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. . . . . .

The problem

Consider the sequence of linear systems
.

(A+∆k)x = bk
..

.

. ..

.

.

where A ∈ ℜn×n is large, sparse and positive definite (SPD),
∆k is diagonal positive semidefinite.

Special case: Shifted linear systems
.

(A+ αk I )x = bk αk > 0
...
. ..

.

.
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Background and motivations

Applications in constrained optimization

Affine scaling methods for convex bound constrained QP problems
and bound constrained linear least squares require the solution of
sequences of linear systems of the form:

(MkQMk + Dk)s = bk , k = 0, 1, . . .

where Q is the Hessian of the quadratic function, Mk is diagonal
SPD and Dk is diagonal positive semidefinite.

[Coleman, Li 1996],[ Bellavia, Macconi, Morini, 2006]
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. . . . . .

Background and motivations

Applications in unconstrained optimization

Consider an unconstrained nonlinear least-squares problem

min
x∈ℜn

∥F (x)∥22, F : ℜn →∈ ℜm

Computation of the step in elliptical trust-region methods:

minimize
p

m(p) =
1

2
∥F + Jp∥22, ∥Gp∥2 ≤ ∆

where G is diagonal SPD, J ∈ ℜm×n is the Jacobian of F , ∆ > 0.

For a certain λ ≥ 0, the minimizer p = p(λ) satisfies

(JT J + λG )p(λ) = −JTF ,

If λ > 0, it solves a scalar nonlinear secular equation. A root finding
method applied to the secular equation gives rise to a sequence of
linear systems of the above form.
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Background and motivations

Applications in unconstrained optimization

Recent regularization approaches [Nesterov, 2007; Cartis, Gould, Toint, 2009,

2010; Bellavia, Cartis, Gould, Morini, Toint, 2010]:

minimize
p

m(p) = ∥F + Jp∥2 +
1

2
σ||p||22,

minimize
p

m(p) =
1

2
∥F + Jp∥22 +

1

3
σ||p||32,

where σ > 0

For a certain λ > 0, the minimizer p = p(λ) satisfies

(JT J + λI )p(λ) = −JTF .

The computation of p calls for the solution of a sequence of shifted
linear systems.
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Background and motivations

Preconditioning sequences of matrices

Freezing the preconditioner often leads to slow convergence.

Recomputing the preconditioner from scratch for each matrix is costly
and pointlessly accurate.

Updating strategies derive preconditioners from previous systems of
the sequence in a cheap way.
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Background and motivations

Updating strategies

Given a preconditioner for a specific matrix of the sequence (seed
preconditioner), updating strategies update it in order to build a
preconditioner for subsequent matrices of the sequence at a low
computational cost.

Minimum requirement: Inexpensive updates must have the ability to
precondition sequences of slowly varying systems.

Expected behaviour in terms of linear solver iterations: to be in
between the the frozen and the recomputed preconditioner.
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Background and motivations

Existing approaches

Sequences A+∆k based on incomplete factors of A−1:
[Benzi, Bertaccini, 2003],[Bertaccini, 2004]

Sequences A+ αk I based on incomplete LDLT factorization of A:
[Meurant, 2001], [Bellavia, De Simone, di Serafino, Morini, 2011].

Sequences of matrices differing for general matrices:
[Morales-Nocedal 2000], [Bergamaschi, Bru, Martinez, Putti 2006],
[Tebbens, Tuma, 2007, 2010], [Calgaro, Chehab, Saad, 2010],
[Bellavia, Bertaccini, Morini, 2011].
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. . . . . .

Background and motivations

Approaches based on LDLT preconditioners, ∆k = αk I

[Bellavia, De Simone, di Serafino, Morini, 2011, Meurant 2001]

Let
A = LDLT ,

where L is unit lower triangular and D = diag(d1, . . . , dn).

A preconditioner P for matrix A+ αk I has the form
.

P = L̃D̃L̃T ,

with L̃ unit lower triangular and D̃ = diag(d̃1, . . . , d̃n)
..

.

. ..

.

.

D̃ = D + αk I ;

off (L̃) = off (L)S , with S = DD̃−1. Column j of off(L) is scaled by
the factor dj/d̃j ∈ (0, 1).
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. . . . . .

Background and motivations

The update computational overhead is low.

Given the Cholesky factorization of A, P = L̃D̃L̃T can be derived as
an order 0 asymptotic expansions in terms of α of the Cholesky factor
of A+ αI , [Meurant 2001].

P is effective for a broad range of values of α.
For small and large values of α the eigenvalues of P−1(A+ αI ) are
clustered in a neighbourhood of 1, [Bellavia, De Simone, di Serafino, Morini,

2011].

Incomplete LDLT factorizations of A can be used.
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A new technique for updating preconditioners

Updating factorization framework for A+∆k

Let A = LDLT where L is unit lower triangular and D = diag(d1, . . . , dn).

.
UF (Updating Factorization) framework:
..

.

. ..

.

.

A preconditioner P for matrix A+∆k has the form

P = L̃D̃L̃T ,

D̃ = diag(d̃1, . . . , d̃n), d̃i ≥ di .

∥D̃ − D∥ ≤ τ∥∆k∥, for some τ > 0.

L̃ unit lower triangular, off (L̃) = off (L)S , with S = DD̃−1.

P is SPD.

L̃ has the same sparsity pattern as L.
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. . . . . .

A new technique for updating preconditioners

Slowly varying sequences of matrices

.
Theorem
..

.

. ..

.

.

Let P be an UF preconditioner for matrix A+∆k . Then, for some positive
ζ:

∥A+∆k − P∥ ≤ ζ∥∆k∥.

.
Corollary
..

.

. ..

.

.

For ∥∆k∥ small enough, the eigenvalues of P−1(A+∆k) are clustered in a
neighbourhood of 1.
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. . . . . .

A new technique for updating preconditioners

Preconditioner UF1

A practical preconditioner in the UF framework is obtained generalizing
the preconditioner for shifted matrices in [Bellavia, De Simone, di Serafino, Morini,

2011, Meurant 2001].

.
Let
..

.

. ..

.

.

P = L̃D̃L̃T

D̃ = D +∆k .

L̃ unit lower triangular, off (L̃) = off (L)S with S = DD̃−1.

The update computational overhead is low.
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. . . . . .

A new technique for updating preconditioners

Preconditioner UF2

Fix D̃ so that diag(P) = diag(A+∆k).
.
Let
..

.

. ..

.

.

P = L̃D̃L̃T

d̃i = di + δk,i +
∑i−1

j=1 l
2
i ,j(dj − s2j d̃j)

L̃ unit lower triangular, off (L̃) = off (L)S with S = DD̃−1.

Unlike UF1 preconditioner, the computation of D̃ appears to be serial
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. . . . . .

A new technique for updating preconditioners

Analysis of the preconditioners

Let P be computed by the UF1 approach, then
.

∥A+∆k − P∥ ≤ 2∥off (L)D(D +∆k)
−1∆koff (L)T∥

≤ 4∥off (L)∥2∥D∥

∥diag(A+∆k − P)∥ ̸= 0, ∥off (A+∆k − P)∥ ̸= 0
...
. ..

.

.

Let P be computed by the UF2 approach, then
.

∥A+∆k − P∥ ≤ 2∥off (off (L)S(D̃ − D)off (L)T )∥
≤ 2∥off (L)∥2∥D∥

∥diag(A+∆k − P)∥ = 0
...
. ..

.

.
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A new technique for updating preconditioners

∥∆k∥ large

Let P be computed by the UF1 or UF2 approach.
.
Let ϵ be a small positive integer. Then for ∥∆k∥ sufficiently large,

∥A+∆k − P∥
∥A+∆k∥

≤ ϵ.

.. .

. ..

.

.

Further, if ∆k is SPD and and ∥∆−1
k ∥ is sufficiently small, the eigenvalues

of P−1(A+∆k) are clustered in a neighbourhood of 1.
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A new technique for updating preconditioners

Practical case: A ≈ LDLT

The quality of P depends on the quality of the seed preconditioner;

A term depending on ∥A− LDLT∥ must be added to the upper
bound on ∥A+∆k − P∥.

The property of UF2 preconditioner

diag(P) = diag(A+∆k)

is not longer valid but the discrepancy between the two diagonal
depends on the error diag(A− LDLT ):

diag(A+∆k − P) = diag(A− LDLT )

The construction of both UF1 and UF2 does not break down.
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. . . . . .

Numerical experiments

Set1: Quadprog

The Matlab function Quadprog available in the Matlab Optimization
Toolbox implements the reflective Newton method for bound
constrained QP problems:

.

minx{q(x) =
1

2
xTQx + cT x : l ≤ x ≤ u}

.. .

. ..

.

.

Assume that QP is convex, Q ∈ ℜn×n is symmetric positive semidefinite,
c ∈ ℜn, l ∈ {ℜ ∪ {∞}}n and u ∈ {ℜ ∪ {∞}}n, l < u.

[Coleman, Li 1996].
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. . . . . .

Numerical experiments

Quadprog generates a strictly feasible sequence {xk} and amounts to
solve a sequence of linear systems of the following form:

.
(MkQMk + Dk)︸ ︷︷ ︸

Hk

s = −Mkg(xk), k = 0, 1, . . .

.. .

. ..

.

.

where g(xk) = ∇q(xk) = Qxk + c, Mk is diagonal SPD and Dg
k is

diagonal positive semidefinite.

Preconditioned CG is employed to solve such linear systems
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Numerical experiments

Preconditioners available in Quadprog

Default preconditioner: DIAG:

PD,k = diag (∥Hk(:, 1)∥2 , . . . , ∥Hk(:, n)∥2) ,

where Hk(:, j) denotes the j-th column of Hk .

Optional Preconditioner: TRID, Tridiagonal preconditioner, Cholesky
factors of

H̄ = tril(triu(Hk ,−1), 1),

computed using the Matlab built-in function chol. If H̄ is not
positive definite, a shift is applied and a new Cholesky factorization is
attempted.
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Numerical experiments

UF1 and UF2 in Quadprog

Our updating procedures can be employed in quadprog to solve the
sequences of linear systems

(MkQMk + Dk)︸ ︷︷ ︸
Hk

s = −Mkg(xk), k = 0, 1, . . .

Compute an incomplete RTR factorization of Q.

The RTR factorization provides, for any k an incomplete LDLT

factorization of MkQMk given by MkR
TRMk .

Then, applying UF1 or UF2 we obtain an L̃D̃L̃T preconditioner for
MkQMk + Dk .
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Numerical experiments

Testing details

Computational environment: Intel Core 2 DUO U9600, 1.60

GHz, 3GB RAM, Matlab version 7.7

We compare the performance of UF1 and UF2 against DIAG and
TRID within Quadprog

Test set: strictly convex bound constrained QP of dimension n > 500
available in the CUTEr collection

Matlab cholinc function to compute the incomplete RTR
factorization of Q; drop tolerance=10−2

UF1 and UF2 have been implemented as mex-files with Matlab
interface.

Default stopping tolerance for the stopping criterions of Quadprog

Stopping tolerance for PCG : cg tol=10−3.
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Numerical experiments

Performance profile: total number of CG iterations

π(χ): Fraction of runs for which the preconditioner is within a factor χ of the best

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

χ

π(
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Perf. Prof. CG iterations, tol=1.d−3

 

 

DIAG
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UF2

All tests succesfully solved
The number of nonlinear iterations is not affected by the preconditioner.
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Numerical experiments

Performance profiles: execution time

1 2 3 4 5
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Execution time: time devoted to the linear algebra phase
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Numerical experiments

Set 2: 8 sequences of shifted linear systems

Four systems of nonlinear equations of dimension n = 104 were solved by
the RER algorithm [Bellavia, Cartis, Gould, Morini & Toint, 2010]

Sequences of shifted systems arising in the first and second nonlinear
iterations of RER; α ∈ (6.3195 · 10−5, 58.4277)

.

.

. ..

.

.

UF1 and UF2 are compared with NP: no prec.; RP: prec. recomputed
for each α; FP: fixed prec..

Matlab pcg function with tol = 10−6 and maxit = 1000;

Matlab cholinc function to compute the incomplete LDLT

factorization; drop tolerance fixed by trial on the system Ax = b;
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Numerical experiments

Test set 2: 8 sequences, all values of α
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NP always fails in solving the first system of each sequence
FP and UF2 fail in solving one sequence
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Conclusions

Conclusion

Given A ≈ LDLT , the update techniques:
...1 preserve the sparsity pattern of the factor L.

...2 are breakdown-free

...3 do not need algorithmic parameters.

...4 seem to be effective for a broad range of values of ∆k (automatic
adaptation to the size of the entries of ∆k);

Further, preserving the diagonal of A+∆k gives a significant improvement
in terms of CG iterations.

Many thanks for your attention!
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