
High-performance large eddy simulation of
incompressible turbulent flows

Pasqua D'Ambra

International Conference on Scientific Computing

S. Margherita di Pula, Sardegna, Italy,

October 10-14, 2011

Pasqua D'Ambra

Institute for High-Performance Computing and
Networking (ICAR-CNR), Naples branch

pasqua.dambra@cnr.it

Joint work with

Andrea Aprovitola, Institute for Combustion Research (IRC), CNR

Filippo Maria Denaro, Second University of Naples

Daniela di Serafino, Second University of Naples

Salvatore Filippone, University of Rome “Tor Vergata” 1

Outline

� Background & Motivations

� Large Eddy Simulation (LES) of turbulent channel flows

� Numerical methods & main computational kernels

� Par-LES: a Parallel Simulation Code for LES based on parallel
scientific libraries for sparse matrix computations

Grid partitioning and parallelism� Grid partitioning and parallelism

� PSBLAS for building and applying discrete operators and for
sparse linear solvers

� MLD2P4 for building and applying algebraic multilevel
preconditioners in sparse linear solvers

� Performance Results

2

Bi-periodical plane channel flow

� N-S eq. (Reτ= uτ δ/ν = 180, 395, 590)

� Domain sizes: 2π δ x 2δ x πδ

� Boundary conditions: periodic in the streamwise (x) and spanwise
directions (z); no-slip at the solid walls (y)

� Initial condition: Poiseuille flow with random Gaussian perturbation

LES of turbulent channel flows

� Initial condition: Poiseuille flow with random Gaussian perturbation

� Pressure forcing term: assigned along the streamwise direction to set up
a constant mass flow rate in the channel

� LES approach: FV formulation in which the filtered velocity is based on a
high-order deconvolution top-hat kernel filter

� SGS modelling: implicit eddy viscosity due to multidimensional upwind
flux discretization

3

LES of turbulent channel flows (cont’d)

� Time integration:

� time splitting by Approximate Projection Method (APM)

� 2nd-order semi-implicit Adams-Bashforth/Crank-Nicolson (AB/CN)
scheme

� Space discretization:

� non-uniform grid along y (stretching cosine law)

4

� non-uniform grid along y (stretching cosine law)

� co-located flow variables (center of FVs)

� multidimensional 3rd-order upwind scheme for convective fluxes

� 2nd-order central scheme for diffusive fluxes

� 4th-order formulas for spatial derivatives in inverse deconvolution

A. Aprovitola, F. M. Denaro, A non-diffusive, divergence-free, Finite Volume-based double projection
method on non-staggered grids, Int. J. Num. Meth. Fluids, 53, 1127-1172, 2007

4

LES: APM numerical procedure

Helmholtz-Hodge decomposition

Φ∇∆−=+
t

n
*~ 1

vv predictor-corrector approach

(velocity field)

where v* is obtained by solving the semi-discrete deconvolved momentum
eq. neglecting pressure terms

5

eq. neglecting pressure terms

with suitable Dirichlet boundary conditions near the walls.

() () 

















++−








++

∆

+






 ∆
+=







 ∆
−

−−

−−

11

3131

2

1

2

1

~

Re

1~

Re

1
3

2

~

Re2
*

Re2

n

conv

nn

conv

xx

DDDD
t

D
t

AD
t

A

n

n

fvfv

vv

ττ

ττ

5

LES: APM numerical procedure (cont’d)

Φ is obtained by solving the so-called pressure equation

dS
t

DDD nv
x

x

⋅
Ω∆

=Φ++ ∫
Ω∂

*
|)(|

1
)(

)(

321

6

with Neumann boundary conditions near the walls, ensuring compatibility

(a solution exists up to an additive constant)

()tp ∆Ο+∇=Φ∇

is a first order approximation of the pressure gradientΦ∇

6

LES: computational kernels

Solution of the deconvolved momentum eq.:

() () 

















++−








++

∆
+








 ∆
+=







 ∆
−

−−

−−

11

3131

2

1

2

1

~

Re

1~

Re

1
3

2

~

Re2
*

Re2

n

conv

nn

conv

xx

DDDD
t

D
t

AD
t

A

n

n

fvfv

vv

ττ

ττ

! N=Nx xNy x Nz total number of grid cells

1. compute discrete inverse deconvolution
by 4th-order scheme

2. compute discrete diffusive operators
by 2nd-order scheme

1−
xA

321 , , DDD

NN×ℜ∈A

NN

i

×ℜ∈D

Build sparse matrices
independent of time-step

7

LES: computational kernels (cont’d)

Solution of the deconvolved momentum eq. (cont’d):

! N=Nx xNy x Nz total number of grid cells

3. compute discrete convective fluxes by multidimensional 3th-order up-wind
scheme

1
,

−n

conv

n

conv ff 1,2,3i
1-n

i

1-n

i

n

i

n

i
 , === uquq αα vectors updates

()
3,2,1i

*

ii * *
=

==
i

with vvwMv

8

4. build rhs and coefficient matrix of the velocity systems

()

()() ()()()11

i31i31

i2

2

~~3

~

−−
++−++⋅+

+⋅+=

⋅−=

n

i

nn

i

i

n

n

qvDDqvDD

vDAw

DAM

λλτ

β

β

matrices updates/matrix-vector products/vector updates

N.B. matrices independent of time-step 8

LES: computational kernels (cont’d)

Solution of pressure equation

dS
t

DDD nv
x

x

⋅
Ω∆

=Φ++ ∫
Ω∂

*
|)(|

1
)(

)(

321

! N=Nx xNy x Nz total number of grid cells

9

1. build rhs and coefficient matrix of the sparse linear system

 sD =ϕ

N

NxN

ℜ∈

ℜ∈++=

s

DDDD 321

matrices updates/vector update

N.B. matrix independent of time-step

9

LES: time-marching procedure

APM procedure

Build sparse matrices/vectors

! Nsteps = total number of time steps

for n = 1, Nsteps do

1. compute convective fluxes
2. compute diffusive fluxes
3. compute deconvolved velocity

Sparse BLAS
(matrix-vector prod.,vector up.)

Sparse Matrix
Management

(allocate, build, update)

10

Solution of sparse
linear systems

(̴ 75% of total cost)

Number of time steps and dimensions of matrices/vectors
increasing with Reynolds number

3. compute deconvolved velocity

4. solve deconvolved momentum eq.
5. solve pressure eq.

6. update velocity

endfor

(matrix-vector prod.,vector up.)

10

LES: sparse linear solvers

Solution of velocity systems:

()
3,2,1i

*

ii * *
=

==
i

with vvwMv

Three linear systems whose matrix is:

1111

�large and sparse
�unsymmetric with symmetric sparsity pattern
�diagonally dominant

GMRES with point-Jacobi preconditioner

accounts for ̴ 40% of the total run-time

LES: sparse linear solvers (cont’d)

Solution of pressure system:

 sD =ϕ

Singular, but compatible linear system, whose matrix is

�large & sparse

1212

GMRES with Multilevel DD Preconditioners

accounts for ̴ 35% of the total run-time

�large & sparse
�unsymmetric with symmetric sparsity pattern
�condition number rapidly increasing for decreasing grid sizes

Par-LES

a parallel code for LES

based on portable, efficient and reliable scientific libraries for

parallel sparse matrix computations

� Simplicity in changing numerical methods/solvers (modularity,

13

� Simplicity in changing numerical methods/solvers (modularity,
flexibility)

� Parallelism encapsulated in library routines and support for distributed
data structures creation/management (rapid and “low-cost”
introduction of parallelism)

� Up-to-date parallel algorithms and standard base software (efficiency,
portability,robustness)

13

Par-LES: basic choice for parallelism

Data parallelism based on 3D decomposition of computational grid of

�Processors are connected in a 3D Cartesian virtual topology

P111

P121

P131

�Processors are connected in a 3D Cartesian virtual topology
�Every processor owns a 3D sub-block of computational grid, i.e.
a block of consecutive rows of the matrices/vectors
�Every processor locally computes on its internal points (volume of sub-block)
�Nearest-neighbor processors communicate some layers of “halo” points
(surface of sub-block)

Surface to volume effect, i.e. minimize Tcom/Tcalc

14

Par-LES: Software Architecture

PSBLAS

Parallel Sparse Matrix/Vector Op.

Iterative Sparse Linear Solvers
CG, BiCGSTAB, RGMRES,…

Preconditioners
Algebraic Multilevel DD

MLD2P4

b
a

s
ic

 o
b

je
c
ts

 &
Par-LES

15

MPIF95

Parallel Sparse Matrix/Vector Management
allocate, build, halo exchange, …

Parallel Sparse Matrix/Vector Op.
matrix-vector prod.,

matrix/vector up. , matrix/vector norms

P
S

B
L

A
S

b
a

s
ic

 o
b

je
c
ts

 &
k
e

rn
e

ls
B

a
s
e

 s
w

PSBLAS (Filippone et al., www.ce.uniroma2.it/psblas/)

Parallel Sparse BLAS rel. 2.4
Basic Linear Algebra Operations with Sparse Matrices

on MIMD Architectures

Iterative Sparse Linear Solvers
CG, BiCG, CGS, BiCGSTAB, RGMRES,…

A
p
p
l.

Parallel Sparse Matrix

K
e
rn

e
lsParallel Sparse Matrix

16

MPI

F95

SBLAS

B
a
s
e
 s

w

Parallel Sparse Matrix
Operations

matrix-matrix products, matrix-vector

products, matrix norms K
e
rn

e
lsParallel Sparse Matrix

Management
allocate, build, halo exchange …

F77

Multilevel DD preconditioners

Domain Decomposition (DD) preconditioners:

� divide the PDE domain (the matrix) into subdomains (submatrices)

� apply a “local preconditioning” in each subdomain

� build the global preconditioner from the local ones

Additive Schwarz preconditioners – pros & cons:Additive Schwarz preconditioners – pros & cons:

� naturally fit in a parallel environment � good implementation scalability

� # iterations of the preconditioned solver grows with # subdomains
� poor algorithmic scalability

Use of multiple level corrections to obtain optimal preconditioners
(# iterations bounded independently of grid size and subdom. diameter)

17

Multi-Level Domain Decomposition

Parallel Preconditioners Package based on PSBLAS

mld_precbld(A,M,…)
A, distributed sparse matrix (input)

M, distributed sparse preconditioner (output)

mld_precaply(M,x,y,…)
M, distributed sparse preconditioner (input)

x,y, distributed vectors (input/output)

MLD2P4 (www.mld2p4.it)

18

Diagonal Block-Jacobi
Additive Schwarz

with arbitrary overlap
Algebraic

multi-level Schwarz
based on aggregation

PSBLAS 2.0
extended version of PSBLAS 1.0

P. D'Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Algebraic Multilevel Domain
Decomposition Preconditioners in Fortran 95, ACM Transactions on Mathematical Software, Vol. 37,
N. 3, 2010.

Preconditioners available in MLD2P4

Any combination of the following components

� Base (1-lev) preconditioner (smoothers):

point-Jacobi, block-Jacobi, additive Schwarz (AS, RAS, ASH) with

LU (UMFPACK) or ILU fact. (ILU(p), MILU(p), ILU(t,p)) of the blocks

� Multilevel type:

additive or multiplicative, with pre-, post- or two-side smoothing

19

� Coarsening strategy:

decoupled classical or unsymmetric smoothed aggregation

� Coarsest-level matrix:

distributed or replicated

� Coarsest-matrix solver:

ILU, sparse LU (UMFPACK, SuperLU, SuperLU_Dist), block-Jacobi with
ILU or LU on the blocks, pont-Jacobi

Par-LES: Test Case

� Reτ = 590

� Number of grid cells: 48x100x48
(providing a resolved boundary layer with minimum cell size ∆y+= 0.145)

� ∆t = 10-5 (estimated on the base of linear stability constraints)

� Matrices Dimension: N=228096

Nonzeros for velocity 2960640, Nonzeros for pressure 1589902 � Nonzeros for velocity 2960640, Nonzeros for pressure 1589902

� Preconditioners for pressure system:

� 4-lev V cycle, with RAS(1) as smoother, replicated coarse matrix: 4
sweeps of Block Jacobi with ILU(0) on diagonal blocks (4LRI)

� 4-lev V cycle, with Block Jacobi as smoother, distributed coarse matrix:
4 sweeps of Point Jacobi (4LDPJ)

� Stopping criterion for linear solvers:: or maxiter7

0
10 ||||/||||

−≤rr
k

20

Par-LES: computational environment

HP XC 6000 Linux cluster

� 64 Intel Itanium 2 Madison (1.4 GHz) bi-processor nodes with 4 GB
of RAM

� Quadrics QsNetII Elan 4 interconnection network (900 MB/sec. of
bandwidth and 5µsec. of latency)

� HP Linux for High Performance Computing, based on Red Hat � HP Linux for High Performance Computing, based on Red Hat
Enterprise Linux AS 3 with Kernel 2.4.21

� GNU 4.6 compilers

� HP MPI implementation

� BLAS implementation provided by ATLAS 3.6.0

� PSBLAS 2.4

21

Par-LES: performance results (2000 time steps)

22

Par-LES: performance results (4LDPJ-2000 time steps)

23

Par-LES: performance results (4LDPJ-2000 time steps)

24

Par-LES: performance results (4LDPJ-2000 time steps)

25

Concluding remarks

� Par-LES shows good strong scalability for medium size
Reynolds numbers

� Par-LES is based on portable and reliable open-source
parallel scientific libraries based on MPI, thus it can be run
on different architectures on which MPI is available.

� Many variants of linear solvers and preconditioners can
be tested by changing only input parameters

� Improvements or extensions to PSBLAS/MLD2P4
libraries (shift through many-core/GPU architectures) will be
available to Par-LES with no effort

26

Thank you for your attention

27

Thank you for your attention

27

