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Restoration of blurred and noisy images The deblurring problem

Deblurring problem

The restored signal /image f is obtained solving: (in some way by
regularization ...)
g=Af+e

o f = true object,

e g = blurred and noisy object,

o A = (two-level) matrix with a Toeplitz-like structure depending on
the point spread function (PSF) and the BCs.

e e = white Gaussian noise (we assume to know |le|| = ¢),

The PSF is the observation of a single point (e.g., a star in astronomy)
that we assume shift invariant.
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Properties of the coefficient matrix

Restoration of blurred and noisy images

Structure of A

Given a stencil

a—1,1 ao,1 aii
a-1,0 40,0 ai,0
a-1,-1 4do,—1 d1,-1

the associated symbol is

z(x,y) = Z aj kel ¥+
ke

and the matrix
2 2
A — An(z) e Rn xXn

CRSITq
0
O g

has a Toeplitz-like structure depending on the boundary conditions

(assume that the degree of z is less than n).
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Restoration of blurred and noisy images Properties of the coefficient matrix

Matrix-vector product

The matrix-vector product Ax = A,(z)x can be computed by

@ padding (Matlab padarray function) x with the appropriate
boundary conditions

@® periodic convolution by FFT = O(n?log(n)) arithmetic cost.
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Properties of the coefficient matrix

Restoration of blurred and noisy images

Eigenvalues of a 1D PSF

e The eigenvalues of A,(z) are about a uniform sampling of z.

PSF Generating function z(x)

e The ill-conditioned subspace is mainly constituted by the

middle/high frequencies.
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Multigrid regularization Iterative Multigrid regularization

Iterative regularization methods

Some iterative methods (Land-
weber, CGLS, MR-Il ...) have
regularization properties: the
restoration error firstly decrea-
ses and then increases.

Error

1070

Iteration

Reason
e They firstly reduce the algebraic error in the low frequencies

(well-conditioned subspace).
e When they arrive to reduce the algebraic error in the high frequencies
then the restoration error increases because of the noise.
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Multigrid regularization Iterative Multigrid regularization

Multigrid methods

Multigrid ldea

Project the system in a subspace, solve the resulting system in this
subspace and interpolate the solution in order to improve the previous
approximation.

e The Multigrid combines two iterative methods:

Pre-Smoother: a classic iterative method,

Coarse Grid Correction: projection, solution of the restricted problem,
interpolation.

Post-Smoother: ...

o At the lower level(s) it works on the error equation!
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Multigrid regularization Iterative Multigrid regularization

Deblurring and Multigrid

e For deblurring problems the ill-conditioned subspace is related to high
frequencies, while the well-conditioned subspace is generated by low
frequencies (signal space).

e Low-pass filter (e.g., full weighting) projects in the well-conditioned
subspace (low frequencies) = it is slowly convergent but it can be a
good iterative regularization method [D. and Serra-Capizzano, '06]).

e Intuitively: the regularization properties of the smoother are preserved
since it is combined with a low-pass filter.

e Conditions on the projector such that the multigrid is a regularization
method [D. and Serra-Capizzano, '08].
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Multigrid regularization Post-smoother denoising

Other multilevel deblurring methods

@ Morigi, Reichel, Sgallari, and Shyshkov '08.
Edge preserving prolongation solving a nonlinear PDE

® Espanol and Kilmer '10.
Haar wavelet decomposition with a residual correction by a nonlinear
deblurring into the high frequencies

Common idea
Both strategies can be interpreted as a nonlinear post-smoothing step.
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Multigrid regularization Post-smoother denoising

Transformed domain

Fourier domain vs. wavelet domain
Many recent strategies split
e deconvolution — Fourier domain

e denoising — wavelets domain
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Multigrid regularization Post-smoother denoising

Our post-smoothing denoising

e Post-smoother: denoising (without deblurring)
o Soft-thresholding with parameter

0 = o+/2log(n)/n,

where ¢ is the noise level [Donoho, '95].
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Multigrid regularization Post-smoother denoising

Tight Frame: linear B-spline

e Low frequencies projector:
[1, 2, 1]/4 = full weighting

preserves the Toeplitz structure at the coarse level

e Exact reconstruction FTF = /.
Two high frequencies projectors:

2 1
£ [17 05 71]7 Z

-1, 2, 1]
4 [ ’ ’ ]

e 2D Tight Frame: = 9 frames by tensor product.
e Chan, Shen, Cai, Osher, ...
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Multigrid regularization

Two-Grid Method

Post-smoother denoising

The j-th iteration for the system Af = g:

(1) f =Smooth(A,f0) g) <« 1 step (CGLS, MR-Il,...)
(2) r1 = P(g - Af)

(3) A, ~ PAPT

(4) e; = Alry

(5) f=f+PTe;

(6) fU+D) = FTthreshold(FFf,0) <« 1 level

Multigrid (MGM): the step (4) becomes a recursive application of the

algorithm.
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Multigrid regularization Post-smoother denoising

2D Projector

P=DW

where W = A,(p) and D = downsampling.
Full-weighting = PT = bilinear interpolation.
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g i = p(x,y) = (1 + cos(x))(1 + cos(y))

D = D; ® D1 where Dy is
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Multigrid regularization Post-smoother denoising

Coarser PSFs

e The PSF has the same size of the observed image and it is centered
in the middle of the image = it has many zero entries close the
boundary

e The PSF at the coarser level is defined as
PSF1 = PSFiemp(1 :2:end,1:2: end)

where

1 2
®PSF® | 2 4
1 2

=N =

11 21
PSFiemp = 7 igi

|

by FFTs without consider boundary conditions since the PSF has
many zeros at the boundary.
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Multigrid regularization Post-smoother denoising

Coarse coefficient matrices

e Computed in a setup phase.

o Compute PSF; and the associate symbol z; at each level and define
A,' = A,-,l.(Z,').

This is the same strategy used in [Huckle, Staudacher '02] for
multigrid methods for Toeplitz linear system.

Garlerkin strategy A, (z;) = PA,_1PT if

e n =27 and periodic boundary conditions

e n=2%—1 and zero Dirichlet boundary conditions

otherwise they differ for a low rank matrix.
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Numerical results

Numerical results

o RestoreTools Matlab Toolbox [Nagy '07]
e Stopping rule is the discrepancy principle:

[rall < 1.016

where r,, is computed after the presmoothing step at the finer level.
It should be better stop some iteration later ...

e Post-smoother: linear B-spline soft-thresholding with parameter

6 [2log(n)
gl n
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Numerical results

Example 1

e Black border = A = T,(z) (zero Dirichlet boundary conditions)
e nonsymmetric PSF
e 0 =0/|\g|| = 0.07 of white Gaussian noise

o W-MGM: multigrid without postsmoother, W-cycle, and without
presmoothing at the finer level as proposed in [D., Serra Capizzano,
'06]
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Numerical results

Best restorations (minimum error)

CGLS: 0.2641 - it..7

Observed image

D

MGM: 0.18712 - it.:49

W - MGM: 0.26284 —it.:11
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Numerical results

Relative restoration error

=¥l where f is the restored image.

Restoration error = |T
iterations

The circle is the discrepancy principle stopping
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Numerical results

Restorations at the discrepancy principle stopping iteration

Observed image CGLS: 0.2709 - it.:5

W - MGM: 0.26637 - it..6 MGM: 0.24048 - it.:4

o
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Numerical results

PCGLS - Relative restoration error
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Numerical results

PCGLS - Best restorations (minimum error)

True image Observed image

PCGLS: 0.25928 - it.:4 MGM: 0.23271 - it.:30
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Numerical results

PCGLS - Restorations at the discrepancy principle stopping

iteration

True image Observed image

PCGLS: 0.26425 - it.:1 MGM: 0.24902 - it.:1
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Numerical results

Example 2

o Reflective boundary conditions [Ng, Chan, Tang, 1999]

e nonsymmetric PSF

U
An(z) # PA_1PT!

e g = 0.02 of white Gaussian noise
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Numerical results

Best restorations (minimum error)

True image Observed image
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Numerical results

Relative restoration error
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Numerical results

Restorations at the discrepancy principle stopping iteration

True image Observed image
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Numerical results

Conclusions

e The multigrid regularization can be easily combined with a
soft-thresholding denoising obtaining and iterative regularization
method with a stable error curve.

e No parameters to estimate at each level but only at the finer level.
Work in progress . ..

e Proof of convergence and stability

o Relations with other approaches (analysis, balanced, etc.)
e Pre-smoother no h-norm.
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