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Iterative methods based on (Petrov-)Galerkin condition

To solve: Ax = b with A ∈ C
N×N nonsingular.

Idea: compute sequence of approximate solutions xn such
that their residuals rn :≡ b − Axn approach o in some norm.

We choose xn from an n-dimensional affine search space
x0 + Sn such that some Galerkin or Petrov-Galerkin condition
is satisfied:

xn ∈ x0 + Sn , rn = A(x⋆ − xn) ⊥ S̃n .

That is,
rn ∈ r0 + ASn , rn ⊥ S̃n .

This means that r0 is approximated from ASn such that
“error” rn ⊥ S̃n .
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Simplified idea of deflation based preconditioning

Ideal assumption: columns of U ∈ C
N×k span an invariant

subspace U of A belonging to eigenvalues close to 0 .

Let Z :≡ AU , Z :≡ AU = U .

Note: images of the restriction A−1
∣∣
Z

are trivial to compute:

if z = Zc ∈ Z , then A−1z = Uc .

Main idea: split up C
N into Z ⊕ Z⊥ = C

N .

Split up r0 accordingly: r0 = r0 − r̂0︸ ︷︷ ︸
∈ Z

+ r̂0︸︷︷︸
∈ Z⊥

.

A−1 (r0 − r̂0) is trivial to invert;

A−1 r̂0 will be approximated with a Krylov space solver.
Essentially, the solver will act on Z⊥ .
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Since the (absolutely) small eigenvalues of A cause trouble in
the solver, we want to replace A by Â on Z⊥ , such that Â
will no longer have these small eigenvalues (deflation).

Â will have the form Â :≡ PA or Â :≡ PAP . This looks like
preconditioning, but in our case P will be a projection.

Hopefully, A
∣∣
Z⊥ = Â

∣∣
Z⊥ .

Problems:

Need work out details. E.g., how define/compute P , Â .

We do not want to assume that Z is exactly A–invariant.

Orthogonal decomposition Z ⊕Z⊥ turns out to be
incompatible with CG optimality.

If A is non-Hermitian, A
∣∣
Z⊥

= Â
∣∣
Z⊥

will not hold, even
when Z is A-invariant.

Need some approximate invariant subspace.
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How to find an approximate invariant subspace?

It may be known from a theoretical analysis of the problem.

It may result from the solution of previous systems with the
same A . ( linear system with multiple right-hand sides.)

It may results from the solution of previous systems with
nearby A .

It may results from previous cycles of the solution process
(if the method is restarted).

There are lots of examples in the literature.
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Prerequisites: Krylov (sub)space solvers (KSS)

Given: linear system Ax = b , initial approx. x0 ∈ C
N .

Construct: approximate solutions (“iterates”) xn and
corresponding residuals rn :≡ b − Axn with

xn ∈ x0 +Kn(A, r0) , rn ∈ r0 + AKn(A, r0) ,

where r0 :≡ b − Ax0 is the initial residual, and

Kn :≡ Kn(A, r0) :≡ span {r0,Ar0, . . . ,An−1r0}

is the nth Krylov subspace generated by A from r0 .

We can, e.g., construct xn such that ‖rn‖ is minimal.
 conjugate residual (CR) method (Stiefel, 1955),
 MINRES (Paige and Saunders, 1975),
 GCR and GMRES.
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Prerequisites: preconditioning

In practice, Krylov space solvers often do not work well without
preconditioning: multiplication of A by some approximate
inverse P , so that PA or AP is better conditioned than A .

Normally, A and P ≈ A−1 are nonsingular.

Here we consider an alternative to preconditioning:
(approximate) spectral deflation.

Formally, it sometimes looks like preconditioning, but (in most
cases) P is singular.

So, PA is singular too.

But we apply this formally preconditioned matrix or deflated
matrix only in a suitably chosen invariant subspace.
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Buzz words and their meanings
Augmented bases: xn ∈ x0 +Kn(Â, r̂0) + U , where

Â = A or spec(Â) ⊂ spec(A) ∪ {0}
(Spectral) deflation: A Â :≡ PA s.t. small EVals 0
EVal translation: A Â :≡ AP s.t. small EVals |λmax|
Krylov space recycling: choice of U based on prev. cycles
Flexible KSS: adaptation of P at each restart

While (spectral) deflation has been an indispensable tool for
eigenvalue computations for at least 55 years, for solving linear
systems deflation has become popular in the last 20 years only.

Two basic approaches:

Augmentation of basis with or without spectral deflation.

EVal translation by suitable preconditioning.
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History

Early contributions (many more papers appeared since):

Nicolaides ’85/’87SINUM: deflated 3-term CG (w/augm. basis)
Dostál ’87 /’88IntJCompMath: deflated 2-term CG (w/augm. basis)
Kharchenko / Yeremin ’92/’95NLAA: GMRES with transl. EVals
Morgan ’93/’95SIMAX: GMRES with augmented basis
de Sturler ’93/’96JCAM: inner-outer GMRES/GCR (and, briefly,

inner/outer BiCGStab/GCR) with augmented basis
Erhel / Burrage / Pohl ’94/’96JCAM GMRES with transl. EVals
Chapman / Saad ’95/’97NLAA GMRES with augmented basis
Saad ’95/’97SIMAX Analysis of KSS with augmented basis
Burrage, / Erhel / Pohl / Williams ’95/’98SISC Deflated stationary

inner-outer iterations
Baglama / Calvetti / Golub / Reichel ’96/’98SISC Adaptively

preconditioned GMRES
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History (contn’d)

More recently, it was discovered by a group of authors that
augmentation and deflation (= deflation based preconditioning)
is algebraically very similar to

multigrid,

balancing Neumann-Neumann preconditioning (see
Mandel ’93CommApplNumMeth).

See, in particular:

Erlangga / Nabben ’08SIMAX, ’09SISC
Nabben / Vuik ’08NLAA

Tang / Nabben / Vuik/ Erlangga ’09SISC
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Augmentation and deflation based on orthogonal projection:

the Wang/de Sturler/Paulino (2006) approach

Let U ∈ C
N×k contain approx. EVecs corr. to EVals close to 0.

Define

U :≡ R(U) , Z :≡ AU , Z :≡ R(Z) = AU ,

E :≡ ZHZ , Q :≡ ZE−1ZH , P :≡ I − Q = I − ZE−1ZH .

Note that Q2 = Q, P2 = P, QH = Q, PH = P . So,
Q is the orthogonal projection onto Z ; dimZ = k ,
P is the orthogonal projection onto Z⊥ ; dimZ⊥ = N − k .

Let r̂0 :≡ Pr0 , Â :≡ PAP ,

K̂n :≡ Kn(Â, r̂0) :≡ span (̂r0, Âr̂0, . . . , Ân−1r̂0) .

We choose

xn ∈ x0 + K̂n + U , rn :≡ b − Axn ∈ r0 + AK̂n + Z . (1)
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In the inclusions

xn ∈ x0 + K̂n + U , rn ∈ r0 + AK̂n + Z

we have K̂n ⊂ Z⊥.

So, if Z⊥ is an invariant subspace, AK̂n ⊂ Z⊥.
Then we could split r0 − rn into two orthogonal components:

r0 − rn ∈ AK̂n ⊕Z ⊂ Z⊥ ⊕Z .

But, in general, AK̂n ∩ Z 6= {o} .

As mentioned, it is trivial to invert A on Z .

So, if we split r0 into r0 = Pr0 + Qr0 ∈ Z⊥ ⊕Z ,
we are left with the problem of approximating A−1Pr0 .

When computing it, we may generate an extra component in Z ,
which we will avoid by replacing A by Â.
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Deflated GMRES

We can compute xn ∈ x0 + K̂n + U with minimum ‖rn‖2

by a GMRES-like method.

Assume the cols. of Z are orthonormal, so that Q = ZZH .
Apply Arnoldi process to get ONBs for spaces K̂n :

ÂVn = Vn+1Hn , where v0 :≡ r̂0/β .

Note that here ÂVn = PAPVn = PAVn .

Using coordinate vectors kn ∈ C
n and mn ∈ C

k we write

xn = x0 + Vnkn + Umn , (2)

so that
rn = r0 − AVnkn − Zmn . (3)
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Writing here r0 = Pr0 + Qr0 = r̂0 + Qr0 = v0β + ZZHr0

and defining Cn :≡ ZHAVn ∈ C
k×n , we get

rn = v0β + Qr0 − (P + Q)AVnkn − Zmn

=
[

Z Vn+1
]([ ZHr0

e1β

]
−

[
Ik Cn

O Hn

] [
mn

kn

])
. (4)

Since
[

Z Vn+1
]

has orthonormal columns

‖rn‖2 =

∥∥∥∥
[

ZHr0

e1β

]
−

[
Ik Cn

O Hn

] [
mn

kn

]∥∥∥∥
2
. (5)

So, minimizing ‖rn‖2 becomes an (n + k + 1)× (n + k)
least squares problem, but due to its block triangular structure
this problem decouples into an (n + 1)× n least squares
problem for kn and an explicit formula for mn :

min ‖rn‖2 = min
kn∈Cn

‖e1β − Hnkn‖2 , mn := ZHr0 − Cnkn .

(6)
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We call the above sketched method deflated GMRES.

It differs from the “deflated GMRES” method of
Morgan ’95SIMAX and Chapman / Saad ’95NLAA, which is
basically just an augmented GMRES method.

Our proposal is analogous to the “recycling MINRES”
(RMINRES) method of Wang / de Sturler / Paulino ’06IJNME.

Difficulties:

1. Â may have rank < n − k , which may cause breakdowns.
There are ways to avoid such breakdowns, see
Gaul et al. ’11TR-TUB and Reichel / Ye ’05SIMAX.

2. If Z⊥ is A-invariant, there are no breakdowns.
But, in general: Z A-invariant 6=⇒ Z⊥ A-invariant .
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Deflated MINRES

Deflated MINRES, assuming AH = A , is essentially a special
case of deflated GMRES, but since ÂH = Â :

Arnoldi  symmetric Lanczos
extended Hessenberg Hn  extended sym. tridiagonal Tn
long sum for xn  short recursion for xn

need to store Vn  no need to store Vn

Moreover, the following three properties hold when AH = A :

(i) Z A-invariant ⇐⇒ Z⊥ A-invariant

(ii) Z A-invariant =⇒ no breakdowns, Cn = O

(iii) Z A-invariant =⇒ Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z⊥ = A

∣∣
Z⊥

But, in general, breakdowns are still possible, and Cn 6= O .

Note that (iii) does not hold, in general, if AH 6= A .
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Deflation based on oblique projections: summary

1st observation: The orthogonal decomposition
C

N = Z ⊕ Z⊥ used so far is not appropriate if AH 6= A .

Definition: a simple A–invariant subspace is an A–invariant
subspace with the property that for any eigenvector it contains,
it also contains all the other eigenvectors and generalized
eigenvectors that belong to the same eigenvalue.

2nd observation: Let Z be a simple A–invariant subspace,
let Z̃ be the complex conjugate of the corresponding left
invariant subspace,
let P be the oblique projection onto Z̃⊥ along Z ,
and let Â :≡ PAP . Then

Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z̃⊥ = A

∣∣
Z̃⊥ . (7)
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Deflation based on oblique projections: details

Let U ∈ C
N×k and Z̃ ∈ C

N×k have full rank k , and assume
E ∈ C

k×k defined by

Z :≡ AU , E :≡ Z̃HZ

is nonsingular. Then let

U :≡ R(U) , Z :≡ R(Z) = AU , Z̃ :≡ R(Z̃) ,

Q :≡ ZE−1Z̃H , P :≡ I − Q = I − ZE−1Z̃H .

Still Q2 = Q and P2 = P , but now

QZ = Z , QZ̃⊥ = {o} , PZ = {o} , PZ̃⊥ = Z̃⊥ ,

So, Q is the oblique projection onto Z along Z̃⊥ ,
and P is the oblique projection onto Z̃⊥ along Z .
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If the columns of Z̃ and of Z are chosen biorthonormal,
which means that they form dual bases of Z̃ and Z ,
then E = Z̃HZ = Ik and simply

Q = ZZ̃H , P = I − Q = I − ZZ̃H . (8)

Note that this holds in particular if we choose the columns of Z
as (right-hand side) eigenvectors of A and those of Z̃ as the
corresponding left eigenvectors.

As before, we further let

r̂0 :≡ Pr0 , Â :≡ PAP .

Then still

N (Â) ⊇ N (P) = Z , R(Â) ⊆ R(P) = Z̃⊥ , (9)

so that Â
∣∣
Z̃⊥ is a possibly singular endomorphism of Z̃⊥ .

Consequently, K̂n is a subset of Z̃⊥ since r̂0 ∈ Z̃⊥ too.
Therefore, we are able to restrict a Krylov solver to Z̃⊥.
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With this choice of projections and subspaces holds:

THEOREM

Assume that Z is a simple A–invariant subspace and that Z̃ is
the corresponding AH–invariant subspace.
Then Z̃⊥ is also A–invariant, and the restrictions of A, Â, and O
to Z and Z̃⊥ satisfy

Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z̃⊥ = A

∣∣
Z̃⊥ . (10)

So this new setting is based on two non-orthogonal
decompositions of C

N :

Z ⊕ Z̃⊥ = C
N , Z̃ ⊕ Z⊥ = C

N .

We can use it for a truly deflated GMRES and for deflated QMR.
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Truly deflated GMRES

As before we start from the representations

xn = x0 + Vnkn + Umn , rn = r0 − AVnkn − Zmn .

Z cannot be expected to have orthogonal columns, but we can
construct an orthonormal basis of Z by QR decomposition:

Z = ZoRQR , ZH
o Zo = Ik .

A short calculation yields now

rn =
[

Zo Vn+1
]

qn , (11)

where

qn :≡

[
q◦

n
q⊥

n

]
:≡

([
RQRZ̃Hr0

e1β

]
−

[
RQR RQRCn

O Hn

] [
mn

kn

])

(12)
is the truly deflated GMRES quasi-residual.
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The columns of each Zo and Vn+1 are still orthonormal, but
those of Zo need not be orthogonal to those of Vn+1.

So, in general, ‖rn‖2 6= ‖qn‖2 .
But since

rn = Zoq◦
n+Vn+1q⊥

n with Zoq◦
n = Qrn ∈ Z , Vn+1q⊥

n = Prn ∈ Z̃⊥

we have at least

‖qn‖
2
2 = ‖q◦

n‖
2
2 + ‖q⊥

n ‖
2
2 = ‖Qrn‖

2
2 + ‖Prn‖

2
2 .

We therefore minimize ‖qn‖2 instead of ‖rn‖2 .
As before, this reduces to solving an n × (n + 1) least-squares
problem with Hn for minimizing ‖q⊥

n ‖2 and finding kn and
then choosing mn such that q◦

n = o :

min ‖qn‖2 = min
kn∈Cn

‖e1β − Hnkn‖2 , mn := Z̃Hr0 − Cnkn .
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Deflated QMR

For deflated QMR we apply the nonsymmetric (i.e., two-sided)
Lanczos process in the dual spaces Z̃⊥ and Z⊥ , expressed
by the Lanczos relations

PAVn = Vn+1Tn , PHAHṼn = Ṽn+1T̃n ,

This leads, as in truly deflated GMRES, to the representation

rn =
[

Zo Vn+1
]

qn ,

where

qn :≡

[
q◦

n
q⊥

n

]
:≡

([
RQRZ̃Hr0

e1β

]
−

[
RQR RQRCn

O Tn

] [
mn

kn

])

is now the deflated QMR quasi-residual.

Formally, all looks the same except that Hn became Tn .
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But now Vn+1 has no longer orthogonal columns. So, in
general,

‖q◦
n‖2 = ‖Qrn‖2 , ‖q⊥

n ‖2 6= ‖Prn‖2 .

We end up with an n × (n + 1) least-squares problem with Tn
for minimizing ‖q⊥

n ‖2 and finding kn and subsequently
choosing mn such that q◦

n = o :

min ‖q◦
n‖2 = min

kn∈Cn
‖e1β − Tnkn‖2 , mn := Z̃Hr0 − Cnkn .

This is all based on the dual oblique decompositions

R
([

Z Vn
])

= Z ⊕ K̂n+1 ⊆ Z ⊕ Z̃⊥ = C
N ,

R
([

Z̃ Ṽn

])
= Z̃ ⊕ L̂n+1 ⊆ Z̃ ⊕ Z⊥ = C

N ,

where

L̂n :≡ Kn(ÂH, ṽ0) :≡ span (ṽ0, ÂHṽ0, . . . , (ÂH)n−1ṽ0) ⊆ Z⊥ .
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Conclusions

Krylov solvers incorporating an augmentation of the bases
and a corresp. deflation of A have been very successful.
However, from a theoretical point of view, in most papers
addressing nonsymmetric matrices A the projections and
subspaces have not been chosen the right way.
We promote oblique decomposition according to

R
([

Z Vn
])

= Z ⊕ K̂n+1 ⊆ Z ⊕ Z̃⊥ = C
N ,

R
([

Z̃ Ṽn

])
= Z̃ ⊕ L̂n+1 ⊆ Z̃ ⊕ Z⊥ = C

N ,

so that

(i) Z A-invariant ⇐⇒ Z̃⊥ A-invariant ,

(ii) Z A-invariant =⇒ Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z̃⊥ = A

∣∣
Z̃⊥ .
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