approximate the Hilbert transform on the real positive semiaxis by a suitable Lagrange interpolating polynomial.