CORDIAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

G. Vainikko

Institute of Mathematics University of Tartu J. Liivi 2, 50409 Tartu, Estonia gennadi.vainikko@ut.ee

Consider the equation $V_{\varphi}u = f$, where $(V_{\varphi}u)(t) = \int_0^t t^{-1}\varphi(t^{-1}s)u(s)ds$, $0 < t \leq T, \ \varphi \in L^1(0, 1)$. The spectrum of V_{φ} as an operator in the space $C^m = C^m[0, T]$ is described in [1]. This enables to establish criteria for the existence and boundedness of the inverse V_{φ}^{-1} as an operator from C^{m+k} to $C^m, \ m \geq 0, \ k \geq 1$. In some cases, $\|V_{\varphi}^{-1}\|$ can be effectively estimated, e.g.:

Theorem 1. Let $\varphi \in L^1(0,1)$, $\widehat{\varphi}(0) := \int_0^1 \varphi(x) dx > 0$, $x\varphi' \in L^1(0,1)$, and let $x\varphi'(x) + \alpha\varphi(x) \ge 0$ (0 < x < 1) for an $\alpha < 1$. Then $V_{\varphi}^{-1} \in \mathcal{L}(C^{m+1}, C^m)$ exists, and

$$\|V_{\varphi}^{-1}f\|_{C^m} \le \frac{1}{(1-\alpha)\widehat{\varphi}(0)} \|tf' + (1-\alpha)f\|_{C^m} \text{ for } f \in C^{m+1}, \ m \ge 0.$$

The claim remains to be true if condition $x\varphi' \in L^1(0,1)$ is relaxed to the form $x\varphi' \in L^1(0,1-\varepsilon)$ for any $\varepsilon > 0$, and $\lim_{x \to 1} \varphi(x) = \infty$, $\lim_{x \to 1} (1-x)\varphi(x) = 0$.

More complete results are obtained using the weighted spaces

$$C_{\star}^{m,r} = \left\{ u \in C^{m}(0,T] : \lim_{t \to 0} t^{k-r} u^{(k)}(t) \text{ exists for } k = 0, 1, ..., m \right\},$$
$$\|u\|_{C_{\star}^{m,r}} = \max_{0 \le k \le m} \sup_{0 < t \le T} t^{k-r} |u^{(k)}(t)|, \quad m \ge 0, \quad r \in \mathbf{R}.$$

The power functions t^p , $p \ge r$, are eigenfunctions of V_{φ} in $C_{\star}^{m,r}$, $m \ge 0$. This enables to design approximate and exact solvers of equation $V_{\varphi}u = f$.

References

 G. Vainikko. Cordial Volterra integral equations 1, 2, Numer. Funct. Anal. Optim., 30 (2009), pp. 1145–1172; 31 (2010), pp. 191–219.