A line search method with variable sample size

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

Scientific Computing 2011

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

Unconstrained optimization problem

$$\min_{x\in\mathbb{R}^n} f(x).$$
 (1)

$$f(x) = E(F(x,\xi))$$

- $\blacktriangleright F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R},$
- ξ is a random vector $\xi : \Omega \to \mathbb{R}^m$
- (Ω, \mathcal{F}, P) is a probability space.

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

Sample average approximation

$$f(x) \approx \hat{f}_N(x) = \frac{1}{N} \sum_{i=1}^N F(x, \xi_i).$$
 (2)

A random sample ξ_1, \ldots, ξ_N is iid, Central Limit Theorem implies

$$\lim_{N \to \infty} \hat{f}_N(x) = f(x).$$
(3)

Sample path methods

$$\min f(x) \approx \hat{f}_{N}(x) \tag{4}$$

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

Variable sample size strategies

- ► Increasing sample sizes, N → ∞ a.s convergence Wardi, Homen de Mello, Polak, Royset etc
- Variable sample methods for TR approach Deng & Ferris, 2008 - based on Bayesian approach, increasing sample size but N might be finite
- Variable (increasing and decreasing) sample sizes for TR approach, Bastin 2004, Bastin & Thoint 2009 - increasing and decreasing sample size, N_{max} defined

 $\min \hat{f}_{N_{max}}(x)$

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

< <p>O > < <p>O >

$\min \hat{f}_{N_{max}}(x)$

- search direction p_k
- sufficient decrease condition
- ► sample size, x_k , \hat{f}_{N_k} , $N_{k+1} \leq N_{max}$

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

- decrease measure
- lack of precision
- safeguard rule

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

lack of precision - width of confidence interval for f(x)

 $\varepsilon^{N_k}_\delta(x_k) pprox c$

$$P(f(x_k) \in [\hat{f}_{N_k}(x_k) - c, \hat{f}_{N_k}(x_k) + c]) \approx \delta$$

$$c = \sigma(x_k)\alpha_{\delta}/\sqrt{N_k}$$

$$\hat{\sigma}_{N_k}^2(x_k) = \frac{1}{N_k - 1} \sum_{i=1}^{N_k} (F(x_k, \xi_i) - \hat{f}_{N_k}(x_k))^2$$

$$\varepsilon_{\delta}^{N_k}(x_k) = \hat{\sigma}_{N_k}(x_k) \frac{\alpha_{\delta}}{\sqrt{N_k}}$$
(5)

University of Novi Sad, Serbia

(4) E (4) E (4) E

 $\langle \Box \rangle \langle \Box \rangle$

Nataša Krejić, Nataša Krklec

decrease measure

$$dm_k = m_k^{N_k}(x_k) - m_k^{N_k}(x_{k+1}) = -\alpha_k p_k^T \nabla \hat{f}_{N_k}(x_k)$$

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

Sample size

 $N_k, N_k^{\min}, N_{\max}$

Candidate sample size N_k^+ - based on dm_k and $\varepsilon_{\delta}^{N_k}(x_k)$

$$N_k \leq N_k^+$$
 then $N_{k+1} = N_k^+$

$$N_k > N_k^+$$
 then $N_{k+1} = N_k^+$ or $N_{k+1} = N_k$

safeguard rule

$$\rho_{k} = \frac{\hat{f}_{N_{k}^{+}}(x_{k}) - \hat{f}_{N_{k}^{+}}(x_{k+1})}{\hat{f}_{N_{k}}(x_{k}) - \hat{f}_{N_{k}}(x_{k+1})}.$$
(6)

 $\rho_k < \eta_0 < 0$ no decrease in the sample size

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

Algorithm 1

S0 Input parameters:

 $N_{max}, N_0^{min} \in \mathbb{N}, \ x_0 \in \mathbb{R}^n, \ \delta, \eta, \beta, \gamma_3, \nu_1 \in (0, 1), \ \eta_0 < 1.$

- **S1** Generate the sample realization: $\xi_1, \ldots, \xi_{N_{max}}$. Put k = 0, $N_k = N_0^{min}$.
- **S2** Compute $\hat{f}_{N_k}(x_k)$ and $\varepsilon_{\delta}^{N_k}(x_k)$ using (2) and (5). **S3** Test

If
$$\|\nabla \hat{f}_{N_k}(x_k)\| = 0$$
 and $N_k = N_{max}$ then STOP.
If $\|\nabla \hat{f}_{N_k}(x_k)\| = 0$, $N_k < N_{max}$ and $\varepsilon_{\delta}^{N_k}(x_k) > 0$ put
 $N_k = N_{max}$ and $N_k^{min} = N_{max}$ and go to step S2.
If $\|\nabla \hat{f}_{N_k}(x_k)\| = 0$, $N_k < N_{max}$ and $\varepsilon_{\delta}^{N_k}(x_k) = 0$ put
 $N_k = N_k + 1$ and $N_k^{min} = N_k^{min} + 1$ and go to step S2.

S4 Determine p_k such that $p_k^T \nabla \hat{f}_{N_k}(x_k) < 0$.

Image: A matrix

S5 Using the backtracking technique with the parameter β , find α_k such that

$$\hat{f}_{N_k}(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \leq \hat{f}_{N_k}(\boldsymbol{x}_k) + \eta \alpha_k \boldsymbol{p}_k^T \nabla \hat{f}_{N_k}(\boldsymbol{x}_k).$$

S6 Put $s_k = \alpha_k p_k$, $x_{k+1} = x_k + s_k$ and compute dm_k

- S7 Determine the candidate sample size N_k^+ using Algorithm 2.
- **S8** Determine the sample size N_{k+1} using Algorithm 3.
- **S9** Determine the lower bound of sample size N_{k+1}^{min} .
- **S10** Put k = k + 1 and go to step S2.

< <p>O > < <p>O >

Nataša Krejić, Nataša Krklec

Algorithm 2

S0 Input parameters: dm_k , N_k^{min} , $\varepsilon_{\delta}^{N_k}(x_k)$, $\nu_1 \in (0, 1)$

S1 Determine N_k^+ by the following

1)
$$dm_k = \varepsilon_{\delta}^{N_k}(x_k) \rightarrow N_k^+ = N_k$$

2) $dm_k > \varepsilon_{\delta}^{N_k}(x_k) \rightarrow \text{starting with } N = N_k$, while
 $dm_k > \varepsilon_{\delta}^{N}(x_k)$ and $N > N_k^{min}$, decrease N by 1 and calculate
 $\varepsilon_{\delta}^{N}(x_k) \rightarrow N_k^+$
3) $dm_k < \varepsilon_{\delta}^{N_k}(x_k)$
1) $dm_k \ge \nu_1 \varepsilon_{\delta}^{N_k}(x_k) \rightarrow \text{starting with } N = N_k$, while
 $dm_k < \varepsilon_{\delta}^{N}(x_k)$ and $N < N_{max}$, increase N by 1 and calculate
 $\varepsilon_{\delta}^{N}(x_k) \rightarrow N_k^+$
2) $dm_k < \omega_1 \varepsilon_{\delta}^{N_k}(x_k) \rightarrow N_k^+$

2)
$$dm_k < \nu_1 \varepsilon_{\delta}^{N_k}(x_k) \rightarrow N_k^+ = N_{max}$$

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

Algorithm 3

S0 Input parameters: N_k^+ , N_k , x_k , x_{k+1} **S1** Determine N_{k+1}

1) If
$$N_k^+ \ge N_k$$
 then $N_{k+1} = N_k^+$
2) If $N_k^+ < N_k$ compute ρ_k using (6).
1) If $\rho_k \ge \eta_0$ put $N_{k+1} = N_k^+$
2) If $\rho_k < \eta_0$ put $N_{k+1} = N_k$

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

The lower bound N_k^{min}

- If $N_{k+1} \leq N_k$ then $N_{k+1}^{min} = N_k^{min}$,
- else $N_{k+1} > N_k$ and
 - if N_{k+1} is a sample size which we haven't had use or if we made big enough decrease in function $\hat{f}_{N_{k+1}}$ then $N_{k+1}^{min} = N_k^{min}$.
 - ► If we didn't make big enough decrease in function $\hat{f}_{N_{k+1}}$ then $N_{k+1}^{min} = N_{k+1}$.

$$\hat{f}_{N_{k+1}}(x_h) - \hat{f}_{N_{k+1}}(x_{k+1}) < \gamma_3 \nu_1(k+1-h) \varepsilon_{\delta}^{N_{k+1}}(x_{k+1}), \quad (7)$$

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

Assumptions

- A1 $\xi_1, \ldots, \xi_{N_{max}}$ are independent, identically distributed random vectors.
- A2 For every ξ , $F(\cdot,\xi) \in C^2(\mathbb{R}^n)$.
- A3 There is a constant $M_1 > 0$ such that for every ξ and every $x \quad \|\nabla_x F(x,\xi)\| \le M_1$.
- A4 There are constants M_F , M_{FF} such that for every ξ and every x $M_F \le F(x,\xi) \le M_{FF}$

$$\nabla_{x} E(F(x,\xi)) = E(\nabla_{x} F(x,\xi))$$

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

Convergence theory

Lemma

Suppose that assumptions A2 - A4 are true. Furthermore, suppose that there exist a positive constant κ and number $n_1 \in \mathbb{N}$ such that $\varepsilon_{\delta}^{N_k}(x_k) \ge \kappa$ for every $k \ge n_1$. Then, either Algorithm 1 terminates after a finite number of iterations with $N_k = N_{max}$ or there exists $q \in \mathbb{N}$ such that for every $k \ge q$ the sample size is maximal, i.e. $N_k = N_{max}$.

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

Theorem

Suppose that assumptions A2 - A5 are true. Furthermore, suppose that there exist a positive constant κ and number $n_1 \in \mathbb{N}$ such that $\varepsilon_{\delta}^{N_k}(x_k) \ge \kappa$ for every $k \ge n_1$ and that the sequence $\{x_k\}_{k\in\mathbb{N}}$ generated by Algorithm 1 is bounded. Then, either Algorithm 1 terminates after a finite number of iterations at a stationary point of function $\hat{f}_{N_{max}}$ or every accumulation point of the sequence $\{x_k\}_{k\in\mathbb{N}}$ is a stationary point of $\hat{f}_{N_{max}}$.

Numerical results

- Noisy problems: Allufi Pentini, Rosenbrook
- Discrete choice models Mixed Logit problem

Directions

$$p_k = -\nabla \hat{f}_{N_k}(x_k)$$

$$p_k = -H_k \nabla \hat{f}_{N_k}(x_k)$$

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

$$f(x) = E(0.25(x_1\xi)^4 - 0.5(x_1\xi)^2 + 0.1\xi x_1 + 0.5x_2^2),$$

$$\xi: \mathcal{N}(\mathbf{1}, \sigma^2). \tag{8}$$

σ^2	global minimizer - x*	local minimizer	maximizer	$f(x^*)$
0.01	(-1.02217,0)	(0.922107,0)	(0.100062,0)	-0.340482
0.1	(-0.863645,0)	(0.771579,0)	(0.092065,0)	-0.269891
1	(-0.470382,0)	(0.419732,0)	(0.05065,0)	-0.145908

Table 1: Stationary points for Allufi - Pentini's problem

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

æ

<ロ> <四> <四> <三</p>

$\sigma^2 = 0.01, N_{max} = 100$				
Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	$\ \nabla f\ $	fev	fevNmax
NG	0.008076	0.014906	1402	1868
NG - ρ	0.008002	0.013423	1286	
BFGS	0.003575	0.011724	840	928
BFGS - ρ	0.003556	0.012158	793	
$\sigma^2 = 0.1$, $N_{max} = 200$				
Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	$\ \nabla f\ $	fev	fevNmax
NG	0.007545	0.027929	3971	4700
NG - ρ	0.006952	0.028941	3537	
BFGS	0.003414	0.027991	2155	2968
BFGS - ρ	0.003879	0.027785	2152	
$\sigma^2 = 1$, $N_{max} = 600$				
Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	$\ \nabla f\ $	fev	fevNmax
NG	0.006072	0.050208	13731	15444
NG - ρ	0.005149	0.058036	10949	
BFGS	0.003712	0.054871	7829	14760
BFGS - p	0.002881	0.055523	8372	

Nataša Krejić, Nataša Krklec

< 臣→ University of Novi Sad, Serbia

æ

$$f(x) = E(100(x_2 - (x_1\xi)^2)^2 + (x_1\xi - 1)^2),$$
(9)

σ^2	global minimizer - x*	$f(x^*)$
0.001	(0.711273, 0.506415)	0.186298
0.01	(0.416199, 0.174953)	0.463179
0.1	(0.209267, 0.048172)	0.634960

Table 4: Rosenbrock problem - the global minimizers

University of Novi Sad, Serbia

æ

→ E → < E →</p>

 $\langle \Box \rangle \langle \Box \rangle$

Nataša Krejić, Nataša Krklec

$\sigma^2=0.001$, $N_{max}=3500$				
Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	$\ \nabla f\ $	fev	fevNmax
BFGS	0.003413	0.137890	56857	246260
BFGS - ρ	0.003068	0.137810	49734	
$\sigma^2=$ 0.01 , $N_{max}=$ 3500				
Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	$\ \nabla f\ $	fev	fevNmax
BFGS	0.002892	0.114680	56189	213220
BFGS - ρ	0.003542	0.114160	52875	
$\sigma^2=$ 0.1 , $N_{max}=$ 3500				
Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	$\ \nabla f\ $	fev	fevNmax
BFGS	0.003767	0.093363	67442	159460
BFGS - ρ	0.003561	0.093290	59276	

Table 5: Rosenbrock problem

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

크

<ロ> <四> <四> <三</p>

Safeguard rule

- Decreasing sample size proposed in 11% 32% iterations
- Rejection of the decrease by the safeguard rule: 25% -66%

University of Novi Sad, Serbia

Nataša Krejić, Nataša Krklec

Mixed Logit Models

 r_a agents, r_m alternatives, r_k characteristics Utility of agent *i* for alternative *j*

$$U_{i,j} = V_{i,j} + \varepsilon_{i,j},$$

 $V_{i,j} = V_{i,j}(\beta^i) = m_j^T \beta^i.$

$$\beta^{i} = (\beta_{1}^{i}, ..., \beta_{r_{k}}^{i})^{T} = (\mu_{1} + \xi_{1}^{i}\sigma_{1}, ..., \mu_{r_{k}} + \xi_{r_{k}}^{i}\sigma_{r_{k}})^{T},$$

Task: Estimate μ_k, σ_k

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

$$L_{i,j}(x,\bar{\xi}^{i}) = \frac{e^{V_{i,j}(x,\bar{\xi}^{i})}}{\sum_{s=1}^{r_{m}} e^{V_{i,s}(x,\bar{\xi}^{i})}}.$$
$$\min f(x) := -\frac{1}{r_{a}} \sum_{i=1}^{r_{a}} \ln E(L_{i,j(i)}(x,\xi^{i})),$$
$$\hat{f}_{N}(x) = -\frac{1}{r_{a}} \sum_{i=1}^{r_{a}} \ln(\frac{1}{N} \sum_{s=1}^{N} L_{i,j(i)}(x,\xi^{i})).$$

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

= 990

$$\varepsilon_{\delta}^{N}(x) = \frac{\alpha_{\delta}}{r_{a}} \sqrt{\sum_{i=1}^{r_{a}} \frac{\hat{\sigma}_{N,i,j(i)}^{2}(x)}{NP_{i,j(i)}^{2}(x)}}.$$
 (10)

$$\hat{\sigma}_{N,i,j(i)}^{2}(x) = \frac{1}{N-1} \sum_{s=1}^{N} (L_{i,j(i)}(x,\xi_{s}^{i}) - \frac{1}{N} \sum_{k=1}^{N} (L_{i,j(i)}(x,\xi_{k}^{i}))^{2}.$$

University of Novi Sad, Serbia

2

<ロ> <同> <同> < 同> < 同>

Nataša Krejić, Nataša Krklec

Algorithm	$\ \nabla \hat{f}_{N_{max}}\ $	Ĩ	fev	fevNmax
NG	0.008888	0.008101	4.4668E+07	9.5300E+07
NG - ρ	0.009237	0.008530	3.8611E+07	
BFGS	0.004128	0.003498	6.2430E+06	1.7750E+07
BFGS - p	0.004616	0.004256	5.7895E+06	

Table 7 : Mixed Logit Problem

Nataša Krejić, Nataša Krklec

University of Novi Sad, Serbia

æ

<ロ> <同> <同> < 同> < 同>