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Introduction

Let A ∈ Rp×p symmetric positive definite (spd) matrix.

We are interested in obtaining estimations of

Tr(Aq), q ∈ Q

(x − y,x − y), x is the exact solution of Ax = f ,

y is any approximation of x,

e = ∣∣x − y∣∣ is the error.

↪ These estimates will be obtained by

extrapolation of the moments of A.
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Motivation of the problem

Estimates for the error have applications in the

choice of the best parameter in Tikhonov regularization.

The computation of Tr(Aq), have applications in

Statistics: specification of classical optimality criteria.

Matrix theory: computation of the characteristic polynomial.

Dynamical Systems: determination of their invariants.

Differential Equations: solution of Lyapunov matrix equation.

Crystals: for the selection of measurement directions in elastic
strain determination of single crystals.
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The mathematical landscape

The singular value decomposition

The singular value decomposition of an spd matrix A ∈ Rp×p is

A = UΣUT,

with UUT = Ip, Σ = diag(σ1, . . . , σp) with σ1 ≥ ⋯ ≥ σp > 0.

Aq = UΣqUT, q ∈ Q.

Let x be an arbitrary nonzero vector in Rp and U = [u1, . . . , up]
It holds

Aqx =
p

∑
k=1

σqk(uk,x)uk.
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The mathematical landscape

The moments

The moments of A with respect to a vector z are defined by

cν(z) = (z,Aνz) = ∑
k

σνkα
2
k(z),

where αk(z) = (z,uk).

Extrapolation of moments was first introduced in

C. Brezinski, Error estimates for the solution of linear systems,
SIAM J. Sci. Comput., 21 (1999) 764–781.
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Extrapolation procedures and estimates

Using some moments with a non–negative integer index,
we estimate the moments cq(z) for any fixed index q ∈ Q.

The estimates are based on the integer moments of A with
ν = n ∈ N .

For this purpose, we will approximate the moments cq(z)
by interpolating or extrapolating the cn(z)’s, for different
values of the non–negative integer index n, at the points q,

by a conveniently chosen function obtained by

keeping only one or two terms in the summations.
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One–term estimates

Knowing c0(z) and c1(z), we will look for s, and α(z)
satisfying the interpolation conditions

c0(z) = α2(z)
c1(z) = sα2(z)

and, then, cq(z) will be estimated by

cq(z) ≃ eq(z) = sqα2(z).

Proposition 1

cq(z) ≃ eq(z) =
cq1(z)

cq−10 (z)
.

eq(z) ∈ R, q ∈ Q, since c1(z) > 0.
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One–term estimates

Assume that A−1 exists, and let κ = ∥A∥ ⋅ ∥A−1∥.

Theorem

If A is symmetric positive definite, then, for any vector z, the
one–term estimate en(z) satisfies the following inequalities for
n ∈ Z, n ≠ 0,

en(z) ≤ cn(z) ≤ ((1 + κ)2
4κ

)
2d−1

en(z),

where

d = { n − 1, n > 1
∣n∣, n < 0, n = 1
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Two–term estimates

Estimate cq(z), q ∈ Q, by keeping two terms

cq(z) ≃ eq(z) = sq1a2
1(z) + sq2a2

2(z). (1)

The unknowns s1, s2,a
2
1(z) and a2

2(z) will be computed by
imposing the interpolation conditions,

cn(z) = en(z) = sn1a2
1(z) + sn2a2

2(z), (2)

for different integer values of the integer n.

cn(z)’s satisfy the difference equation of order 2

cn+2(z) − scn+1(z) + pcn(z) = 0, (3)

where s = s1 + s2 and p = s1s2.
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Two–term estimates

Using this relation for n = 0 and 1 gives s and p.

s = c0(z)c3(z) − c1(z)c2(z)
c0(z)c2(z) − c21(z)

, p = c1(z)c3(z) − c22(z)
c0(z)c2(z) − c21(z)

(4)

eq(z) follows with s1,2 = (s ±
√

s2 − 4p)/2 and

a2
1(z) =

c0(z)s2 − c1(z)
s2 − s1

, a2
2(z) =

c1(z) − c0(z)s1
s2 − s1

, (5)

Proposition 2

The moment cq(z) can be estimated by the two–term formula

cq(z) ≃ eq(z) = sq1a2
1(z) + sq2a2

2(z), q ∈ Q, (6)

eq(z) ∈ R, if q ∈ Q.
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The trace

Theorem
M. Hutchinson, A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines,
Commun. Statist. Simula., 18 (1989) 1059–1076.

Let
A ∈ Rp×p symmetric, Tr(A) ≠ 0,
X a discrete random variable with values 1 ,−1 with

equal probability 0.5,
x a vector of p independent samples from X.

Then (x,Ax) is an unbiased estimator of Tr(A).

E((x,Ax)) = Tr(A),

Var((x,Ax)) = 2∑
i≠j

a2
ij,
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This Theorem tells us that

Tr(Aq) = E((x,Aqx)) = E(cq(x)), x ∈ Xp

.

Thus, estimates of Tr(Aq) could be obtained by

extrapolating the moments at the point q,

computing the expectation E(eq(x)) of eq(x), x ∈Xp.
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For the one–term estimates, for x ∈Xp and q = n ∈ Z, we
have

Proposition 3

If the matrix A is symmetric positive definite, then, for the
one–term estimates, we have the bounds

E(en(x)) ≤ Tr(An) ≤ ((1 + κ)2

4κ
)
2d−1

E(en(x)),

where

d = { n − 1, n > 1
∣n∣, n < 0, n = 1

↪ If A is orthogonal, then κ(A) = 1 → Tr(An) = E(en(x)).
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When q ∈ Q, estimates of Tr(Aq) could be obtained
by realizing N experiments, and then computing the mean
value of the quantities eq(xi) for xi ∈Xp.

We set

tq =
1

N

N

∑
i=1

eq(xi),

where the xi’s are N realizations of x ∈Xp. Thus, we have

the one term estimates,

tq =
1

N

N

∑
i=1

cq1(xi)/cq−10 (xi), q ∈ Q, (7)

and the two term estimates

tq =
1

N

N

∑
i=1

sq1a2
1(xi) + sq2a2

2(xi), q ∈ Q, (8)
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Specification of confidence interval for the estimates

Theorem

Pr
⎛
⎝

RRRRRRRRRRR

tq −Tr(Aq)√
Var((x,Aqx))/N

RRRRRRRRRRR
< Za/2

⎞
⎠
= 1 − a.

where N is the number of trials, a is the significance level,
Za/2 the upper a/2 percentage point of the distribution
N(0,1).

For a significance level a = 0.01, we have the confidence
interval 100(1 − a)% = 99%.
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The norm of the error

We consider the symmetric linear system Ax = f .

Let y be an approximation of x, obtained either directly or
as an iterate of an iterative method.

We define the residual as r = f −Ay.

Thus

c−2(r) = (A−1r,A−1r) = (x − y,x − y) = ∥x − y∥2,

which is the square of the norm of the error.
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The norm of the error

For q = −2, the one–term estimate

e−2(r) = c30(r)/c21(r)

will be an approximation of ∥x − y∥2.

We also get the two–term estimate

c−2(z) ≃ e−2(z) = N−2(z)/(c1(z)c3(z) − c2
2(z))2

N−2(z) = c0
3(z)c32(z) + c12(z)c22(z)c0(z) + 2c13(z)c0(z)c3(z)
−c14(z)c2(z) + c23(z)c20(z) − 4c02(z)c1(z)c2(z)c3(z).
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Numerical results

Complexity

The estimates require only few matrix–vector products and
some inner products.

For a spd matrix A ∈ Rp×p,

the one-term estimate eq needs only O(p2) flops,

the two-term one requires O(2p2) flops.

Random vector generation sampling method

For the vectors x ∈Xp, we used the uniform generator of
random numbers between 0 and 1 of matlab.

If the value was less or equal to 0.5
component of xÐ→ −1;

if it was greater than 0.5
component of xÐ→ +1;
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Numerical results

Statistical techniques

Trimmed mean value Ð→ to exclude extreme values

In this technique, all the estimates eq(xi) are put in ascending
order, and we discard 2% of the values from the two edges.
This technique reduces the variance.

Bootstrapping-like technique

We construct the samples by only permuting the elements of
the first sample vector, keeping half of the elements equal to
+1 and half to −1.
If we have a good initial selection this technique can improve
the results, and reduce the variance.
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Example 1

The Prolate matrix

This matrix is symmetric Toeplitz.

Using as calling parameter a variable w in the range
0 < w < 0.5, then P is positive definite.
The eigenvalues of P are distinct, lie in (0,1], and tend to
cluster around 0 and 1.

We compute the Tr(P1/2), Tr(P12).

For matrices P of dimensions 100,200,500,1000, the variance
of the estimate for q = 1/2 is 2.29,3.27,5.21,7.39, respectively.

These values are small, so we expect good estimates even for a
small size of the samples.
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Dim Exact 1-term est

Tr(P1/2), 1-term est rel1 conf interval
100 1.33183e2 1.34049e2 6.5047e-3 [1.33219e2, 1.34880e2]
200 2.66325e2 2.67551e2 4.6034e-3 [2.66389e2, 2.68714e2]
500 6.65743e2 6.69844e2 6.1598e-3 [6.68274e2, 6.71413e2]

1000 1.33143e3 1.34147e3 7.5353e-3 [1.33912e3, 1.34381e3]

Dim Exact 2-term est

Tr(P1/2), 2-term est rel2 conf interval
100 1.33183e2 1.33188e2 3.4839e-5 [1.32463e2, 1.33912e2]
200 2.66325e2 2.66245e2 3.0015e-4 [2.65088e2, 2.67402e2]
500 6.65743e2 6.65605e2 2.0770e-4 [6.63429e2, 6.67780e2]

1000 1.33143e3 1.33160e3 1.2375e-4 [1.32892e3, 1.33428e3]

Table: Estimating Tr(P1/2), w = 0.9, cond= 2, (sample=50)
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Dim Exact 2-term est
2-term est rel2 conf interval

100 3.21895e5 3.21982e5 2.7162e-4 [3.11421e5, 3.32544e5]
200 6.48958e5 6.49168e5 3.2310e-4 [6.36575e5, 6.61760e5]
500 1.63121e6 1.62928e6 1.1828e-3 [1.60884e6, 1.64973e6]

1000 3.26907e6 3.26318e6 1.8031e-3 [3.23330e6, 3.29306e6]

Table: Estimating Tr(P 12), w = 0.9, cond= 2, (sample=50)
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Example 2

Comparison with other methods estimating Tr(A−1)
We compare our estimates for q = −1 developed in

C. Brezinski, P. Fika, M. Mitrouli, Moments of a linear operator on a

Hilbert space, with applications to the trace of the inverse of

matrices and the solution of equations, Numerical Linear Algebra

with Applications, (to appear).

with the Monte–Carlo approach presented in
G.H. Golub, G. Meurant, Matrices, Moments and Quadrature with
Applications, Princeton University Press, Princeton, 2010.

and the modified Chebyshev algorithm of
G. Meurant, Estimates of the trace of the inverse of a symmetric

matrix using the modified Chebyshev algorithms, Numer.

Algorithms, 51 (2009) 309–318.
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The Poisson matrix

We consider the block tridiagonal (sparse) matrix P of
dimension p, resulting from discretizing the Poisson’s equation
with the 5–point operator on a

√
p ×√

p mesh.

Dim exact 2-term est M-C mod Chebyshev

36 1.37571e1 1.37106e1 1.39216e1 1.37568e1 (k=10)
900 5.12644e2 5.12614e2 5.02012e2 5.12547e2 (k=40)

Table: Tr(P −1) for Poisson matrices
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Further work

Estimation of Tr(Aq) for any matrix A.

Further study of sampling methods and statistical
techniques.

Thorough comparison of our estimates with other
methods.

The derivation of estimates of the trace of functions of
matrices.

Application of our estimates to the partial eigenvalue sum.

Application of our estimates for the error in the solution of
an operator equation or, more generally, of any functional
equation in a Hilbert space under appropriate conditions.
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