Preconditioner updates for sequences of symmetric positive definite linear systems arising in optimization

Stefania Bellavia + ,

Valentina De Simone*, Daniela di Serafino*, Benedetta Morini⁺

⁺ Università degli Studi di Firenze
 * Seconda Università degli Studi di Napoli

SC2011 October 10-14, 2011

Stefania Bellavia (UniFi)

Preconditioner updates

SC2011 1 / 27

The problem

• Consider the sequence of linear systems

$$(A + \Delta_k)x = b_k$$

where $A \in \Re^{n \times n}$ is large, sparse and positive definite (SPD), Δ_k is diagonal positive semidefinite.

< 3 > < 3 >

The problem

• Consider the sequence of linear systems

$$(A + \Delta_k)x = b_k$$

where $A \in \Re^{n \times n}$ is large, sparse and positive definite (SPD), Δ_k is diagonal positive semidefinite.

Special case: Shifted linear systems

$$(A + \alpha_k I)x = b_k \quad \alpha_k > 0$$

Stefania Bellavia (UniFi)

SC2011 2 / 27

Applications in constrained optimization

 Affine scaling methods for convex bound constrained QP problems and bound constrained linear least squares require the solution of sequences of linear systems of the form:

$$(M_kQM_k+D_k)s=b_k, \quad k=0,1,\ldots$$

where Q is the Hessian of the quadratic function, M_k is diagonal SPD and D_k is diagonal positive semidefinite.

[Coleman, Li 1996],[Bellavia, Macconi, Morini, 2006]

Applications in unconstrained optimization

Consider an unconstrained nonlinear least-squares problem

$$\min_{x\in\Re^n} \|F(x)\|_2^2, \quad F:\Re^n \to \in \Re^m$$

Computation of the step in elliptical trust-region methods:

minimize
$$m(p) = \frac{1}{2} ||F + Jp||_2^2, ||Gp||_2 \le \Delta$$

where G is diagonal SPD, $J \in \Re^{m \times n}$ is the Jacobian of F, $\Delta > 0$.

イロト 不得 トイヨト イヨト 二日

Applications in unconstrained optimization

Consider an unconstrained nonlinear least-squares problem

$$\min_{\mathbf{x}\in\mathfrak{R}^n}\|F(\mathbf{x})\|_2^2,\quad F:\mathfrak{R}^n\to\in\mathfrak{R}^m$$

Computation of the step in elliptical trust-region methods:

minimize
$$m(p) = \frac{1}{2} ||F + Jp||_2^2$$
, $||Gp||_2 \le \Delta$

where G is diagonal SPD, $J \in \Re^{m \times n}$ is the Jacobian of F, $\Delta > 0$.

• For a certain $\lambda \geq 0$, the minimizer $p = p(\lambda)$ satisfies

$$(J^T J + \lambda G)p(\lambda) = -J^T F,$$

 If λ > 0, it solves a scalar nonlinear secular equation. A root finding method applied to the secular equation gives rise to a sequence of linear systems of the above form.

Stefania Bellavia (UniFi)

Applications in unconstrained optimization

• Recent regularization approaches [Nesterov, 2007; Cartis, Gould, Toint, 2009, 2010; Bellavia, Cartis, Gould, Morini, Toint, 2010]:

minimize
$$m(p) = ||F + Jp||_2 + \frac{1}{2}\sigma ||p||_2^2$$
,
minimize $m(p) = \frac{1}{2}||F + Jp||_2^2 + \frac{1}{3}\sigma ||p||_2^3$,

where $\sigma > 0$

• For a certain $\lambda > 0$, the minimizer $p = p(\lambda)$ satisfies

$$(J^T J + \lambda I)p(\lambda) = -J^T F.$$

The computation of p calls for the solution of a sequence of shifted linear systems.

Stefania Bellavia (UniFi)

Preconditioning sequences of matrices

- Freezing the preconditioner often leads to slow convergence.
- Recomputing the preconditioner from scratch for each matrix is costly and pointlessly accurate.
- Updating strategies derive preconditioners from previous systems of the sequence in a cheap way.

Updating strategies

- Given a preconditioner for a specific matrix of the sequence (seed preconditioner), updating strategies update it in order to build a preconditioner for subsequent matrices of the sequence at a low computational cost.
- Minimum requirement: Inexpensive updates must have the ability to precondition sequences of slowly varying systems.
- Expected behaviour in terms of linear solver iterations: to be in between the frozen and the recomputed preconditioner.

Existing approaches

- Sequences A + Δ_k based on incomplete factors of A⁻¹: [Benzi, Bertaccini, 2003],[Bertaccini, 2004]
- Sequences $A + \alpha_k I$ based on incomplete LDL^T factorization of A: [Meurant, 2001], [Bellavia, De Simone, di Serafino, Morini, 2011].
- Sequences of matrices differing for general matrices: [Morales-Nocedal 2000], [Bergamaschi, Bru, Martinez, Putti 2006], [Tebbens, Tuma, 2007, 2010], [Calgaro, Chehab, Saad, 2010], [Bellavia, Bertaccini, Morini, 2011].

イロト イポト イヨト イヨト 二日

Approaches based on LDL^T preconditioners, $\Delta_k = \alpha_k I$

[Bellavia, De Simone, di Serafino, Morini, 2011, Meurant 2001]

Let

 $A = LDL^T$,

where L is unit lower triangular and $D = diag(d_1, \ldots, d_n)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approaches based on LDL^T preconditioners, $\Delta_k = \alpha_k I$

[Bellavia, De Simone, di Serafino, Morini, 2011, Meurant 2001]

Let

 $A = LDL^T$,

where L is unit lower triangular and $D = diag(d_1, \ldots, d_n)$.

A preconditioner *P* for matrix $A + \alpha_k I$ has the form

 $P = \tilde{L}\tilde{D}\tilde{L}^{T},$

with \tilde{L} unit lower triangular and $\tilde{D} = diag(\tilde{d}_1, \dots, \tilde{d}_n)$

- $\tilde{D} = D + \alpha_k I;$
- $off(\tilde{L}) = off(L)S$, with $S = D\tilde{D}^{-1}$. Column *j* of off(L) is scaled by the factor $d_j/\tilde{d}_j \in (0, 1)$.

- The update computational overhead is low.
- Given the Cholesky factorization of A, $P = \tilde{L}\tilde{D}\tilde{L}^{T}$ can be derived as an order 0 asymptotic expansions in terms of α of the Cholesky factor of $A + \alpha I$, [Meurant 2001].
- P is effective for a broad range of values of α.
 For small and large values of α the eigenvalues of P⁻¹(A + αI) are clustered in a neighbourhood of 1, [Bellavia, De Simone, di Serafino, Morini, 2011].
- Incomplete LDL^T factorizations of A can be used.

イロト イポト イヨト イヨト

Updating factorization framework for $A + \Delta_k$

Let $A = LDL^T$ where L is unit lower triangular and $D = diag(d_1, \ldots, d_n)$.

UF (Updating Factorization) framework:

A preconditioner *P* for matrix $A + \Delta_k$ has the form

 $P = \tilde{L}\tilde{D}\tilde{L}^{T},$

- $\tilde{D} = diag(\tilde{d}_1, \ldots, \tilde{d}_n), \ \tilde{d}_i \geq d_i.$
- $\|\tilde{D} D\| \leq \tau \|\Delta_k\|$, for some $\tau > 0$.
- \tilde{L} unit lower triangular, $off(\tilde{L}) = off(L)S$, with $S = D\tilde{D}^{-1}$.
- P is SPD.
- \tilde{L} has the same sparsity pattern as L.

Slowly varying sequences of matrices

Theorem

Let P be an UF preconditioner for matrix $A + \Delta_k$. Then, for some positive ζ :

 $\|A+\Delta_k-P\|\leq \zeta\|\Delta_k\|.$

Corollary

For $||\Delta_k||$ small enough, the eigenvalues of $P^{-1}(A + \Delta_k)$ are clustered in a neighbourhood of 1.

Preconditioner UF1

A practical preconditioner in the UF framework is obtained generalizing the preconditioner for shifted matrices in [Bellavia, De Simone, di Serafino, Morini, 2011, Meurant 2001].

Let

 $P = \tilde{L}\tilde{D}\tilde{L}^T$

The update computational overhead is low.

Stefania Bellavia (UniFi)

SC2011 13 / 27

- 4 同 6 4 日 6 4 日 6

Preconditioner UF2

Fix \tilde{D} so that $diag(P) = diag(A + \Delta_k)$.

Let

 $P = \tilde{L}\tilde{D}\tilde{L}^T$

• $\tilde{d}_i = d_i + \delta_{k,i} + \sum_{j=1}^{i-1} l_{i,j}^2 (d_j - s_j^2 \tilde{d}_j)$ • \tilde{L} unit lower triangular, $off(\tilde{L}) = off(L)S$ with $S = D\tilde{D}^{-1}$.

Unlike UF1 preconditioner, the computation of \tilde{D} appears to be serial

Stefania Bellavia (UniFi)

Analysis of the preconditioners

• Let P be computed by the UF1 approach, then

 $\begin{aligned} \|A + \Delta_k - P\| &\leq 2\|off(L)D(D + \Delta_k)^{-1}\Delta_k off(L)^T\| \\ &\leq 4\|off(L)\|^2\|D\| \end{aligned}$

 $\|diag(A + \Delta_k - P)\| \neq 0, \qquad \|off(A + \Delta_k - P)\| \neq 0$

• Let P be computed by the UF2 approach, then

 $\begin{aligned} \|A + \Delta_k - P\| &\leq 2\|off(off(L)S(\tilde{D} - D)off(L)^{\mathsf{T}})\| \\ &\leq 2\|off(L)\|^2\|D\| \end{aligned}$

 $\|diag(A + \Delta_k - P)\| = 0$

$\|\Delta_k\|$ large

Let P be computed by the UF1 or UF2 approach.

Let ϵ be a small positive integer. Then for $\|\Delta_k\|$ sufficiently large,

$$\frac{\|A + \Delta_k - P\|}{\|A + \Delta_k\|} \le \epsilon.$$

(日) (同) (三) (三)

$\|\Delta_k\|$ large

Let P be computed by the UF1 or UF2 approach.

Let ϵ be a small positive integer. Then for $\|\Delta_k\|$ sufficiently large,

$$\frac{\|A + \Delta_k - P\|}{\|A + \Delta_k\|} \le \epsilon.$$

Further, if Δ_k is SPD and and $\|\Delta_k^{-1}\|$ is sufficiently small, the eigenvalues of $P^{-1}(A + \Delta_k)$ are clustered in a neighbourhood of 1.

Practical case: $A \approx LDL^T$

- The quality of *P* depends on the quality of the seed preconditioner;
- A term depending on ||A LDL^T|| must be added to the upper bound on ||A + Δ_k P||.
- The property of UF2 preconditioner

$$diag(P) = diag(A + \Delta_k)$$

is not longer valid but the discrepancy between the two diagonal depends on the error $diag(A - LDL^{T})$:

$$diag(A + \Delta_k - P) = diag(A - LDL^T)$$

• The construction of both UF1 and UF2 does not break down.

Set1: Quadprog

 The Matlab function Quadprog available in the Matlab Optimization Toolbox implements the reflective Newton method for bound constrained QP problems:

$$min_{x}\{q(x) = \frac{1}{2}x^{T}Qx + c^{T}x: l \le x \le u\}$$

Assume that QP is convex, $Q \in \mathbb{R}^{n \times n}$ is symmetric positive semidefinite, $c \in \mathbb{R}^n$, $l \in {\mathbb{R} \cup {\infty}}^n$ and $u \in {\mathbb{R} \cup {\infty}}^n$, l < u.

[Coleman, Li 1996].

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

• Quadprog generates a strictly feasible sequence {*x_k*} and amounts to solve a sequence of linear systems of the following form:

$$\underbrace{(\underbrace{M_k Q M_k + D_k)}_{H_k} s = -M_k g(x_k), \quad k = 0, 1, \dots$$

where $g(x_k) = \nabla q(x_k) = Qx_k + c$, M_k is diagonal SPD and D_k^g is diagonal positive semidefinite.

• Preconditioned CG is employed to solve such linear systems

Preconditioners available in Quadprog

• Default preconditioner: DIAG:

$$P_{D,k} = diag(\|H_k(:,1)\|_2, \ldots, \|H_k(:,n)\|_2),$$

where $H_k(:,j)$ denotes the *j*-th column of H_k .

• Optional Preconditioner: TRID, Tridiagonal preconditioner, Cholesky factors of

$$\bar{H} = tril(triu(H_k, -1), 1),$$

computed using the Matlab built-in function chol. If \overline{H} is not positive definite, a shift is applied and a new Cholesky factorization is attempted.

UF1 and UF2 in Quadprog

• Our updating procedures can be employed in quadprog to solve the sequences of linear systems

$$\underbrace{(\underbrace{M_k QM_k + D_k}_{H_k})}_{H_k} s = -M_k g(x_k), \quad k = 0, 1, \dots$$

- Compute an incomplete $R^T R$ factorization of Q.
- The $R^T R$ factorization provides, for any k an incomplete LDL^T factorization of $M_k QM_k$ given by $M_k R^T RM_k$.
- Then, applying UF1 or UF2 we obtain an $\tilde{L}\tilde{D}\tilde{L}^{T}$ preconditioner for $M_kQM_k + D_k$.

Testing details

- Computational environment: Intel Core 2 DUO U9600, 1.60 GHz, 3GB RAM, Matlab version 7.7
- We compare the performance of UF1 and UF2 against DIAG and TRID within Quadprog
- Test set: strictly convex bound constrained QP of dimension *n* > 500 available in the CUTEr collection
- Matlab cholinc function to compute the incomplete $R^T R$ factorization of Q; drop tolerance= 10^{-2}
- UF1 and UF2 have been implemented as mex-files with Matlab interface.
- Default stopping tolerance for the stopping criterions of Quadprog
- Stopping tolerance for PCG : cg_tol= 10^{-3} .

<ロト <回ト < 回ト < 回ト < 回ト = 三日

Performance profile: total number of CG iterations

 $\pi(\chi)$: Fraction of runs for which the preconditioner is within a factor χ of the best

All tests succesfully solved The number of nonlinear iterations is not affected by the preconditioner.

Stefania Bellavia (UniFi)

Preconditioner updates

SC2011 23 / 27

Performance profiles: execution time

Execution time: time devoted to the linear algebra phase

Stefania Bellavia (UniFi)

Preconditioner updates

SC2011 24 / 27

э.

Set 2: 8 sequences of shifted linear systems

Four systems of nonlinear equations of dimension $n = 10^4$ were solved by the RER algorithm [Bellavia, Cartis, Gould, Morini & Toint, 2010]

 Sequences of shifted systems arising in the first and second nonlinear iterations of RER; α ∈ (6.3195 · 10⁻⁵, 58.4277)

Set 2: 8 sequences of shifted linear systems

Four systems of nonlinear equations of dimension $n = 10^4$ were solved by the RER algorithm [Bellavia, Cartis, Gould, Morini & Toint, 2010]

 Sequences of shifted systems arising in the first and second nonlinear iterations of RER; α ∈ (6.3195 · 10⁻⁵, 58.4277)

UF1 and UF2 are compared with **NP:** no prec.; **RP**: prec. recomputed for each α ; **FP:** fixed prec..

Set 2: 8 sequences of shifted linear systems

Four systems of nonlinear equations of dimension $n = 10^4$ were solved by the RER algorithm [Bellavia, Cartis, Gould, Morini & Toint, 2010]

 Sequences of shifted systems arising in the first and second nonlinear iterations of RER; α ∈ (6.3195 · 10⁻⁵, 58.4277)

UF1 and UF2 are compared with **NP:** no prec.; **RP**: prec. recomputed for each α ; **FP:** fixed prec..

- Matlab pcg function with $tol = 10^{-6}$ and maxit = 1000;
- Matlab cholinc function to compute the incomplete LDL^{T} factorization; drop tolerance fixed by trial on the system Ax = b;

Numerical experiments

Test set 2: 8 sequences, all values of α

NP always fails in solving the first system of each sequence FP and UF2 fail in solving one sequence

Stefania Bellavia (UniFi)

Preconditioner updates

SC2011 26 / 27

4 E b

Conclusion

Given $A \approx LDL^T$, the update techniques:

- preserve the sparsity pattern of the factor L.
- are breakdown-free
- Ido not need algorithmic parameters.
- seem to be effective for a broad range of values of Δ_k (automatic adaptation to the size of the entries of Δ_k);

Further, preserving the diagonal of $A + \Delta_k$ gives a significant improvement in terms of CG iterations.

Many thanks for your attention!