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Problem and background

PDE-constrained optimization and multilevel methods

Solving PDE-constrained optimization problems is a computationally
demanding task, requiring

I accurate and efficient numerical methods
I high-performance computing resources

Multigrid/multilevel methods
I achievable optimal convergence rates
I flexibility and wide applicability
I robustness with respect to optimization parameters
I possibility of developing scalable implementations

Borz̀ı & Schultz, Multigrid Methods for PDE Optimization, SIREV, 51, 2009

Our goal

developing efficient parallel algebraic multilevel Schwarz preconditioners for
use in PDE-constrained optimization
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Problem and background

Model Problem

Elliptic distributed control problem
min

u∈L2(Ω)
J(y , u) ≡ 1

2
||y − z ||2L2(Ω) +

ν

2
||u||2L2(Ω)

s.t. −∆y = u + f in Ω
y = 0 on ∂Ω

Ω ⊂ <2 convex, ν > 0, and f , z ∈ L2(Ω) given

Optimality conditions
−∆y − u = f in Ω, y = 0 on ∂Ω
−∆p + y = z in Ω, p = 0 on ∂Ω
νu − p = 0 in Ω
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Problem and background

Discrete optimality system

Discretization (e.g.) by second-order central finite differences on a n × n grid

Av = w, A ∈ <N×N , N = 3n

A =

 A 0 −I
I A 0
0 −I νI

 , v =

 y
p
u

 , w =

 f
z
0

 ,

A = matrix arising from the discretization of −∆

Multilevel Schwarz preconditioners

naturally fit in a parallel environment (domain decomposition)

# iterations of preconditioned solver independent of # subdomains

Algebraic approach

wide applicability and capability of adapting to a specific problem

allows software reusability
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A new class of algebraic multilevel Schwarz preconditioners

Algebraic multilevel preconditioners

Av = w, A ∈ <N×N

Multilevel strategy

two-level: apply a basic preconditioner (smoother) to the given linear system
and then improve it by solving a projection of the associated error system in
a coarse space (coarse-space, or coarse-level, correction)

multilevel: recursive application of the previous strategy

Two phases

setup: build all the operators needed by the multilevel strategy

application: apply the multilevel preconditioner through a suitable
combination of these operators
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A new class of algebraic multilevel Schwarz preconditioners

Setup phase

A1 ≡ A finest matrix

V1 ≡ V = {1, 2, . . . ,N1 ≡ N} finest index space (row indices of A)

build M1

for k = 1, nlev − 1 do

generate Vk+1 from Vk

build Pk and Rk

compute Ak+1 = RkAkPk

build Mk+1

endfor

coarsening

definition of restr. & prolong. operators

(Petrov-)Galerkin approach

setup of smoother (≈ A−1
k+1)

V1 ⊂ V2 . . . ⊂ Vnlev hierarchy of index spaces

A1,A2, . . . ,Anlev hierarchy of matrices

Pk : <Nk+1 −→ <Nk , Rk : <Nk −→ <Nk+1 , Nk = |Vk |

usually Rk = (Pk )T
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A new class of algebraic multilevel Schwarz preconditioners

Application phase

Example: V-cycle

procedure Vcycle(k ,Ak ,wk)

if(k 6= nlev) then

vk =Mkwk

wk+1 = Rk(wk −Akvk)

vk+1 = Vcycle(k + 1,Ak+1,wk+1)

vk = vk + Pkvk+1

vk = vk +Mk(wk −Akvk)

else

vk = A−1
k wk

endif

return vk
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A new class of algebraic multilevel Schwarz preconditioners

Setup of coarse-level correction

Focus on smoothed aggregation (Vaněk, Mandel, Brezina, Computing, 56, 1996)

Coarsening

scalar problems: obtain coarse indices by aggregating the indices of V into
N ′ subsets that form a disjoint coverage of V

each subset Cs ≡ Cs(j) contains a “root” index j ∈ V and other indices
i ∈ V that are strongly coupled to j according to the rule

|αij | ≥ ε
√
|αiiαjj |,

with A = (αij) and ε given threshold

nonscalar problems: aggregate simultaneously the dof’s associated with each
grid point, using

‖Hij‖ ≥ ε
√
‖Hii‖‖Hjj‖,

with Hij block counterpart of αij (point-block version)
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A new class of algebraic multilevel Schwarz preconditioners

Setup of coarse-level correction (cont’d)
Prolongation and restriction

build a tentative prolongator P̃ whose range includes the near null space of
the given matrix

I scalar problems (e.g. discrete Laplace operator):

P̃ = (p̃ij), p̃ij =

{
1 if i ∈ Vj

0 otherwise

I nonscalar problems (point-block version): replace 1 and 0 in P̃ by
identity and zero blocks of dim equal to # dof’s

apply a smoother to reduce the energy of the prolongator basis vectors:

P = (I − ωD−1A)P̃,
where D = diag(A) and ω = 4/(3ρ), with ρ upper bound on the spectral
radius of D−1A

set

R = PT
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A new class of algebraic multilevel Schwarz preconditioners

Our approach: basic idea

With the classical point-block approach, the transfer operators may
significantly depend on the parameter ν =⇒ loss of multilevel effectiveness

Decompose the system matrix A as

A = Â+ B,

Â =

 A 0 0
0 A 0
0 0 0

 , B =

 0 0 −I
I 0 0
0 −I νI


second-order terms zero-order terms

and build restriction and prolongation operators by using the block A
instead of the whole matrix A.
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A new class of algebraic multilevel Schwarz preconditioners

Our approach: coarsening and transfer operators

apply scalar aggregation to the index set V associated with the block A
(discrete negative Laplacian) Classical aggregation

grid view

build a tentative prolongator P̃ corresponding only to the aggregates
associated with the block A

apply smoothing to P̃:
P = (In − ωD−1A)P̃,

where D = diag(A) and ωB = 4/(3ρA), with ρA upper bound of the spectral
radius of D−1A
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A new class of algebraic multilevel Schwarz preconditioners

Our approach: coarsening and transfer operators (cont’d)

extend the smoothed prolongator to the index set V associated with the
whole matrix A:

P̂ = I3 ⊗ P =

 P
P

P


set

R̂ = P̂T
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A new class of algebraic multilevel Schwarz preconditioners

Setup of smoothers (one-level preconditioners)

Additive Schwarz (AS) preconditioners - basic ideas:

divide the matrix (domain) into overlapping submatrices (subdomains)

apply a “local preconditioning” in each subdomain

build the global preconditioner from the local ones

Our approach:

build the overlapping submatrices by using the sparsity pattern
of the block A instead of the whole matrix A
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A new class of algebraic multilevel Schwarz preconditioners

Our approach: one-level AS preconditioners

G = (V ,E) adjacency graph of the block A (symmetric pattern)

V =
⋃

V 0
i , V 0

i ∩ V 0
j (i 6= j) partition of V

build δ-overlap partition of V

V =
⋃

V δ
i , V δ

i ⊃ V δ−1
i

j ∈ V δ
i ⇐⇒ ∃k ∈ V δ−1

i : (j , k) ∈ E

build restriction and prolongation operators associated with this partition

Rδ
i = (ej1 , ej2 . . . ejm )T , jk ∈ V δ

i , Pδ
i = (Rδ

i )T

extend Rδ
i and Pδ

i

P̂δ
i = I3 ⊗ Pδ

i , R̂δ
i = I3 ⊗ Rδ

i

build restrictions of the whole matrix A
Aδ

i = R̂δ
i AP̂

δ
i

AS preconditioner

M−1
AS =

m∑
i=1

P̂δ
i (Aδ

i )−1R̂δ
i
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A new class of algebraic multilevel Schwarz preconditioners

Remarks

Prolongation and restriction operators built by neglecting the zero-order
part of the optimality system

reduction of computational cost (time and memory)

prolongation and restriction operators independent of the
regularization parameter ν (can be reused)
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Parallel implementation

Parallel version
Decomposition of the matrix A among the processors

reordering of the rows and columns of A according to a point-block ordering
of the unknowns (dof’s associated with the same grid point are consecutive):

Āv̄ = w̄
where

Ā =



F E · · · E
E F E · · · E

. . .
. . .

. . . · · ·
. . .

E · · · E F E · · · E
. . . · · ·

. . .
. . .

. . . · · ·
. . .

E · · · E F E · · · E
. . . · · ·

. . .
. . .

. . .
E · · · E F E

E · · · E F



F =


4
h2 0 −1

1 4
h2 0

0 −1 ν



E =

 − 1
h2 0 0

0 − 1
h2 0

0 0 0


h = grid spacing in the

x and y directions

row-block decomposition of the reordered matrix, where rows corresponding

to the same grid point are assigned to the same processor

induced row-block decomposition of the block A and 0-overlap partition of

the corresponding vertex set V ; each processor holds a single subdomain
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Parallel implementation

Parallel version (cont’d)

Decoupled aggregation, i.e., performed locally on each processor

embarrassingly parallel

may produce nonuniform aggregates near the boundary indices and depends
on the number of processors, but works well in practice
[Tuminaro & Tong, Supercomputing Conference, 2000; Buttari, D’Ambra, dS, Filippone,

APNUM 57 & AAECC 18, 2007]

Formulation of the preconditioner setup and application phases in terms of
basic sparse linear algebra computation and communication kernels

explotation of “de-facto” standard basic linear algebra software (PSBLAS)
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Parallel implementation

Software framework http://www.mld2p4.it

MLD2P4 - MultiLevel Domain Decomposition
Parallel Preconditioners Package based on PSBLAS

User interface

UMFPACK, 
SuperLU, 

SuperLU_DIST

Multilevel data structures
& related methods

Base preconditioner data structures
& related methods

Interfaces to external packages

Basic components (matrices, index spaces, maps)
& related methods

BLACS, MPI

M
L
D
2
P
4

P
S
B
L
A
S

D’Ambra, dS, Filippone, MLD2P4: a Package of Parallel Algebraic Multilevel
Domain Decomposition Preconditioners in Fortran 95, ACM TOMS, 37, 2010
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Numerical experiments

Testing details
Test problem

target function: z(x , y) = sin(2πx) cos(2πy) (non attainable)

rhs in the state equation: f (x , y) = sin(2πx) cos(2πy)

regularization parameter: ν = 10−3, 10−5, 10−7

grid size: n × n, n = 250, 500, 1000, 2000, 4000 (matrix dim = 187.5K , 750K , 3M, 12M,

48M)

Krylov solver
BiCGStab from PSBLAS, with zero initial guess and stopping criterion

‖r (i)‖2/‖r (0)‖2 ≤ tol, with tol = 10−6, 10−12, or max # iters = 1000

Preconditioners
1-lev: block Jacobi (BJAC), restricted additive Schwarz with overlap 1 (RAS)

multi-lev: V-cycle with 2–6 levels, BJAC or RAS as smoother, coarsest matrix replicated

on the procs, LU from UMFPACK as coarsest-level solver

aggreg. threshold: ε = 0.08 · 1/2k−1, k = current lev. (Vaněk et al., Computing, 56, 1996)

Parallel machine

HP XC 6000 Linux cluster operated by the Naples branch of ICAR-CNR:

Intel Itanium 2 Madison dual-processor nodes (1.4 Ghz), 4GB RAM

Quadrics QsNetII Elan 4 interc. network (900 MB/sec sust. bandwidth, 5µsec latency)
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Numerical experiments

Iterations as ν varies – grid size = 1000× 1000, tol = 10−6, BJAC smoother

ν NP BJAC 2LEV 3LEV 4LEV 5LEV 6LEV

10−3 1 526 4 6 7 9 10
2 800 4 5 7 9 10
4 588 4 6 8 10 11
8 643 4 6 7 10 10

16 602 4 5 7 10 15
32 830 5 6 8 11 16

10−5 1 — 4 7 8 11 12
2 — 5 7 8 12 12
4 — 5 6 9 13 13
8 — 5 7 9 10 11

16 — 5 7 9 12 17
32 — 5 7 9 14 25

10−7 1 — 5 8 9 12 —
2 — 5 7 9 11 —
4 — 5 6 9 9 —
8 — 5 7 9 9 —

16 — 5 6 8 10 40
32 — 5 7 9 11 31

— = max # iters achieved
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Numerical experiments

Iterations as ν varies (cont’d)

grid size = 2000× 2000, tol = 10−6, BJAC smoother, 6 levels

NP ν = 10−3 ν = 10−5 ν = 10−7

1 9 11 16
2 10 14 16
4 12 16 25
8 13 17 15

16 10 13 13
32 15 23 14
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Numerical experiments

Iterations as grid size varies ν = 10−5, tol = 10−6, BJAC smoother

grid size NP 2LEV 3LEV 4LEV 5LEV 6LEV

250× 250 1 4 5 6 7 7
2 4 5 7 8 8
4 4 6 7 8 8
8 5 5 7 9 10
16 5 5 7 8 9
32 4 5 7 10 10

500× 500 1 4 5 7 8 8
2 4 6 7 9 9
4 4 6 7 8 9
8 4 5 7 10 10

16 4 6 7 12 14
32 5 6 7 12 13

1000× 1000 1 4 5 7 10 10
2 4 5 7 9 10
4 4 6 8 10 13
8 4 6 7 10 11

16 5 6 8 11 16
32 5 6 8 11 16
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Numerical experiments

Execution time (sec.) & strong scaling – grid size = 1000× 1000, tol = 10−6

ν = 10−3
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Numerical experiments

Weak scaling

# grid points per proc = 5002, tol = 10−6

largest matrix dim (64 procs) = 48M
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Numerical experiments

Comparison with classical point-block smoothed aggregation: iterations

classical smoothed aggregation from Trilinos/ML (Gee et al., 2006 - http://trilinos.sandia.

gov/packages/ml/)

I V-cycle, BJAC as smoother, UMFPACK as coarsest-level solver

I fixed aggregation threshold: ε = 0, 0.1, 0.01, 0.001 (adaptive choice not available)

BiCGStab from Trilinos/AztecOO

grid size = 500× 500, tol = 10−6, max # iters = 200, ε = 0.01, NP=1

PREC ν 2LEV 3LEV 4LEV 5LEV 6LEV

Classical 10−3 4 5 5 6 6
New 4 5 7 8 8
Classical 10−5 5 81 — — —
New 4 7 8 8 11
Classical 10−7 5 — — — —
New 5 7 7 — —

significant increase of residuals observed with classical algorithm
for ν = 10−5, 10−7
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Concluding remarks

Conclusions

Our preconditioner appears to be

independent of the problem/grid size, if the coarsest matrix is not
“too coarse”

pretty robust w.r.t. regularization parameter

suitable for parallel implementation

Ongoing and future work

theoretical analysis (extension of classical convergence results in an
abstract framework)

extension to other PDE-constrained pbs. / PDE systems
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Concluding remarks

THANK YOU FOR YOUR ATTENTION
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