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Motivation of the present work

I Factorially divergent series often arise in special function
theory and from perturbative treatments of several problems
in different branches of physics and engineering, like quantum
mechanics, optics, elasticity theory, fluid mechanics,
thermodynamics.

I Divergent series can be invaluable numerical tools, provided
we find suitable decoding techniques

I Among them, sequence transformations turn out to be
particularly efficient

I Many numerical examples are known which show that
sequence transformations can be extremely useful. However,
the convergence theory is still in an underdeveloped stage
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The Euler series

I We consider the Euler series (ES for short), namely

E(z) ∼
∞∑

m=0

(−1)m zm Γ(m + 1) , z → 0

where z ∈ C and Γ(·) denotes the Gamma function.

I If | arg(z)| < π, the ES is an asymptotic series for the Euler
integral (EI for short)

E(z) =

∫ ∞
0

exp(−t)

1 + zt
dt =

exp(1/z)

z
E1(1/z),

where E1(·) denotes the exponential integral function.
I The task is to construct an approximation to the EI from the

terms of the ES
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Partial sum decomposition

I We start from the nth-order partial sum, say sn, of the ES,
namely

sn =
n∑

m=0

(−1)m zm Γ(m + 1)

I The basic assumption of sequence transformations is that the
elements of the input sequence {sn} can be partitioned as

sn = s + rn ,

I where s is the antilimit and rn denotes the nth-order remainder
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I In this way, the divergence of the partial sum sequence {sn}
can be ascribed to the (divergent) behavior of the remainder
sequence {rn}

I Sequence transformations provide approximations to s by
eliminating an approximation of rn from sn

I Such elimination is accomplished by using suitable series
representations for rn, based on a priori information about the
asymptotic behavior of the single terms of the series
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Decoding ES via δ transformation

I For factorially divergent series, in particular, the following
factorial series representation of the remainder is a good
model:

s − sn
an+1

=
∞∑

m=0

cm
(n + β)m

,

I (·)m: Pochhammer symbol, β > 0. The coefficients cm are
independent of n.

I Due to the linearity with respect to both s and the coefficients
cm, the elimination of a finite number of them can be
achieved, for instance, by Cramer’s rule
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I We consider the sequence transformation defined by1

δ
(n)
k (β) =

∆k

{
(n + β)k−1

sn
an+1

}
∆k

{
(n + β)k−1

1

an+1

} ,
acting on the sequence sn =

∑n
k=0 ak

I here, ∆ denotes the forward difference operator with respect
to n,

∆f (n) = f (n + 1)− f (n)

I We want to prove that the δ transformation of the divergent
ES converges

1E. J. Weniger, Comput. Phys. Rep. 10, 189-371 (1989).
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I We also want to analyse the convergent speed of δ
(n)
k for fixed

n as k increases

I The δ transformation to the ES produces ratio of two
polynomials

I The zeros of the denominator polynomial play a key role.
They must lie on the negative real axis (cut). This is the first
thing we have to prove
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Simulating the cut

I The following closed-form expression for the denominator, in
terms of hypergeometric polynomials 2F2, can be established:

∆k

{
(n + β)k−1

1

an+1

}
=

(−1)k

(−z)n+1

(n + β)k−1

Γ(n + 2)
2F2

(
−k, k + n + β − 1

n + β, n + 2
;−1

z

)

I For z < 0 the terms of the polynomials 2F2 have strictly
alternating signs

I All zeros of this polynomials in z are real and negative

I The δ transformation simulates the cut of EI
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Error analysis

I We now attempt to evaluate directly the truncation error,

δ
(n)
k (β)− E(z), which is given by the following expression:2

δ
(n)
k (β)− s =

∆k

{
(n + β)k−1

rn
an+1

}
∆k

{
(n + β)k−1

1

an+1

} .

I Our problem is to find manageable estimates of the numerator

2E. J. Weniger, Comput. Phys. Rep. 10, 189-371 (1989).
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I Our analysis is based on the following factorial series
representation of the ES remainder:3

rn
an+1

= −
∞∑
k=0

L
(−1)
k (1/z)

z

k!

(n + 1)k+1

I Here L
(α)
n (·) is the generalized Laguerre polynomial.

I With the help of such factorial series we could derived an
integral representation for the truncation error

3R. Borghi, Appl. Num. Math. 60, 1242-1250 (2010).
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I We recall that, given the factorial series

Ω(z) =
b0

z
+

b11!

z(z + 1)
+

b22!

z(z + 1)(z + 2)
+ · · · =

∞∑
k=0

bkk!

(z)k+1

I Ω(z) also possesses the following integral representation:4

Ω(z) =

∫ 1

0
tz−1 ϕΩ(t)dt , <(z) > 0

I

ϕΩ(t) =
∞∑
k=0

bk (1− t)k

4L.M. Milne-Thomson, L. M., The Calculus of Finite Differences, (Chelsea,
New York, 1981)
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Integral representation of the remainder

I In our case

ϕΩ(t) =
∞∑
k=0

L
(−1)
k (1/z) (1− t)k

I Generating formula of Laguerre polynomials yields

∞∑
k=0

L
(−1)
k (α) tk = exp

(
αt

t − 1

)
, |t| < 1

I This leads to the following integral representation of the
remainder:

rn
an+1

= −1

z

∫ 1

0
dt tn exp

(
−1− t

zt

)
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Integral representation of the numerator

I After some algebraic “gymnastics” we obtain the following
integral representation:

∆k

{
(n + β)k−1

rn
an+1

}
= −(−1)k

z
(n + β)k−1

×
∫ 1

0
dt tn exp

(
−1− t

zt

)
2F1

(
−k , k + n + β − 1

n + β
; t

)

I The hypergeometric polynomial 2F1 can be expressed as a

Jacobi polynomial P
(α,β)
k

2F1

(
−k, k + n + β − 1

n + β
; t

)
= (−1)k

(
k + n + β − 1

n + β − 1

)−1

P
(−1,n+β−1)
k (2t−1)
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Integral representation of the error

I For the sake of simplicity, it is assumed that β = 1 and n = 0.

I This yields the following integral representation:

δ
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k (1)− E(z) =
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×
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Finding an analytical approximant of the error

I We now have to find an approximation to the numerator
which demonstrates the convergence of δ transformation

I We separately analyze the numerator and the denominator
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Analytical approximant of the denominator

I The hypergeometric function in the denominator can be
approximated, for large k, as follows:5

2F2

(
−k, k
1, 2

;−1

z

)
' 1

2π
√

3

(
k2

z

)− 2
3

exp

(
3z−

1
3 k

2
3 − 1

3z

)

I Some examples of the above approximation are given for
z = 10 exp(iϕ), with several values of ϕ
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Analytical approximant of the numerator (1/ 3)

I For the numerator, consider first the following approximation
of Jacobi polynomials:

P
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Analytical approximant of the numerator (2/3)

I The integral simplifies as∫ 1

−1
dx

(
x + 1

2
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Analytical approximant of the numerator (3/3)

I The integrand is modified by the substitution

x → cos(2 arctan τ), τ ≥ 0

I This gives

Ik(α) = 2 exp(−α)

∫ ∞
0

dτ
τ

3
2

(1 + τ2)2
exp(−ατ2) exp(i2k arctan τ)

I The evaluation of the last integral can be carried out, for large
k, by standard asymptotic techniques
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Asymptotic evaluation of Ik(α) (1/3)

I To this end, we first recast the integral as follows:

Ik(α) = 2 exp(−α)

∫ ∞
0

dτ g(τ) exp[f (τ)],

I where

f (τ) =
3

2
log τ − ατ2 + i2k arctan τ

g(τ) = (1 + τ2)−2

I The saddles of the function f (τ) are solutions of the equation
f ′(τ) = 0

4ατ4 + (4α− 3)τ2 − 4ikτ + 3 = 0
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Asymptotic evaluation of Ik(α) (2/3)

I Last equation is solved, for large k , by the ansatz τ ' Akγ .
The unknowns can be found by substituting this ansatz into
the saddle equation and by solving it in the limit k � 1

I After some algebra, the following estimates of the four saddles
τ0, . . . , τ3 are found:

τm ' (k/α)1/3 exp

(
iπ

6
+

i2πm

3

)
, m = 0, ..., 2,

τ3 '
3i

4k

I Numerical trials shown that it is sufficient to consider only τ0

to obtain a meaningful estimate of the above integral
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I Accordingly, Ik(1/z) can be approximated as follows:

1√
πk

Re

{
exp

(
iπ

4

)
Ik
(

1

z

)}
' 2(−1)k√

3
exp

(
− 1

3z

)
z−

1
3 k−

4
3

× exp

(
−3

2
z−1/3 k2/3

)
cos

(
3
√

3

2
z−1/3 k2/3 +

π

6

)
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Analytical approximant of the error

I We finally obtain the following analytical estimate of the
truncation error:

δ
(0)
k (1)− E(z) ' 4π

z
exp

(
1

z

)
exp

(
−9

2
z−

1
3 k

2
3

)
cos

(
3
√

3

2
z−

1
3 k

2
3 +

π

6

)
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Numerical results

I Consider now numerical experiments at z = 10 exp(iϕ), for
ϕ ∈ [0, 2π].

I We plot the modulus of the truncation error |δ(0)
k (1)− E(z)|

as a function of k.
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Comparison to Padé approximants

I For the special case of ES, the Padé approximants can be
computed by Drummond sequence transformation, yielding
the following truncation error:

[n + k/k]− E(z) =

∆k

{
rn

an+1

}
∆k

{
1

an+1

} ,

I Here the same approach is possible and, for n = 0, we obtain
the following analytical estimate to the truncation error:

[k/k]− E(z) ' 2π

z
exp

(
1

z

)
exp

(
−4z−

1
2 k

1
2

)
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I Truncation errors and analytical estimates for δ and Padé for
z = 10. Dots: experimental. Curves: analytical estimates
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Conclusions

I The present analysis was only possible because an explicit
factorial series expansion for the truncation error of the ES is
known

I The observed superiority of the δ transformation over Padé
has been confirmed by our estimates

I Our approach did not lead to manageable results in the case
of the Levin transformation. OPEN PROBLEM
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