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One-dimensional interpolation problem

Given:

a ≤ x0 < x1 < . . . < xn ≤ b, n + 1 distinct nodes and
f (x0), f (x1), . . . , f (xn), corresponding values.

There exists a unique polynomial of degree ≤ n that interpolates
the fi , i.e.

pn[f ](xi ) = fi , i = 0, 1, . . . , n.

The Lagrange form of the polynomial interpolant is

pn[f ](x) :=
n∑

j=0

fjℓj(x), ℓj(x) :=
∏

k 6=j

(x − xk)

(xj − xk)
.
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The first barycentric form

Denote the leading factors of the ℓj ’s by

νj :=
∏

k 6=j

(xj − xk)
−1, j = 0, 1, . . . , n,

the so–called weights, which may be computed in advance.
Rewrite the polynomial in its first barycentric form

pn[f ](x) = L(x)

n∑

j=0

νj
x − xj

fj ,

where

L(x) :=

n∏

k=0

(x − xk).
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Advantages

evaluation in O(n) operations,

ease of adding new data (xn+1, fn+1),

numerically best for evaluation.
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The barycentric formula

The constant f ≡ 1 is represented exactly by its polynomial
interpolant:

1 = L(x)

n∑
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x − xj
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Advantages

Interpolation is guaranteed:

lim
x→xk

n∑

j=0

ν̂j
x − xj

fj

n∑

j=0

ν̂j
x − xj

= fk .

Simplification of the weights:
Cancellation of common factor leads to simplified weights.
For equispaced nodes,

ν∗j = (−1)j
(
n

j

)
.
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Form polynomial to rational interpolation

In the barycentric form of the polynomial interpolant

pn[f ](x) =

n∑

j=0

νj
x − xj

fj

n∑

j=0

νj
x − xj

,

the weights are defined in such a way that

L(x)

n∑

j=0

νj
x − xj

= 1.

Modification of these weights  rational interpolant.
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Lemma

Let {xj}, j = 0, 1, . . . , n, be n + 1 distinct nodes, {fj}
corresponding real numbers and let {vj} be any nonzero real

numbers. Then

(a) the rational function

rn[f ](x) =

n∑

j=0

vj

x − xj
fj

n∑

j=0

vj

x − xj

,

interpolates fk at xk : limx→xk rn[f ](x) = fk ;

(b) conversely, every rational interpolant of the fj may be written

in barycentric form for some weights vj .
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Floater and Hormann interpolants

Weights suggested in B.(1988):

(−1)j ;

1/2, 1, 1, . . . , 1, 1, 1/2 with oscillating sign.

Floater and Hormann in 2007: new choice for the weights
 family of barycentric rational interpolants.
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Construction presented by Floater and Hormann

- Choose an integer d ∈ {0, 1, . . . , n},

- define pj(x), the polynomial of degree ≤ d interpolating
fj , fj+1, . . . , fj+d for j = 0, . . . , n − d .

The d -th interpolant is given by

rn[f ](x) =

n−d∑

j=0

λj(x)pj (x)

n−d∑

j=0

λj(x)

, where λj(x) =
(−1)j

(x − xj) . . . (x − xj+d)
.
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Barycentric weights

Write rn[f ] in barycentric form

rn[f ](x) =

n∑

j=0

vj

x − xj
fj

n∑

j=0

vj

x − xj

,

with the weights

vj =
∑

i∈Jj

i+d∏

ℓ=i , ℓ 6=j

1

xj − xℓ
.
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Barycentric weights

For equispaced nodes, the weights vj oscillate in sign with absolute
values

1, 1, . . . , 1, 1, d = 0, (B.)

1
2 , 1, 1, . . . , 1, 1,

1
2 , d = 1, (B.)

1
4 ,

3
4 , 1, 1, . . . , 1, 1,

3
4 ,

1
4 , d = 2, (Floater-Hormann)

1
8 ,

4
8 ,

7
8 , 1, 1, . . . , 1, 1,

7
8 ,

4
8 ,

1
8 , d = 3. (Floater-Hormann)
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Theorem (Floater-Hormann (2007))

Let 0 ≤ d ≤ n and f ∈ Cd+2[a, b], h := max
0≤i≤n−1

(xi+1 − xi), then

the rational function rn[f ] has no poles in lR,

if n − d is odd, then

‖rn[f ]− f ‖ ≤ hd+1(b − a)‖f
(d+2)‖
d+2 if d ≥ 1,

‖rn[f ]− f ‖ ≤ h(1 + β)(b − a)‖f
′′‖
2 if d = 0;

if n − d is even, then

‖rn[f ]− f ‖ ≤ hd+1
(
(b − a)‖f

(d+2)‖
d+2 + ‖f (d+1)‖

d+1

)
if d ≥ 1,

‖rn[f ]− f ‖ ≤ h(1 + β)
(
(b − a)‖f

′′‖
2 + ‖f ′‖

)
if d = 0.

β := max
1≤i≤n−2

min
{ |xi − xi+1|

|xi − xi−1|
,

|xi+1 − xi |

|xi+1 − xi+2|

}

Berrut Applications of LBR interpolation at equidistant nodes 15/49



Interpolation
Differentiation of barycentric rational interpolants

Linear barycentric rational finite differences
Integration of barycentric rational interpolants

Differentiation matrices
Convergence rates
Example

Differentiation of barycentric

rational interpolants

Berrut Applications of LBR interpolation at equidistant nodes 16/49



Interpolation
Differentiation of barycentric rational interpolants

Linear barycentric rational finite differences
Integration of barycentric rational interpolants

Differentiation matrices
Convergence rates
Example

Proposition (Schneider-Werner (1986))

Let rn[f ] be a rational function given in its barycentric form with

non vanishing weights. Assume that x is not a pole of rn[f ]. Then
for k ≥ 1

1

k!
r
(k)
n [f ](x) =

n∑

j=0

vj

x − xj
rn[f ][(x)

k , xj ]

n∑

j=0

vj

x − xj

, x not a node,

1

k!
r
(k)
n [f ](xi ) = −

(
n∑

j=0
j 6=i

vj rn[f ][(xi )
k , xj ]

)/
vi , i = 0, . . . , n.
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Differentiation matrices

Define the matrices D(1) and D(2) (Baltensperger-B.-Noël (1999)):

D
(1)
ij :=





vj

vi

1

xi − xj
,

−
n∑

k=0
k 6=i

D
(1)
ik ;

D
(2)
ij :=





2D
(1)
ij

(
D

(1)
ii −

1

xi − xj

)
, i 6= j ,

−
n∑

k=0
k 6=i

D
(2)
ik , i = j .

If f := (f0, . . . , fn)
T , then

D(1) · f, respectively D(2) · f,

returns the vector of the first, respectively second, derivative of
rn[f ] at the nodes.
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Convergence rates for the derivatives

For x ∈ [a, b], we denote the error

e(x) := f (x)− rn[f ](x).

Theorem (B.-Floater-Klein)

At the nodes, we have

if d ≥ 0 and if f ∈ Cd+2[a, b], then

|e′(xj )| ≤ Chd , j = 0, 1, . . . , n;

if d ≥ 1 and if f ∈ Cd+3[a, b], then

|e′′(xj)| ≤ Chd−1, j = 0, 1, . . . , n.
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Theorem (B.-Floater-Klein) (continued)

With the intermediate points, we have

if d ≥ 1 and if f ∈ Cd+3[a, b], then

‖e′‖ ≤ Chd if d ≥ 2,

‖e′‖ ≤ C (β + 1)h if d = 1;

if d ≥ 2 and if f ∈ Cd+4[a, b], then

‖e′′‖ ≤ C (β + 1)hd−1 if d ≥ 3,

‖e′′‖ ≤ C (β2 + β + 1)h if d = 2.

Mesh ratio

β := max
{

max
1≤i≤n−1

|xi − xi+1|

|xi − xi−1|
, max
0≤i≤n−2

|xi+1 − xi |

|xi+1 − xi+2|

}
.
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Remarks

In the important cases k = 1, 2 the convergence rate of the
k-th derivative is O(hd+1−k) as h → 0:
In short:

Loss of one order per differentiation.

Stricter conditions on the differentiability of f compared to
the interpolant.
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Runge’s function

Table: Error in the interpolation and the derivatives of the rational
interpolant of 1/(1 + x2) in [−5, 5] for d = 3.

Interpolation First derivative Second derivative

n error order error order error order

10 6.9e−02 3.9e−01 1.5e+00
20 2.8e−03 4.6 3.1e−02 3.7 2.6e−01 2.5
40 4.3e−06 9.4 7.8e−05 8.6 1.5e−03 7.4
80 5.1e−08 6.4 1.2e−06 6.0 6.1e−05 4.6
160 3.0e−09 4.1 1.0e−07 3.6 9.4e−06 2.7
320 1.8e−10 4.0 1.2e−08 3.1 1.2e−06 2.9
640 1.1e−11 4.0 1.5e−09 3.0 3.0e−07 2.0
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Table: Error in the interpolation and the derivatives of the rational
interpolant of 1/(1 + x2) in [−5, 5] for d = 3.

Interpolation First derivative Second derivative

n error order error order error order
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Comparison with cubic spline
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FH d=3, cubic spline (spline toolbox)

 

 

FH interpolant
Cubic spline
1st derivative FH
1st derivative spline
2nd derivative FH
2nd derivative spline
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Higher order derivatives and

application to rational finite

differences
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Quasi-equispaced nodes

Let us now investigate the convergence rate of the k-th derivative,
k = 1, . . . , d + 1, of rn[f ] at equispaced or quasi-equispaced nodes.
By quasi-equispaced nodes (Elling 2007) we shall mean here points
whose minimal spacing hmin satisfies

hmin ≥ ch,

where c is a constant.
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Convergence rates for higher order derivatives

Theorem

Suppose n, d, d ≤ n, and k, k ≤ d + 1, are positive integers and

f ∈ Cd+1+k [a, b]. If the nodes xj , j = 0, . . . , n, are equispaced or

quasi-equispaced, then

|e(k)(xj)| ≤ Chd+1−k , 0 ≤ j ≤ n,

where C only depends on d, k and derivatives of f .
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Rational finite differences (RFD)

Let us introduce rational finite difference (RFD) formulas for the
approximation, at a node xi , of the k-th derivative of a Cd+1+k

function,
dk f

dxk

∣∣∣∣
x=xi

≈
dk

dxk
rn[f ]

∣∣∣∣
x=xi

=

n∑

j=0

D
(k)
ij fj ,

where D
(k)
ij is the k-th derivative of the j-th Lagrange fundamental

rational function at the node xi .
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Rational finite differences (RFD)

In order to establish formulas for the RFD weights D
(k)
ij , we use the

differentiation matrix D(1) defined earlier for the first order
derivative and the “hybrid formula” (Tee 2006),

D
(k)
ij :=





k

xi − xj

(vj
vi
D

(k−1)
ii − D

(k−1)
ij

)
, i 6= j ,

−

n∑

ℓ=0
ℓ 6=i

D
(k)
iℓ , i = j ,

for higher order derivatives.
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Weights for the first centered RFD formulas

Table: Weights for d = 4 for the approximation of the 2-nd and 4-th
order derivatives at x = 0 on an equispaced grid.

−4 −3 −2 −1 0 1 2 3 4

2nd derivative (order 3)

− 1
12

4
3

− 5
2

4
3

− 1
12

1
63

− 5
28

11
7

− 355
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7

− 5
28

1
63

− 1
128

5
72

− 11
32

15
8

− 1835
576

15
8

− 11
32

5
72

− 1
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4th derivative (order 1)

1 −4 6 −4 1

− 109
441
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147

− 1133
147

4826
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− 1133
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− 109
441

1763
12288

− 2845
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− 3415
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18432

− 3415
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Weights for the first one-sided RFD formulas

Table: Weights for d = 4 for the approximation of the 2-nd and 4-th
order derivatives at x = 0 on an equispaced grid.

0 1 2 3 4 5 6 7 8

2nd derivative (order 3)

35
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− 26
3
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2

− 14
3

11
12

15
4

− 77
6

107
6

−13 61
12

− 5
6
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90

− 25
2
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4

− 161
9

11 − 41
10

25
36
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42
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42
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14
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210
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− 127
210
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− 1055
84

3245
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− 1615
84
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− 1727
140
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56

− 1775
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336

4th derivative (order 1)

1 −4 6 −4 1

3 −14 26 −24 11 −2

1774
1125

− 83
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2827
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25
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637
450

9701
4410

− 3127
294

33253
1470

− 26069
882

2719
98

− 27577
1470

6901
882

− 2113
1470

326620243
172872000

− 785833
82320

17221193
823200

− 6868019
246960

2892553
102900

− 16757309
686000

40726213
2469600

− 3976513
576240
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1646400
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Weights for the first centered RFD formulas
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Figure: Absolute values of the weights for d = 3 for the approximation of
the first order derivative at x = 0 on an equispaced grid.
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Weights for the first one-sided RFD formulas
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Figure: Absolute values of the weights for d = 3 for the approximation of
the first order derivative at x = 0 on an equispaced grid.
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Relative errors in centered FD, resp. RFD for d = 4
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Figure: Relative errors in the approximation at x = 0 of the second and
fourth order derivatives of 1/(1 + 25x2) sampled in [−5, 5].
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Errors in one-sided FD, resp. RFD for d = 4
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Figure: Errors in the approximation at x = −5 of the second and fourth
order derivatives of 1/(1 + x2) sampled in [−5, 5].
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Integration of barycentric

rational interpolants
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Quadrature from equispaced samples

Problem: Given a real integrable function f sampled at n + 1
points, approximate

I :=

∫ b

a
f (x)dx

by a linear quadrature rule
∑n

k=0 wk fk , where f0, . . . , fn are the
given data.

Two main situations:

We can choose the points
 Gauss quadrature, Clenshaw-Curtis, ...

f is sampled at n + 1 equispaced points
 Newton-Cotes: unstable as n → ∞.
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Integration of rational interpolants

Every linear interpolation formula trivially leads to a linear
quadrature rule.
For a barycentric rational interpolant, we have:

I =

∫ b

a
f (x)dx ≈

∫ b

a
rn[f ](x)dx =

∫ b

a

∑n
k=0

vk
x−xk

fk∑n
j=0

vj
x−xj

dx

=

n∑

k=0

wk fk =: Qn,

where

wk :=

∫ b

a

vk
x−xk∑n
j=0

vj
x−xj

dx .
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Our suggestions

For true rational interpolants whose denominator degree exceeds 4,
there is no straightforward way to establish a linear rational
quadrature rule.

We are describing two ideas on how to do this, a direct and an
indirect one, avoiding expensive partial fraction decompositions
and algebraic methods.
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Direct rational quadrature (DRQ)

Direct rational quadrature rules are based on the numerical
stability of the rational interpolant and on well-behaved quadrature
rules such as Gauss-Legendre or Clenshaw-Curtis.

Let wD
k , k = 0, . . . , n, be some approximations of the weights wk

in Qn; then the direct rational quadrature rule reads

I =

∫ b

a
f (x)dx ≈

n∑

k=0

wD
k fk ,

instead of Qn.
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Convergence and degree of precision of DRQ in general

Error in interpolation: O(hp),

error in the quadrature approximating
∫ b
a rn[f ](x)dx : O(hq).

If q ≥ p, then

∣∣∣
∫ b

a
f (x)dx −

n∑

k=0

wD
k fk

∣∣∣ ≤
∫ b

a
|f (x)− rn[f ](x)|dx

+
∣∣∣
∫ b

a
rn[f ](x)dx −

n∑

k=0

wD
k fk

∣∣∣

≤ Chp.

Similar arguments hold for the degree of precision.

Berrut Applications of LBR interpolation at equidistant nodes 40/49



Interpolation
Differentiation of barycentric rational interpolants

Linear barycentric rational finite differences
Integration of barycentric rational interpolants

Integration of rational interpolants
DRQ
IRQ
Example

Convergence and degree of precision of DRQ in general

Error in interpolation: O(hp),

error in the quadrature approximating
∫ b
a rn[f ](x)dx : O(hq).

If q ≥ p, then

∣∣∣
∫ b

a
f (x)dx −

n∑

k=0

wD
k fk

∣∣∣ ≤
∫ b

a
|f (x)− rn[f ](x)|dx

+
∣∣∣
∫ b

a
rn[f ](x)dx −

n∑

k=0

wD
k fk

∣∣∣

≤ Chp.

Similar arguments hold for the degree of precision.

Berrut Applications of LBR interpolation at equidistant nodes 40/49



Interpolation
Differentiation of barycentric rational interpolants

Linear barycentric rational finite differences
Integration of barycentric rational interpolants

Integration of rational interpolants
DRQ
IRQ
Example

Convergence and degree of precision of DRQ in general

Error in interpolation: O(hp),

error in the quadrature approximating
∫ b
a rn[f ](x)dx : O(hq).

If q ≥ p, then

∣∣∣
∫ b

a
f (x)dx −

n∑

k=0

wD
k fk

∣∣∣ ≤
∫ b

a
|f (x)− rn[f ](x)|dx

+
∣∣∣
∫ b

a
rn[f ](x)dx −

n∑

k=0

wD
k fk

∣∣∣

≤ Chp.

Similar arguments hold for the degree of precision.

Berrut Applications of LBR interpolation at equidistant nodes 40/49



Interpolation
Differentiation of barycentric rational interpolants

Linear barycentric rational finite differences
Integration of barycentric rational interpolants

Integration of rational interpolants
DRQ
IRQ
Example

Convergence rates of DRQ in a particular case

Theorem

Suppose n and d, d ≤ n/2− 1, are nonnegative integers,

f ∈ Cd+3[a, b] and rn[f ] belongs to the family of interpolants

presented by Floater and Hormann, interpolating f at equispaced

nodes. Let the quadrature weights wk in Qn be approximated by a

quadrature rule converging at least at the rate of O(hd+2). Then

∣∣∣
∫ b

a
f (x)dx −

n∑

k=0

wD
k fk

∣∣∣ ≤ Chd+2,

where C is a constant depending only on d, on derivatives of f and

on the interval length b − a.
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Indirect rational quadrature (IRQ)

Indirect quadrature means that we approximate a primitive in the
interval [a, b] by a linear rational interpolant. For x ∈ [a, b], we
write the problem

rn[u](x) ≈

∫ x

a
f (y)dy

as an ODE
r ′n[u](x) ≈ f (x), rn[u](a) = 0

and collocate at the interpolation points.
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Indirect rational quadrature (IRQ)

To this end we make use of the formula for the first derivative of a
rational interpolant explained earlier, giving the vector u′ of the
first derivative of rn[u] at the interpolation points

u′ = Du,

where

Dij := D
(1)
ij =





vj

vi

1

xi − xj
, i 6= j ,

−

n∑

k=0
k 6=i

D
(1)
ik , i = j .

Remark: The matrix D is centro-skew symmetric.
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Integration of rational interpolants
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IRQ
Example

Indirect rational quadrature (IRQ)

Set u = (u0, . . . , un)
T , f = (f0, . . . , fn)

T and solve the system
n∑

j=1

Dijuj = fi , i = 1, . . . , n.

The approximation un of the integral and thus the indirect rational
quadrature formula may be given by Cramer’s rule

un =
1

det
(
(Dij)

1≤i,j≤n

)
n∑

k=1

det




(Dij) 1≤i≤n
1≤j≤n−1

0

.

.

.
0

1
0

.

.

.
0




fk

=:

n∑

k=1

wI
k fk .
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Integration of rational interpolants
DRQ
IRQ
Example

Results for f (x) = sin(100x) + 100

Table: Error in the interpolation and the rational quadrature of
f (x) = sin(100x) + 100 for d = 5 at equispaced points in [0, 1]
(computing the wD

k by a Gauss-Legendre quadrature with 125 points).

Interpolation DRQ IRQ

n error order error order error order

20 2.0e+00 6.8e−03 2.7e−03
40 1.8e+00 0.2 1.4e−03 2.3 5.5e−02 −4.3
80 2.8e−02 6.0 9.0e−05 4.0 7.7e−04 6.2
160 6.6e−04 5.4 1.8e−07 9.0 5.7e−05 3.7
320 9.6e−06 6.1 5.7e−09 5.0 1.6e−06 5.2
640 1.3e−07 6.3 4.8e−11 6.9 3.4e−08 5.5
1280 1.1e−09 6.9 3.0e−13 7.3 7.3e−10 5.6
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Comparison for f (x) = sin(100x) + 100
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Note...

In contrast with DRQ, IRQ yields not only the value un
approximating the integral, but also approximate values of the
primitive

∫ x
a f (y)dy at x1, . . . , xn−1 as u1, . . . , un−1 and at all other

x ∈ [a, b] as the interpolant

n∑

j=0

vj

x − xj
uj

n∑

j=0

vj

x − xj

= rn[u](x) ≈

∫ x

a
f (y)dy , x ∈ [a, b].

This approximate primitive is infinitely smooth.
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Thank you for your attention!
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