Convergence and Stability of a New Quadrature Rule for Evaluating Hilbert Transform

Maria Rosaria Capobianco

CNR - National Research Council of Italy Institute for Computational Applications "Mauro Picone", Naples, Italy.

G. Criscuolo

Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli "Federico II", Naples, Italy.

w nonnegative weight function on the interval [a,b],

$$-\infty \leq a < b \leq \infty$$
 , $0 < \int_a^b w(x) dx < \infty$.

Weighted Hilbert Transform

$$H(wf;x) := \int_a^b \frac{f(t)}{t-x} w(t) dt = \lim_{\varepsilon \to 0^+} \int_{|t-x| \ge \varepsilon} \frac{f(t)}{t-x} w(t) dt, \qquad t \in (a,b).$$

► Causality and generalization of the phaser idea beyond pure alternating current

1 R. Bracewell, *The Fourier Transform and its Applications*, Electrical and Electronic Engineering Series, McGraw–Hill, New York, 1965.

Boundary Value Problems as Singular Integral Eequations Involving Cauchy Principal Value Integrals

- 2 S.G. Mikhlin, S. Prössdorf, *Singular Integral Operators*, Springer–Verlag, Berlin, 1986.
- 3 N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, 1977.

▶ Numerical Evaluation of H(wf) when $a - \infty < a < b < \infty$

- 4 G. Criscuolo, A new algorithm for Cauchy principal value and Hadamard finite-part integrals, J. Comput. Appl. Math. **78** (1997), 255–275.
- 5 G. Criscuolo, L. Scuderi *The numerical evaluation of Cauchy principal value integrals with non-standard weight functions*, BIT **38** (1998), 256–274.

► Numerical Evaluation of the Weighted Hilbert Transform on the Real Line

- 6 M.R. Capobianco, G. Criscuolo, R. Giova, *Approximation of the Hilbert transform on the real line by an interpolatory process*, BIT **41** (2001), 666–682.
- 7 M.R. Capobianco, G. Criscuolo, R. Giova, *A stable and convergent algorithm to evaluate Hilbert transform*, Numerical Algorithms **28** (2001), 11–26.
- 8 S.B. Damelin, K. Diethelm, *Interpolatory product quadrature for Cauchy principal value integrals with Freud weights*, Numer. Math. **83** (1999), 87–105.

- 9 S.B. Damelin, K. Diethelm, *Boundedness and uniform numerical approximation of the weighted Hilbert transform on the real line*, J. Funct. Anal. Optim. **22** n.1–2 (2001), 13–54.
- 10 K. Diethelm, A method for the practical evaluation of the Hilbert transform on the real line, J. Comp. Appl. Math. **112** (1999), 45–53.

Essentially two kinds of quadrature rules of interpolatory type have been proposed

Gaussian Rules

Product Rules

Hypothesis on the function f

$$W_0^{\infty} := \left\{ f \in C_{LOC}^0(\mathbb{R}) : \lim_{|t| \to \infty} f(t) e^{-t^2/2} = 0 \right\},$$

where $C^0_{LOC}(\mathbb{R})$ is the set of all locally continuous functions on \mathbb{R} and f satisfies a Dini type condition by the Ditzian–Totik modulus of continuity, then H(wf) is bounded on \mathbb{R}

(see Theorem 1.2 in S.B. Damelin, K. Diethelm, *Boundedness and uniform numerical approximation of the weighted Hilbert transform on the real line*, J. Funct. Anal. Optim. **22** n.1–2 (2001), 13–54.)

$$\{p_m(w)\}_{m=0}^{\infty}$$

sequence of the orthonormal Hermite polynomials associated with the weight $w(t) = e^{-t^2}$,

$$p_m(w;t) = \gamma_m t^m + \cdots, \qquad \gamma_m > 0$$

-\infty < t_{m,m} < t_{m,m-1} < \cdots < t_{m,2} < t_{m,1} < +\infty
t_{m,1} = -t_{m,m} < \sqrt{2m+1}

For any $x\in\mathbb{R},\ m\in\mathbb{N}$ we denote by $t_{m,c}$ the zero of $p_m(w)$ closest to x, defined by

$$|t_{m,c} - x| = \min_{1 \le k \le m} |t_{m,k} - x|.$$

SC2011, International Conference on Scientific Computing, S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011

When x is equidistant between two zeros, i.e. $x = (t_{m,k} + t_{m,k+1})/2$ for some $k \in \{1, 2, \dots, m-1\}$, it makes no difference for the subsequent analysis to define $t_{m,c} = t_{m,k}$ or $t_{m,c} = t_{m,k+1}$.

$$H(wf;x) = \int_{-\infty}^{+\infty} \frac{f(t) - f(x)}{t - x} e^{-t^2} dt + f(x) \int_{-\infty}^{+\infty} \frac{e^{-t^2}}{t - x} dx$$

and approximate the first integral by interpolating the function

$$\frac{f - f(x)}{e_1 - x}, \qquad e_1(t) = t,$$

on the set of nodes $\{t_{m,k}, k = 1, 2, \dots, m, k \neq c\}$, all of which are far from the singularity x.

The Lagrange polynomial $\mathcal{L}_{m-1}(g)$ which interpolates the function g at these points may written as

$$\mathcal{L}_{m-1}(g;t) = \sum_{k=1,k\neq c}^{m} \ell_{m,k}(w;t) \frac{t_{m,k} - t_{m,c}}{t - t_{m,c}} g(t_{m,k}),$$

where

$$\ell_{m,k}(w;t) = \frac{p_m(w;t)}{p'_m(w;t_{m,k})(t-t_{m,k})}, \qquad k = 1, 2, \cdots, m.$$

$$\int_{-\infty}^{+\infty} \frac{\ell_{m,k}(w;t)}{t - t_{m,c}} e^{-t^2} dt,$$

can be computed by the Gaussian rule with respect to the Hermite weight

$$\int_{-\infty}^{+\infty} \frac{\ell_{m,k}(w;t)}{t-t_{m,c}} e^{-t^2} dt = \frac{1}{p'_m(w;t_{m,k})} \left\{ \lambda_{m,k} \frac{p'_m(w;t_{m,k})}{t_{m,k}-t_{m,c}} + \lambda_{m,c} \frac{p'_m(w;t_{m,c})}{t_{m,c}-t_{m,k}} \right\},$$

where $\lambda_{m,k} = \lambda_{m,k}(w)$, $k = 1, 2, \dots, m$, are the Cotes numbers with respect to the Hermite weight. Since

$$p'_{m}(w; t_{m,j}) = \frac{\gamma_{m}}{\gamma_{m-1}} \frac{1}{\lambda_{m,j} p_{m-1}(w; t_{m,j})}, \qquad j = 1, 2, \cdots, m,$$

we get

$$\int_{-\infty}^{+\infty} \frac{\ell_{m,k}(w;t)}{t - t_{m,c}} e^{-t^2} dt = \frac{\lambda_{m,k}}{t_{m,k} - t_{m,c}} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\}, \qquad k = 1, 2, \cdots, m,$$

 and

$$\int_{-\infty}^{+\infty} g(t)e^{-t^2}dt = \sum_{k=1,k\neq c}^{m} \frac{\lambda_{m,k}}{t_{m,k} - t_{m,c}} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} g(t_{m,k}) + R_m(w;g).$$

Finally, we arrive at the formula

$$H(wf; x) = H_m(w; f; x) + R_m^H(w; f; x),$$

where

$$H_m(w;f;x) = \sum_{k=1,k\neq c}^m \frac{\lambda_{m,k}}{t_{m,k} - t_{m,c}} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(x)}{t_{m,k} - x} + \frac{1}{2} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\} \frac{f(t_{m,k}) - f(t_{m,k})}{t_{m-1}(w;t_{m,c})} + \frac{f(t_{m,k})}{t_{m-1}(w;t_{m,c})} + \frac{f(t_{m,k})}{t_{m-1}(w;t_{m,c})} + \frac{f(t_{m,k})}{t_{m-1}(w;t_{m-1})} + \frac{f(t_{m,k})}{t_{m-1}(w;t_{m-1})} + \frac{f(t_{m-1})}{t_{m-1}(w;t_{m-1})} + \frac{f(t_{m-1})}{t_{m-1}(w;t$$

$$f(x)\int_{-\infty}^{+\infty}\frac{e^{-t^2}}{t-x}dt,$$

and

$$R_m^H(w; f; x) = R_m\left(w; \frac{f - f(x)}{e_1 - x}\right),$$

is the error.

The quadrature rule has degree of exactness at least m-1, i.e. $R_m^H(w; f) \equiv 0$ whenever f is a polynomial of degree m-1.

If, as required sometimes in applications, we want to use only the values of the function f at the interpolation points, then it is convenient to apply () rewritten as

$$H_m(w; f; x) = A_m(x)f(x) + \sum_{k=1, k \neq c}^m A_{m,k}(x)f(t_{m,k}),$$

where

$$A_m(x) = H(w;x) - \sum_{k=1,k\neq c}^m \frac{\lambda_{m,k}}{t_{m,k}-x} \left\{ 1 - \frac{p_{m-1}(w;t_{m,k})}{p_{m-1}(w;t_{m,c})} \right\},$$

and

$$A_{m,k}(x) = \frac{\lambda_{m,k}}{t_{m,k} - x} \left\{ 1 - \frac{p_{m-1}(w; t_{m,k})}{p_{m-1}(w; t_{m,c})} \right\}, \qquad k = 1, 2, \cdots, m, \quad k \neq c.$$

We define the **Amplification Factor**

$$K_m(w;x) := |A_m(x)| \, w^{-1/2}(x) + \sum_{k=1, k \neq c}^m |A_{m,k}(x)| \, w^{-1/2}(t_{m,k}), \qquad x \in \mathbb{R},$$

THEOREM

Let $w(t) = e^{-t^2}$. Then

$$K_m(w;x) \le C \begin{cases} \log m, & \text{if } |x| \le \varrho \sqrt{2m}, \quad 0 < \varrho < 1, \\ \\ m^{1/6} \log m, & \text{if } |x| \le 2t_{m,1} - t_{m,2}, \end{cases}$$

with some constant C independent of m and x.

For any function

$$f \in C^0_{\sqrt{w}} := \left\{ f \text{ continuous on } \mathbb{R} \text{ and } \lim_{|t| \to \infty} f(t)\sqrt{w(t)} = 0 \right\},$$

we define the norm

$$||f||_{C^0_{\sqrt{w}}} := ||f\sqrt{w}||_{\infty} = \max_{t \in \mathbb{R}} |f(t)\sqrt{w(t)}|.$$

We set

$$E_m(f)_{\sqrt{w},\infty} := \inf_{P \in \mathbb{P}_n} \| (f-p)\sqrt{w} \|_{\infty},$$

for any $f \in C^0_{\sqrt{w}}$, and where \mathbb{P}_n denotes the set of the polynomials of degree at most m.

Denoting by $\omega(f,t)_{\sqrt{w},\infty}$ the Ditzian–Lubinsky weighted modulus of smoothness, we can state the following result.

THEOREM

Assume that $f \in C^0_{\sqrt{w}}$ satisfies the condition

$$\int_0^1 t^{-1} \omega(f, t)_{\sqrt{w}, \infty} dt < \infty.$$

$$\begin{split} \left| R_m^H(w;f;x) \right| &\leq C \left\{ \begin{array}{ll} \log m \ E_{m-1}(f)_{\sqrt{w},\infty} + \int_0^{1/\sqrt{m}} \frac{\omega(f,t)_{\sqrt{w},\infty}}{t} dt, \\ & \text{if } |x| \leq \varrho \sqrt{2m}, \quad 0 < \varrho < 1, \end{array} \right. \\ \left| m^{1/6} \log m \ E_{m-1}(f)_{\sqrt{w},\infty} + \int_0^{1/\sqrt{m}} \frac{\omega(f,t)_{\sqrt{w},\infty}}{t} dt, \\ & \text{if } |x| \leq 2t_{m,1} - t_{m,2}, \end{array} \right. \end{split}$$
 for some constant C independent of f , m and x .

$$E_m(f)_{\sqrt{w},\infty} \le \text{const } \omega(f, m^{-1/2})_{\sqrt{w},\infty}, \qquad m \ge 0, \quad w(t) = e^{-t^2},$$

Corollary

Assume that $w(t) = e^{-t^2}$ and $f \in C^0_{\sqrt{w}}$ satisfies the condition $\omega(f,t)_{\sqrt{w},\infty} = O(t^{\alpha}), \ \alpha > 0.$ Then

 $\left| R_m^H(w;f;x) \right| \le C \ m^{-\alpha/2} \log m, \qquad |x| \le \varrho \sqrt{2m}, \quad 0 < \varrho < 1,$

for some constant C independent of $f,\ m$ and x. Further, if $\alpha>1/3,$ then

$$\left| R_m^H(w; f; x) \right| \le C \ m^{-\alpha/2 + 1/6}, \qquad |x| \le 2t_{m,1} - t_{m,2},$$

with some constant C independent of f, m and x.

REMARK

We have assumed $|x| \leq 2t_{m,1} - t_{m,2}$. If $|x| > 2t_{m,1} - t_{m,2}$ then x is "sufficiently" far from all the nodes $t_{m,k}$, $k = 1, 2, \dots, m$. So that the Gaussian rule converges and does not present the numerical cancelation problem . Thus, the quadrature rule we have introduced in this paper is meaningful exactly when $|x| \leq 2t_{m,1} - t_{m,2}$.

Amplification Factor $K_m(w; x)$

Table 1: x=0		
m	K_m	K_m gaussian
4	7.5	3.9
5	4.2	7.d+15
8	9.2	4.6
9	5.5	$1.d{+}16$
16	10.9	5.2
17	6.8	4.d+15
32	12.5	5.9
33	8.2	4.d+15
64	14.0	6.6
65	9.6	2.d+15

SC2011, International Conference on Scientific Computing,S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011 21

Table 2: x=0.00001		
m	K_m	K_m gaussian
4	7.5	3.9
5	6.4	1.9d+5
8	9.2	4.6
9	8.5	1.4d+5
16	10.9	5.2
17	10.6	1.1d+5
32	12.5	5.9
33	12.7	7.7d+4
64	14.0	6.6
65	14.8	5.5d+4

SC2011, International Conference on Scientific Computing,S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011

Iable 3: X=0.001		
m	K_m	K_m gaussian
4	7.5	3.9
5	4.2	1892.1
8	9.2	4.6
9	5.5	1442.4
16	10.9	5.3
17	6.9	1064.4
32	12.4	5.9
33	8.2	770.8
64	13.9	6.6
65	9.6	552.8
	-	

 $T_{able} 2 \cdot v = 0.001$

lable 4: x=0.01		
m	K_m	K_m gaussian
4	7.3	4.0
5	4.3	190.5
8	9.0	4.7
9	5.6	146.0
16	10.6	5.4
17	6.9	108.7
32	12.1	6.2
33	8.4	79.9
64	13.4	7.0
65	9.8	58.6

Table $1 \cdot x = 0.01$

Table 5: $x=0.1$		
m	K_m	K_m gaussian
4	6.1	5.0
5	4.8	20.0
8	7.4	6.2
9	6.3	15.9
16	8.6	7.9
17	8.0	12.6
32	9.5	10.6
33	9.9	10.1
64	10.2	17.8
65	12.3	8.4

SC2011, International Conference on Scientific Computing,S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011

Table 6: x=1.		
$\mid m$	K_m	K_m gaussian
4	5.9	3.5
5	3.3	30.9
8	3.5	7.2
9	6.3	4.6
16	6.6	5.6
17	4.5	11.4
32	5.9	23.0
33	6.6	5.0
64	7.0	13.9
65	7.4	5.8

SC2011, International Conference on Scientific Computing, S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011

In the first example the exact solution H(wf; x) is given and we have computed it by using the computer algebra package Mathematica . Figure shows the plots of the exact solution, our solution and the solution evaluated with the help of the Matlab routine Hilbert.

$$H(wf;x) = \int_{-\infty}^{+\infty} \frac{\exp(t)t^4 \exp(-t^2)}{t-x} dt =$$

$$=\frac{1}{8}\exp(\frac{1}{4})\sqrt{\pi}(7+6x+4x^2+8x^3)+x^4\exp(\frac{1}{4})H(w;x-\frac{1}{2})$$

where $f(t) = \exp(t)t^4$.

Comparison Between Exact, Matlab and Our Solution

SC2011, International Conference on Scientific Computing, S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011

Also in the second example the exact solution H(wf;x) is given and we have computed it by using the computer algebra package Mathematica . Figure shows the plots of the exact solution, our solution and the solution evaluated with the help of the Matlab routine Hilbert.

$$H(wf;x) = \int_{-\infty}^{+\infty} \frac{|t|^{\frac{5}{2}} \exp(-t^2)}{t-x} dt =$$

$$= x\Gamma(\frac{3}{4}) + i\exp(-x^2)(\frac{1}{x^2})^{\frac{1}{4}}x^3(\pi - (-1)^{\frac{1}{4}}\Gamma(\frac{3}{4})\Gamma(\frac{1}{4}, -x^2))$$

where $f(t) = |t|^{\frac{5}{2}}$.

Comparison Between Exact, Matlab and Our Solution

SC2011, International Conference on Scientific Computing, S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011 30

In the last example again the exact solution H(wf;x) is given and we have computed it by using the computer algebra package Mathematica . Figure shows the plots of the exact solution, our solution and the solution evaluated with the help of the Matlab routine Hilbert.

$$H(wf;x) = \int_{-\infty}^{+\infty} \frac{\exp(-t^2)}{(1+t^2)(t-x)} dt =$$
$$= \frac{H(w;x) + e\pi x(erf(1)-1)}{1+x^2}$$

where $f(t) = \frac{1}{1+t^2}$.

Comparison Between Exact, Matlab and Our Solution

SC2011, International Conference on Scientific Computing,S. Margherita di Pula, Sardinia, Italy, October 10-14, 2011