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Motivation of the problem

Determinants and minors are required in

specification of pivot patterns

the detection of P matrices

self validating algorithms

interval matrix analysis

High complexity for their computation.

Analytical formulas only for specially structured matrices such as

Hadamard 1or Weighing matrices.

1orthogonal matrices with elements ±1 satisfying HHT = nIn.
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Minors of Hadamard matrices

Proposition 2

Let H be a Hadamard matrix of order n.

Then all possible

(n − 1) × (n − 1) minors of H are 0 and n
n

2
−1,

(n − 2) × (n − 2) minors of H are 0 and 2n
n

2
−2,

(n − 3) × (n − 3) minors of H are 0 and 4n
n

2
−3,

(n − 4) × (n − 4) minors of H are 0, 8n
n

2
−4 and 16n

n

2
−4.

2
C. Koukouvinos, M. Mitrouli and J. Seberry, An algorithm to find formulae and values of minors for Hadamard matrices,

W(n, n − 1), Linear Algebra and its Appl., 330 (2001), 129-147.
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Weighing Matrices
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Definitions

A (0, 1,−1) matrix W = W(n, n − k), k = 1, 2, . . ., of dimension n × n,

satisfying

W
T
W = WW

T = (n − k)In,

is called a weighing matrix of order n and weight n − k or simply a

weighing matrix.

A conference matrix C of order n is a n × n matrix with diagonal entries

0 and all other elements ±1, satisfying

CC
T = (n − 1)In.
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Definitions

Two matrices are said to be Hadamard equivalent or H - equivalent if

one can be obtained from the other by a sequence of the operations :

1. interchange any pairs of rows and / or columns

2. multiply any rows and / or columns through by −1.

We will denote the above relation of equivalence by ∼H .

Lemma 3

Every weighing matrix W(n, n − 1), with n even, is H - equivalent to a

conference matrix.

3
J.M. Goethals and J.J. Seidel, Orthogonal matrices with zero diagonal, Canad. J. Math, Vol. 19 (1967), pp. 1001-1010.
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Properties

1 Every row and column of a W(n, n − k) contains exactly k zeros;

2 Every two distinct rows and columns of a W(n, n − k) are

orthogonal to each other, which means that their inner product is

zero.

If Wn×n is a conference matrix, then n is even.

If n ≡ 2(mod 4), then W is H - equivalent to a symmetric matrix.

If n ≡ 0(mod 4), then W is H - equivalent to a skew - symmetric

matrix.
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On the evaluation of minors for weighing

matrices W(n, n − 1)
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Minors of Weighing matrices

Proposition 4

Let W be a weighing matrix W(n, n − 1), where n is even.

Then all possible

(n − 1) × (n − 1) minors of W are 0 and (n − 1)
n

2
−1,

(n − 2) × (n − 2) minors of W are 0, (n − 1)
n

2
−2 and 2(n − 1)

n

2
−2,

(n − 3) × (n − 3) minors of W are

0, 2(n − 1)
n

2
−3 or 4(n − 1)

n

2
−3 for n ≡ 0(mod 4) and

2(n − 1)
n

2
−3 or 4(n − 1)

n

2
−3 for n ≡ 2(mod 4).

4
C. Kravvaritis, and M. Mitrouli, Evaluation of minors associated to weighing matrices, Linear Algebra Appl., 426 (2007), 774-809.
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Notation

(0,+,−)→ (0, 1,−1)

In : the identity matrix of order n

Jm×n : m × n matrix with ones

Om×n : m × n matrix with zeros

W(j) : the absolute value of the minor of any j × j submatrix of the

matrix W .
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Notation

We write Ur for all the matrices with r rows and the appropriate number

of columns, in which the vector ũk occurs uk times, k = 1, 2, ..., 2r−1.

So,

Ur =

u1︷︸︸︷
+...+

u2︷︸︸︷
+...+ . . .

u
2r−1−1︷︸︸︷

+...+

u
2r−1︷︸︸︷

+...+
+...+ +...+ . . . −...− −...−
...

... . . .
...

...
+...+ +...+ . . . +...+ −...−
+...+ −...− . . . +...+ −...−

=

ũ1 ũ2 . . . ũ2r−1−1 ũ2r−1

+ + . . . + +
+ + . . . − −

...
...

...
...

+ + . . . − −

+ − . . . + −

Example:

U3 =

ũ1 ũ2 ũ3 ũ4

+ + + +
+ + − −

+ − + −

and U4 =

ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 ũ7 ũ8

+ + + + + + + +
+ + + + − − − −

+ + − − + + − −

+ − + − + − + −
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+ + + +
+ + − −

+ − + −

and U4 =
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Minor W(n − 1)

Proposition

Let W be a weighing matrix W(n, n− 1) of order n > 6, where n is even,

with zeros on the diagonal.

Then,

W(n − 1) = 0.

A. Karapiperi National and Kapodistrian University of Athens
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Minor W(n − 1)

Proof.

W ∼H


0 + . . . +

+
... C

+

 .

CC
T =


n − 2 −1 . . . −1

−1 n − 2 . . . −1

...
...

. . .
...

−1 −1 . . . n − 2


that is

CC
T = (n − 1)In−1 − Jn−1.
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Lemma 5

Suppose A is a m ×m matrix satisfying A = (k − λ)Im + λJm, then

det A = [k + (m − 1)λ](k − λ)m−1

So,

det CC
T = (n − 2) − [(n − 1) − 1](n − 1)(n−1)−1 = 0⇒ det C = 0.

5
C. Kravvaritis, and M. Mitrouli, Evaluation of minors associated to weighing matrices, Linear Algebra Appl., 426 (2007), 774-809.
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Proposition 6

All possible (n − 1) × (n − 1) minors of a weighing matrix W(n, n − 1),
where n is even, are

0 and (n − 1)
n

2
−1.

6
C. Kravvaritis, and M. Mitrouli, Evaluation of minors associated to weighing matrices, Linear Algebra Appl., 426 (2007), 774-809.
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Minor W(n − 2)

Proposition

Let W be a weighing matrix W(n, n− 1) of order n > 6, where n is even,

with zeros on the diagonal.

Then,

W(n − 2) = (n − 1)
n

2
−2.
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Minor W(n − 2)

Proof.
If n ≡ 0(mod 4), then

W ∼H



0 +
+ 0

u1︷  ︸︸  ︷
+ · · ·+

u2︷  ︸︸  ︷
+ · · ·+

+ · · ·+ − · · · −

u1


+ −

...
...

+ −

C

u2


+ +
...

...
+ +



,

where u1 = u2 =
n−2

2
.
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while, if n ≡ 2(mod 4), then

W ∼H



0 +
+ 0

u1︷  ︸︸  ︷
+ · · ·+

u2︷  ︸︸  ︷
+ · · ·+

+ · · ·+ − · · · −

u1


+ +
...

...
+ +

C

u2


+ −

...
...

+ −



,

where u1 = u2 =
n−2

2
.
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Minor W(n − 2)

In both cases

CC
T =

[
D O

O D

]
,

where

D =


n − 3 −2 . . . −2

−2 n − 3 . . . −2

...
...

. . .
...

−2 −2 . . . n − 3

 = (n − 1)Im − 2Jm, m =
n

2
− 1.

Then,

det D = (n − 1)
n

2
−2.

Thus,

det CC
T = (det D)2 ⇒ det C = (det CC

T )
1

2 = det D = (n − 1)
n

2
−2.
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Proposition

All possible (n − 2) × (n − 2) minors of a weighing matrix W(n, n − 1),
where n is even, are

0, (n − 1)
n

2
−2 and 2(n − 1)

n

2
−2.

6
C. Kravvaritis, and M. Mitrouli, Evaluation of minors associated to weighing matrices, Linear Algebra Appl., 426 (2007), 774-809.
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Minor W(n − 3)

Proposition

Let W be a weighing matrix W(n, n − 1) of order n ≥ 8, where n is even,

with zeros on the diagonal.

Then,

W(n − 3) = 0 , for n ≡ 0(mod 4)

and

W(n − 3) = 2(n − 1)
n

2
−3 , for n ≡ 2(mod 4).

A. Karapiperi National and Kapodistrian University of Athens
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Minor W(n − 3)

Proof for n ≡ 0(mod 4).

W ∼H



0 + +
+ 0 +
+ − 0

u1︷  ︸︸  ︷
+ · · ·+

u2︷  ︸︸  ︷
+ · · ·+

u3︷  ︸︸  ︷
+ · · ·+

u4︷  ︸︸  ︷
+ · · ·+

+ · · ·+ + · · ·+ − · · · − − · · · −

+ · · ·+ − · · · − + · · ·+ − · · · −

u1


+ − −

.

.

.
.
.
.

.

.

.
+ − −

u2


+ − +

.

.

.
.
.
.

.

.

.
+ − +

C

u3


+ + −

.

.

.
.
.
.

.

.

.
+ + −

u4


+ + +

.

.

.
.
.
.

.

.

.
+ + +



,

where u1 = u2 = u4 = u and u3 = u + 1.

A. Karapiperi National and Kapodistrian University of Athens
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Minor W(n − 3)

CC
T ∼H


Bu×u −Ju×u −Ju×(u+1) −Ju×u

−Ju×u Bu×u Ju×(u+1) Ju×u

−J(u+1)×u J(u+1)×u B(u+1)×(u+1) J(u+1)×u

−Ju×u Ju×u Ju×(u+1) Bu×u

 ,
where Bm×m = (n − 1)Im×m − 3Jm×m, with m = u, u + 1.

CC
T ∼H


Bu×u −Ju×u −Ju×(u+1) −Ju×u

Pu×u Pu×u Ou×(u+1) Ou×u

P(u+1)×u O(u+1)×u P(u+1)×(u+1) O(u+1)×u

Pu×u Ou×u Ou×(u+1) Pu×u

 ,
where Pm×l = (n − 1)Im×l − 4Jm×l , with m, l = u, u + 1 and

P(u+1)×u =

[
Pu×u

n − 5 − 4 . . . − 4

]
.
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Schur’s Formula 7

Let us consider the partitioned matrix M =

[
A B

C D

]
, where the submatrix

D is assumed to be square and nonsingular.

The Schur complement of D in M, denoted by (M/D), is the matrix

(M/D) = A − BD
−1

C.

If M is square, then

det M = det D · det (M/D).

7
C. Brezinski, The Schur Complement in Numerical Analysis, The Schur Complement and its Applications, (Editor F. Zhang),

Springer, 2004, 227-228.
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Minor W(n − 3)

If we write the matrix CCT in the form

CC
T ≡ M =

[
A B

C D

]
,

where

A = Bu×u, B =
[
−Ju×u −Ju×(u+1) −Ju×u

]
,

C =

 Pu×u

P(u+1)×u

Pu×u

 , D =

 Pu×u Ou×(u+1) Ou×u

O(u+1)×u P(u+1)×(u+1) O(u+1)×u

Ou×u Ou×(u+1) Pu×u

 ,

then,

BD
−1

C =


n − 4 −3 . . . −3

n − 4 −3 . . . −3

...
...

. . .
...

n − 4 −3 . . . −3
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Minor W(n − 3)

and (M/D) = A − BD−1C =


0 0 . . . 0

−(n − 7) n − 7 . . . 0

...
...

. . .
...

−(n − 7) 0 . . . n − 7



Hence,

det M = det D · det (M/D) = det D · 0 = 0

that is,

det C = det (CC
T )

1

2 = 0.
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Proposition 8

All possible (n − 3) × (n − 3) minors of a weighing matrix W(n, n − 1),
where n is even, are

0, 2(n − 1)
n

2
−3 or 4(n − 1)

n

2
−3 for n ≡ 0(mod 4) and

2(n − 1)
n

2
−3 or 4(n − 1)

n

2
−3 for n ≡ 2(mod 4).

8
C. Kravvaritis, and M. Mitrouli, Evaluation of minors associated to weighing matrices, Linear Algebra Appl., 426 (2007), 774-809.
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Minors of higher order
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Theorem 9

Let W be a weighing matrix W(n, n− 1) of order n > 6, where n is even,

with zeros on the diagonal. Then, the (n − r) × (n − r), r ≥ 1, minor of W

is

W(n − r) = [(n − 1)n−r−2r−1

det M]1/2,

where

M =


n − 1 − ru1 u1c1,2 u1c1,3 · · · u1c1,2r−1

u2c1,2 n − 1 − ru2 u2c2,3 · · · u2c2,2r−1

...
...

...
...

u2r−1 c1,2r−1 u2r−1 c2,2r−1 u2r−1 c3,2r−1 · · · n − 1 − ru2r−1


2r−1×2r−1

,

ci,j = −ũi
T · ũj , i, j = 1, . . . , 2r−1.

9
A. K., M. Mitrouli, J. Seberry and M. G. Neubauer, An eigenvalue approach evaluating minors for weighing matrices

W(n, n − 1), under revision in LAA.
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Proof.

W ∼H



Ar×r

u1︷       ︸︸       ︷
ũ1 . . . ũ1 . . .

ui︷      ︸︸      ︷
ũi . . . ũi . . .

u
2r−1︷                ︸︸                ︷

ũ
2r−1 . . . ũ

2r−1

u1


ũT

1

.

.

.
ũT

1

. . .

ui


ũT

i

.

.

.
ũT

i

C(n−r)×(n−r)

. . .

u
2r−1


ũT

2r−1

.

.

.
ũT

2r−1
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CC
T =



D1 c1,2J c1,3J . . . c1,2r−1J

c1,2JT D2 c2,3J . . . c2,2r−1J

c1,3JT c2,3JT D3 . . . c3,2r−1J

...
...

...
. . .

...
c1,2r−1JT c2,2r−1JT c3,2r−1JT . . . D2r−1


,

where

Di =


n − r − 1 −r . . . −r −r

−r n − r − 1 . . . −r −r

...
...

. . .
...

...
−r −r . . . −r n − r − 1


ui×ui

and ci,j = −ũi
T · ũj , i, j = 1, . . . , 2r−1.
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1st Step : Write vi =
∑

i
j=1

uj . We take column vi from columns vi−1 + 1,

vi−1 + 2, . . ., vi−1 + ui − 1, i = 1, 2, . . . , 2k−1. (we consider v0 = 0).

Then,

Di ∼



n − 1 0 . . . 0 −r

0 n − 1 . . . 0 −r

...
...

. . .
...

...
0 0 . . . n − 1 −r

−n + 1 −n + 1 . . . −n + 1 n − r − 1


ui×ui

,

ci,jJ ∼


0 0 . . . ci,j
...

...
. . .

...
0 0 . . . ci,j

0 0 . . . ci,j


ui×uj
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2nd Step : We add rows vi−1 + 1, vi−1 + 2, . . .,vi−1 + ui − 1 to row vi ,

i = 1, 2, . . . , 2r−1.

Then,

Di ∼



n − 1 0 . . . 0 −r

0 n − 1 . . . 0 −r

...
...

. . .
...

...
0 0 . . . n − 1 −r

0 0 . . . 0 n − ui r − 1


ui×ui

,

ci,jJ ∼


0 0 . . . ci,j
...

...
. . .

...
0 0 . . . ci,j

0 0 . . . uici,j


ui×uj
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ci,jJ ∼
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...
. . .

...
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3nd Step : We expand this determinant, using the basic definition of the

determinant, pivoting using the columns with a single non-zero entry.

So, we have

det CC
T = (n − 1)n−r−2r−1

det M

and

det C = [(n − 1)n−r−2r−1

det M]
1

2 ,

where

M =


n − 1 − ru1 u1c1,2 u1c1,3 · · · u1c1,2r−1

u2c1,2 n − 1 − ru2 u2c2,3 · · · u2c2,2r−1

...
...

...
...

u2r−1 c1,2r−1 u2r−1 c2,2r−1 u2r−1 c3,2r−1 · · · n − 1 − ru2r−1

 .
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Implementation of the algorithm

This new algorithm

has lower complexity than an algebraic computing program

requires the computation of inner products of the form ci,j = −ũT
i
· ũj .
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Experimental Results

n W(n − 1) W(n − 2) W(n − 3) W(n − 4) W(n − 5)

14 0 (n − 1)
n
2
−2 [(n − 1)7M4×4]

1
2 [(n − 1)3M7×7]

1
2 -

16 0 (n − 1)
n
2
−2

0 = [(n − 1)9M4×4]
1
2 [(n − 1)4M8×8]

1
2 -

18 0 (n − 1)
n
2
−2 [(n − 1)11M4×4]

1
2 [(n − 1)7M7×7]

1
2 -

20 0 (n − 1)
n
2
−2

0 = [(n − 1)13M4×4]
1
2 [(n − 1)8M8×8]

1
2 0 = [(n − 1)3M12×12]

1
2

24 0 (n − 1)
n
2
−2

0 = [(n − 1)17M4×4]
1
2 [(n − 1)12M8×8]

1
2 0 = [(n − 1)7M12×12]

1
2

32 0 (n − 1)
n
2
−2 [(n − 1)25M4×4]

1
2 [(n − 1)20M8×8]

1
2 [(n − 1)12M15×15]

1
2
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Open research problems

improvement of the algorithm in order to achieve an even lower

complexity

possible application of the new algorithm in other orthogonal

matrices (i.e. binary Hadamard matrices)

introduction of other methods for the evaluation of minors of

matrices (i.e using eigenvalues).
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