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w nonnegative weight function on the interval [a, b],

−∞ ≤ a < b ≤ ∞ , 0 <
∫ b

a
w(x)dx < ∞.

Weighted Hilbert Transform

H(wf ;x) :=

∫ b

a

f(t)

t − x
w(t)dt = lim

ε→0+

∫

|t−x|≥ε

f(t)

t − x
w(t)dt, t ∈ (a, b).
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◮ Causality and generalization of the phaser idea beyond pure

alternating current

1 R. Bracewell, The Fourier Transform and its Applications, Electrical and
Electronic Engineering Series, McGraw–Hill, New York, 1965.

◮ Boundary Value Problems as Singular Integral Eequations Involving

Cauchy Principal Value Integrals

2 S.G. Mikhlin, S. Prössdorf, Singular Integral Operators, Springer–Verlag,
Berlin, 1986.

3 N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, 1977.

SC2011, International Conference on Scientific Computing,S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011 3



◮ Numerical Evaluation of H(wf) when a −∞ < a < b < ∞

4 G. Criscuolo, A new algorithm for Cauchy principal value and Hadamard

finite–part integrals, J. Comput. Appl. Math. 78 (1997), 255–275.

5 G. Criscuolo, L. Scuderi The numerical evaluation of Cauchy principal

value integrals with non–standard weight functions, BIT 38 (1998),
256–274.
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◮ Numerical Evaluation of the Weighted Hilbert Transform on

the Real Line

6 M.R. Capobianco, G. Criscuolo, R. Giova, Approximation of the Hilbert

transform on the real line by an interpolatory process, BIT 41 (2001),
666–682.

7 M.R. Capobianco, G. Criscuolo, R. Giova, A stable and convergent

algorithm to evaluate Hilbert transform, Numerical Algorithms 28 (2001),
11–26.

8 S.B. Damelin, K. Diethelm, Interpolatory product quadrature for Cauchy

principal value integrals with Freud weights, Numer. Math. 83 (1999),
87–105.
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9 S.B. Damelin, K. Diethelm, Boundedness and uniform numerical

approximation of the weighted Hilbert transform on the real line, J.
Funct. Anal. Optim. 22 n.1–2 (2001), 13–54.

10 K. Diethelm, A method for the practical evaluation of the Hilbert

transform on the real line, J. Comp. Appl. Math. 112 (1999), 45–53.
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Essentially two kinds of quadrature rules of interpolatory type have been
proposed

Gaussian Rules

Product Rules
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Hypothesis on the function f

W∞
0 :=

{

f ∈ C0
LOC(R) : lim

|t|→∞
f(t)e−t2/2 = 0

}

,

where C0
LOC(R) is the set of all locally continuous functions on R and f

satisfies a Dini type condition by the Ditzian–Totik modulus of continuity,
then H(wf) is bounded on R

(see Theorem 1.2 in S.B. Damelin, K. Diethelm, Boundedness and

uniform numerical approximation of the weighted Hilbert transform on the

real line, J. Funct. Anal. Optim. 22 n.1–2 (2001), 13–54.)
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{pm(w)}∞m=0

sequence of the orthonormal Hermite polynomials associated with the

weight w(t) = e−t2,

pm(w; t) = γmtm + · · · , γm > 0

−∞ < tm,m < tm,m−1 < · · · < tm,2 < tm,1 < +∞
tm,1 = −tm,m <

√
2m + 1

For any x ∈ R, m ∈ N we denote by tm,c the zero of pm(w) closest to
x, defined by

|tm,c − x| = min
1≤k≤m

|tm,k − x|.
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When x is equidistant between two zeros, i.e. x = (tm,k + tm,k+1)/2
for some k ∈ {1, 2, · · · , m − 1}, it makes no difference for the subsequent
analysis to define tm,c = tm,k or tm,c = tm,k+1.

H(wf ;x) =

∫ +∞

−∞

f(t) − f(x)

t − x
e−t2dt + f(x)

∫ +∞

−∞

e−t2

t − x
dx

and approximate the first integral by interpolating the function

f − f(x)

e1 − x
, e1(t) = t,

on the set of nodes {tm,k, k = 1, 2, · · · , m, k 6= c}, all of which are far
from the singularity x.
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The Lagrange polynomial Lm−1(g) which interpolates the function g at
these points may written as

Lm−1(g; t) =

m
∑

k=1,k 6=c

ℓm,k(w; t)
tm,k − tm,c

t − tm,c
g(tm,k),

where

ℓm,k(w; t) =
pm(w; t)

p′m(w; tm,k)(t − tm,k)
, k = 1, 2, · · · , m.

∫ +∞

−∞

ℓm,k(w; t)

t − tm,c
e−t2dt,
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can be computed by the Gaussian rule with respect to the Hermite weight

∫ +∞

−∞

ℓm,k(w; t)

t − tm,c
e−t2dt =

1

p′m(w; tm,k)

{

λm,k
p′m(w; tm,k)

tm,k − tm,c
+ λm,c

p′m(w; tm,c)

tm,c − tm,k

}

,

where λm,k = λm,k(w), k = 1, 2, · · · , m, are the Cotes numbers with
respect to the Hermite weight. Since

p′m(w; tm,j) =
γm

γm−1

1

λm,jpm−1(w; tm,j)
, j = 1, 2, · · · , m,

we get

∫ +∞

−∞

ℓm,k(w; t)

t − tm,c
e−t2dt =

λm,k

tm,k − tm,c

{

1 − pm−1(w; tm,k)

pm−1(w; tm,c)

}

, k = 1, 2, · · · , m,
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and

∫ +∞

−∞
g(t)e−t2dt =

m
∑

k=1,k 6=c

λm,k

tm,k − tm,c

{

1 − pm−1(w; tm,k)

pm−1(w; tm,c)

}

g(tm,k)+Rm(w; g).

Finally, we arrive at the formula

H(wf ;x) = Hm(w; f ; x) + RH
m(w; f ;x),

where
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Hm(w; f ; x) =

m
∑

k=1,k 6=c

λm,k

tm,k − tm,c

{

1 − pm−1(w; tm,k)

pm−1(w; tm,c)

}

f(tm,k) − f(x)

tm,k − x
+

f(x)

∫ +∞

−∞

e−t2

t − x
dt,

and

RH
m(w; f ;x) = Rm

(

w;
f − f(x)

e1 − x

)

,

is the error.

The quadrature rule has degree of exactness at least m − 1, i.e.

RH
m(w; f) ≡ 0 whenever f is a polynomial of degree m − 1.
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If, as required sometimes in applications, we want to use only the values
of the function f at the interpolation points, then it is convenient to apply
() rewritten as

Hm(w; f ;x) = Am(x)f(x) +

m
∑

k=1,k 6=c

Am,k(x)f(tm,k),

where

Am(x) = H(w;x) −
m

∑

k=1,k 6=c

λm,k

tm,k − x

{

1 − pm−1(w; tm,k)

pm−1(w; tm,c)

}

,

and

Am,k(x) =
λm,k

tm,k − x

{

1 − pm−1(w; tm,k)

pm−1(w; tm,c)

}

, k = 1, 2, · · · , m, k 6= c.
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We define the Amplification Factor

Km(w;x) := |Am(x)|w−1/2(x)+

m
∑

k=1,k 6=c

|Am,k(x)|w−1/2(tm,k), x ∈ R,

THEOREM

Let w(t) = e−t2. Then

Km(w;x) ≤ C







log m, if |x| ≤ ̺
√

2m, 0 < ̺ < 1,

m1/6 log m, if |x| ≤ 2tm,1 − tm,2,

with some constant C independent of m and x.
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For any function

f ∈ C0√
w :=

{

f continuous on R and lim
|t|→∞

f(t)
√

w(t) = 0

}

,

we define the norm

‖f‖C0√
w

:= ‖f
√

w‖∞ = max
t∈R

|f(t)
√

w(t)|.

We set
Em(f)√w,∞ := inf

P∈Pn

‖(f − p)
√

w‖∞,

for any f ∈ C0√
w
, and where Pn denotes the set of the polynomials of

degree at most m.
Denoting by ω(f, t)√w,∞ the Ditzian–Lubinsky weighted modulus of
smoothness, we can state the following result.
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THEOREM

Assume that f ∈ C0√
w

satisfies the condition

∫ 1

0

t−1ω(f, t)√w,∞dt < ∞.

∣

∣RH
m(w; f ; x)

∣

∣ ≤ C







































log m Em−1(f)√w,∞ +
∫ 1/

√
m

0

ω(f,t)√w,∞
t dt,

if |x| ≤ ̺
√

2m, 0 < ̺ < 1,

m1/6 log m Em−1(f)√w,∞ +
∫ 1/

√
m

0

ω(f,t)√w,∞
t dt,

if |x| ≤ 2tm,1 − tm,2,

for some constant C independent of f , m and x.
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Em(f)√w,∞ ≤ const ω(f, m−1/2)√w,∞, m ≥ 0, w(t) = e−t2,

Corollary

Assume that w(t) = e−t2 and f ∈ C0√
w

satisfies the condition

ω(f, t)√w,∞ = O(tα), α > 0. Then

∣

∣RH
m(w; f ; x)

∣

∣ ≤ C m−α/2 log m, |x| ≤ ̺
√

2m, 0 < ̺ < 1,

for some constant C independent of f , m and x.
Further, if α > 1/3, then

∣

∣RH
m(w; f ; x)

∣

∣ ≤ C m−α/2+1/6, |x| ≤ 2tm,1 − tm,2,

with some constant C independent of f , m and x.
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REMARK

We have assumed |x| ≤ 2tm,1 − tm,2. If |x| > 2tm,1 − tm,2 then x is
”sufficiently” far from all the nodes tm,k, k = 1, 2, · · · , m. So that the
Gaussian rule converges and does not present the numerical cancelation
problem . Thus, the quadrature rule we have introduced in this paper is
meaningful exactly when |x| ≤ 2tm,1 − tm,2.
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Amplification Factor Km(w;x)

Table 1: x=0
m Km Km gaussian
4 7.5 3.9
5 4.2 7.d+15
8 9.2 4.6
9 5.5 1.d+16

16 10.9 5.2
17 6.8 4.d+15
32 12.5 5.9
33 8.2 4.d+15
64 14.0 6.6
65 9.6 2.d+15
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Table 2: x=0.00001
m Km Km gaussian
4 7.5 3.9
5 6.4 1.9d+5
8 9.2 4.6
9 8.5 1.4d+5

16 10.9 5.2
17 10.6 1.1d+5
32 12.5 5.9
33 12.7 7.7d+4
64 14.0 6.6
65 14.8 5.5d+4
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Table 3: x=0.001
m Km Km gaussian
4 7.5 3.9
5 4.2 1892.1
8 9.2 4.6
9 5.5 1442.4

16 10.9 5.3
17 6.9 1064.4
32 12.4 5.9
33 8.2 770.8
64 13.9 6.6
65 9.6 552.8
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Table 4: x=0.01
m Km Km gaussian
4 7.3 4.0
5 4.3 190.5
8 9.0 4.7
9 5.6 146.0

16 10.6 5.4
17 6.9 108.7
32 12.1 6.2
33 8.4 79.9
64 13.4 7.0
65 9.8 58.6
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Table 5: x=0.1
m Km Km gaussian
4 6.1 5.0
5 4.8 20.0
8 7.4 6.2
9 6.3 15.9

16 8.6 7.9
17 8.0 12.6
32 9.5 10.6
33 9.9 10.1
64 10.2 17.8
65 12.3 8.4
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Table 6: x=1.
m Km Km gaussian
4 5.9 3.5
5 3.3 30.9
8 3.5 7.2
9 6.3 4.6

16 6.6 5.6
17 4.5 11.4
32 5.9 23.0
33 6.6 5.0
64 7.0 13.9
65 7.4 5.8
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In the first example the exact solution H(wf ;x) is given and we have
computed it by using the computer algebra package Mathematica . Figure
shows the plots of the exact solution, our solution and the solution evaluated
with the help of the Matlab routine Hilbert.

H(wf ;x) =

∫ +∞

−∞

exp(t)t4 exp(−t2)

t − x
dt =

=
1

8
exp(

1

4
)
√

π(7 + 6x + 4x2 + 8x3) + x4 exp(
1

4
)H(w;x − 1

2
)

where f(t) = exp(t)t4.
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Comparison Between Exact, Matlab and Our Solution
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Also in the second example the exact solution H(wf ;x) is given and
we have computed it by using the computer algebra package Mathematica
. Figure shows the plots of the exact solution, our solution and the solution
evaluated with the help of the Matlab routine Hilbert.

H(wf ;x) =

∫ +∞

−∞

|t|52 exp(−t2)

t − x
dt =

= xΓ(
3

4
) + i exp(−x2)(

1

x2
)
1
4x3(π − (−1)

1
4Γ(

3

4
)Γ(

1

4
,−x2))

where f(t) = |t|52.
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Comparison Between Exact, Matlab and Our Solution
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In the last example again the exact solution H(wf ;x) is given and we
have computed it by using the computer algebra package Mathematica .
Figure shows the plots of the exact solution, our solution and the solution
evaluated with the help of the Matlab routine Hilbert.

H(wf ;x) =

∫ +∞

−∞

exp(−t2)

(1 + t2)(t − x)
dt =

=
H(w;x) + eπx(erf(1) − 1)

1 + x2

where f(t) = 1
1+t2

.
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Comparison Between Exact, Matlab and Our Solution
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