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Restoration of blurred and noisy images The deblurring problem

Deblurring problem

The restored signal/image f is obtained solving: (in some way by
regularization ...)

g = Af + e

• f = true object,

• g = blurred and noisy object,

• A = (two-level) matrix with a Toeplitz-like structure depending on
the point spread function (PSF) and the BCs.

• e = white Gaussian noise (we assume to know ‖e‖ = δ),

The PSF is the observation of a single point (e.g., a star in astronomy)
that we assume shift invariant.
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Restoration of blurred and noisy images Properties of the coefficient matrix

Structure of A

Given a stencil
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the associated symbol is

z(x , y) =
∑

j ,k∈Z

aj ,ke
i(jx+ky)

and the matrix
A = An(z) ∈ R

n2×n2

has a Toeplitz-like structure depending on the boundary conditions
(assume that the degree of z is less than n).
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Restoration of blurred and noisy images Properties of the coefficient matrix

Matrix-vector product

The matrix-vector product Ax = An(z)x can be computed by

1 padding (Matlab padarray function) x with the appropriate
boundary conditions

2 periodic convolution by FFT =⇒ O(n2 log(n)) arithmetic cost.
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Restoration of blurred and noisy images Properties of the coefficient matrix

Eigenvalues of a 1D PSF

• The eigenvalues of An(z) are about a uniform sampling of z .

PSF Generating function z(x)

• The ill-conditioned subspace is mainly constituted by the
middle/high frequencies.
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Multigrid regularization Iterative Multigrid regularization

Iterative regularization methods

Some iterative methods (Land-
weber, CGLS, MR-II . . . ) have
regularization properties: the
restoration error firstly decrea-
ses and then increases.
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• They firstly reduce the algebraic error in the low frequencies
(well-conditioned subspace).

• When they arrive to reduce the algebraic error in the high frequencies
then the restoration error increases because of the noise.
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Multigrid regularization Iterative Multigrid regularization

Multigrid methods

Multigrid Idea

Project the system in a subspace, solve the resulting system in this
subspace and interpolate the solution in order to improve the previous
approximation.

• The Multigrid combines two iterative methods:

Pre-Smoother: a classic iterative method,
Coarse Grid Correction: projection, solution of the restricted problem,

interpolation.
Post-Smoother: . . .

• At the lower level(s) it works on the error equation!
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Multigrid regularization Iterative Multigrid regularization

Deblurring and Multigrid

• For deblurring problems the ill-conditioned subspace is related to high
frequencies, while the well-conditioned subspace is generated by low
frequencies (signal space).

• Low-pass filter (e.g., full weighting) projects in the well-conditioned
subspace (low frequencies) =⇒ it is slowly convergent but it can be a
good iterative regularization method [D. and Serra-Capizzano, ’06]).

• Intuitively: the regularization properties of the smoother are preserved
since it is combined with a low-pass filter.

• Conditions on the projector such that the multigrid is a regularization
method [D. and Serra-Capizzano, ’08].
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Multigrid regularization Post-smoother denoising

Other multilevel deblurring methods

1 Morigi, Reichel, Sgallari, and Shyshkov ’08.
Edge preserving prolongation solving a nonlinear PDE

2 Español and Kilmer ’10.
Haar wavelet decomposition with a residual correction by a nonlinear
deblurring into the high frequencies

Common idea
Both strategies can be interpreted as a nonlinear post-smoothing step.
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Multigrid regularization Post-smoother denoising

Transformed domain

Fourier domain vs. wavelet domain
Many recent strategies split

• deconvolution → Fourier domain

• denoising → wavelets domain
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Multigrid regularization Post-smoother denoising

Our post-smoothing denoising

• Post-smoother: denoising (without deblurring)

• Soft-thresholding with parameter

θ = σ
√

2 log(n)/n,

where σ is the noise level [Donoho, ’95].

Marco Donatelli (University of Insubria) Iterative multigrid regularization 14 / 33



Multigrid regularization Post-smoother denoising

Tight Frame: linear B-spline

• Low frequencies projector:

[1, 2, 1]/4 =⇒ full weighting

preserves the Toeplitz structure at the coarse level

• Exact reconstruction FTF = I .
Two high frequencies projectors:

√
2

4
[1, 0, −1], 1

4
[−1, 2, −1].

• 2D Tight Frame: ⇒ 9 frames by tensor product.

• Chan, Shen, Cai, Osher, . . .
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Multigrid regularization Post-smoother denoising

Two-Grid Method

The j-th iteration for the system Af = g:

(1) f̃ = Smooth(A, f(j),g) ← 1 step (CGLS, MR-II,. . . )

(2) r1 = P(g − Af̃)

(3) A1 ≈ PAPT

(4) e1 = A
†
1r1

(5) f̂ = f̃ + PTe1

(6) f(j+1) = FT threshold(F f̂, θ) ← 1 level

Multigrid (MGM): the step (4) becomes a recursive application of the
algorithm.
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Multigrid regularization Post-smoother denoising

2D Projector

P = DW

where W = An(p) and D = downsampling.
Full-weighting ⇒ PT = bilinear interpolation.

1

16

[

1 2 1

2 4 2

1 2 1

]

⇒ p(x , y) = (1 + cos(x))(1 + cos(y))

D = D1 ⊗ D1 where D1 is

n even n odd
[

1 0
1 0 ... ...

1 0

] [

0 1 0
0 1 0... ... ...

0 1 0

]
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Multigrid regularization Post-smoother denoising

Coarser PSFs

• The PSF has the same size of the observed image and it is centered
in the middle of the image ⇒ it has many zero entries close the
boundary

• The PSF at the coarser level is defined as

PSF1 = PSFtemp(1 : 2 : end , 1 : 2 : end)

where

PSFtemp =
1

32

[

1 2 1

2 4 2

1 2 1

]

⊛ PSF ⊛

[

1 2 1

2 4 2

1 2 1

]

by FFTs without consider boundary conditions since the PSF has
many zeros at the boundary.
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Multigrid regularization Post-smoother denoising

Coarse coefficient matrices

• Computed in a setup phase.

• Compute PSFi and the associate symbol zi at each level and define

Ai = Ani (zi ).

This is the same strategy used in [Huckle, Staudacher ’02] for
multigrid methods for Toeplitz linear system.

Garlerkin strategy Ani (zi) = PAi−1P
T if

• n = 2β and periodic boundary conditions

• n = 2β − 1 and zero Dirichlet boundary conditions

otherwise they differ for a low rank matrix.
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Numerical results

Numerical results

• RestoreTools Matlab Toolbox [Nagy ’07]

• Stopping rule is the discrepancy principle:

‖rn‖ < 1.01 δ

where rn is computed after the presmoothing step at the finer level.
It should be better stop some iteration later . . .

• Post-smoother: linear B-spline soft-thresholding with parameter

δ

‖g‖

√

2 log(n)

n

.
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Numerical results

Example 1

• Black border ⇒ A = Tn(z) (zero Dirichlet boundary conditions)

• nonsymmetric PSF

• σ = δ/‖g‖ = 0.07 of white Gaussian noise

• W-MGM: multigrid without postsmoother, W-cycle, and without
presmoothing at the finer level as proposed in [D., Serra Capizzano,
’06]
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Numerical results

Best restorations (minimum error)

Observed image CGLS: 0.2641 − it.:7

W − MGM: 0.26284 − it.:11 MGM: 0.18712 − it.:49
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Numerical results

Relative restoration error

Restoration error = ‖f̃−f‖
‖f‖ , where f̃ is the restored image.

The circle is the discrepancy principle stopping iterations
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Numerical results

Restorations at the discrepancy principle stopping iteration

Observed image CGLS: 0.2709 − it.:5

W − MGM: 0.26637 − it.:6 MGM: 0.24048 − it.:4
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Numerical results

PCGLS - Relative restoration error
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Numerical results

PCGLS - Best restorations (minimum error)

True image Observed image

PCGLS: 0.25928 − it.:4 MGM: 0.23271 − it.:30
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Numerical results

PCGLS - Restorations at the discrepancy principle stopping

iteration

True image Observed image

PCGLS: 0.26425 − it.:1 MGM: 0.24902 − it.:1
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Numerical results

Example 2

• Reflective boundary conditions [Ng, Chan, Tang, 1999]

• nonsymmetric PSF
⇓

Ani (zi ) 6= PAi−1P
T !

• σ = 0.02 of white Gaussian noise
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Numerical results

Best restorations (minimum error)

True image Observed image

CGLS: 0.14554 − it.:10 MGM: 0.13545 − it.:50
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Numerical results

Relative restoration error
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Numerical results

Restorations at the discrepancy principle stopping iteration

True image Observed image

CGLS: 0.14859 − it.:7 MGM: 0.14411 − it.:10
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Numerical results

Conclusions

• The multigrid regularization can be easily combined with a
soft-thresholding denoising obtaining and iterative regularization
method with a stable error curve.

• No parameters to estimate at each level but only at the finer level.

Work in progress . . .

• Proof of convergence and stability

• Relations with other approaches (analysis, balanced, etc.)

• Pre-smoother no l2-norm.
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