INNER-ITERATION GMRES METHODS FOR UNDERDETERMINED LEAST SQUARES PROBLEMS

K. Morikuni and **K. Hayami** National Institute of Informatics, Tokyo, Japan hayami@nii.ac.jp

Consider the underdetermined least squares problem

$$\min_{\boldsymbol{x}\in\mathbf{R}^n}\|\boldsymbol{b}-A\boldsymbol{x}\|_2,\tag{1}$$

where $A \in \mathbf{R}^{m \times n}$, $\boldsymbol{b} \in \mathbf{R}^m$, and m < n.

We can precondition (1) from the right as

$$\min_{\boldsymbol{u}\in\mathbf{R}^n} \|AB\boldsymbol{u}-\boldsymbol{b}\|_2, \quad \boldsymbol{x}=B\boldsymbol{u}$$
(2)

or from the left as

$$\min_{\boldsymbol{x}\in\mathbf{R}^n} \|B\boldsymbol{b} - BA\boldsymbol{x}\|_2 \tag{3}$$

by using a preconditioner $B \in \mathbf{R}^{n \times m}$ [2].

However, when solving inconsistent systems ($\mathbf{b} \notin \mathcal{R}(A)$), the effective condition number becomes dangerously large[1], and GMRES for (2) will breakdown numerically before it determines a least squares solution.

On the other hand, (3) is consistent when $\mathcal{R}(B^T) = \mathcal{R}(A)$. Thus, GMRES can numerically determine a least squares solution for (1) even when m < nand $\mathbf{b} \notin \mathcal{R}(A)$. To form such a preconditioner B, we propose using inneriteration preconditioners, which do not require a preconditioning matrix and can save memory. Numerical experiments illustrate that the methods are efficient and robust for large ill-conditioned and rank-deficient problems.

References

- P. N. Brown, and H. F. Walker, *GMRES on (nearly) singular systems*, SIAM J. Matrix Anal. Appl., 18 (1997), 37–51.
- [2] K. Hayami, and J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J. Matrix Anal. Appl., 31 (2010), 2400–2430.