
Properties and numerical results of a parallel algorithm for global
optimization problems

M. Gaviano, D. Lera

Dipartimento di Matematica e Informatica
University of Cagliari, Cagliari, Italy

M. Gaviano, D. Lera () 1 / 41

Problem: Global Optimization

find x∗ ∈ S , such that f (x∗) ≤ f (x), ∀x ∈ S ,

where f : S → R is a function defined on a set S ⊆ Rn.

While there exist very efficient algorithms that find a local minimum of
f (x), the search of a global minimum can be a very hard problem.

Nemirovsky and Yudin [10], and Vavasis [12] have proved, under suitable
assumptions, that the computational complexity of the global optimization
problem is exponential.

M. Gaviano, D. Lera () 2 / 41

Many procedures introduced in the literature to solve the global
optimization employ local minimum algorithms; these mostly constructs,
by starting from a point x0, a sequence {xj}, with f (xj) > f (xj+1), that
converges to a local minimum x∗.

Clearly if we start from different points in S, we can expect to find all the
local minima of f (·) and then its global minimum.

The researchers have proposed different strategies for selecting the starting
points of the local searches; see the papers by Boender et alias [1], Cetin
et alias [2], Desai et alias [3], Hedar et alias, [6] Levy et alias[8], Lucidi et
alias [9], Oblow [11].

M. Gaviano, D. Lera () 3 / 41

The main point to tackle is to avoid of finding the same local minima.

One can choose the starting point x0 of a new local search such that f (x0)
is less than the value of the last local minimum found. In such a way the
local searches guarantees that a new local minimum point with function
value less than the previous ones can be found.

On the other end, by proceeding in this way, we reduce the size of the
region that could take us to the global minimum. That is depicted in the
figure

M. Gaviano, D. Lera () 4 / 41

For the global optimization problem we consider the following

Assumption 1.

i) f (·) has m local minimum points li , i = 1, ...,m and f (li) > f (li+1);

ii) meas(S) = 1,

with meas(S) denoting the measure of S .

M. Gaviano, D. Lera () 5 / 41

Algorithm scheme (Glob). Choose x0 uniformly on S ; i ← 1; j ← 1;
(x1, fx1)← local search(x0); li = x1; fli = fx1;

repeat
choose x0 uniformly on S ; j ← j + 1;
if f (x0) ≤ fli or (f (x0) > fli and rand(1) < di)

(x1, fx1)← local search(x0);
if fx1 < fli

i ← i + 1; li ← x1; fli ← fx1;
end if

end if
until a stop rule is met;
end

The parameters di are probability values, di ∈ [0, 1]. rand(1) denotes a generator
of random numbers in the interval [0, 1]. local search(x0) is any procedure that
starting from a point x0 returns a local minimum li of f (x) and its function value.

M. Gaviano, D. Lera () 6 / 41

We assume that the optimization problem satisfies all the conditions
required to make the procedure local search(x0) convergent.

Proposition
Let assumption 1 hold and consider a run of algorithm Glob. Then the
probability that li is a global minimum of the optimization problem tends
to one as j →∞.

M. Gaviano, D. Lera () 7 / 41

. Definition

• A0,j ≡ {x ∈ S | starting from x , local search(·) returns local
minimum lj};
• Ai ,j ≡ {x ∈ S | f (x) ≤ f (li); starting from x , local search(·) returns

local minimum lj};
• p0,j = meas(A0,j);

• pi ,j = meas(Ai ,j).

We have

m∑
i=1

p0,i = meas(S) = 1.

M. Gaviano, D. Lera () 8 / 41

. Assumption 2.

• algorithm Glob runs an infinite number of iterations;

• the number of function evaluations required by local search is
k = constant.

M. Gaviano, D. Lera () 9 / 41

Theorem 1.

The average number of function evaluations so that algorithm Glob,
having found a local minimum li , finds any new one is given by

evals1(di) = fi
1

Probi ,∗
, i = 1, ...,m − 1, (2)

with

Probi ,∗ =
m∑

j=i+1

pi ,j + di

 m∑
j=i+1

p0,j −
m∑

j=i+1

pi ,j

 ,

fi = k
m∑

j=i+1

pi ,j + kdi (1−
m∑

j=i+1

pi ,j) + (1− di)(1−
m∑

j=i+1

pi ,j).

M. Gaviano, D. Lera () 10 / 41

In [4], the following was stated and investigated

Problem 1.

Consider the optimization and let the values k, p0,j and pi ,j be given. Find
value d∗i such that

evals1(d
∗
i) = min

di

evals1(di).

It comes out that the derivative sign of evals1(di) is constant in [0, 1] and
is greater than or equal to zero if

k ≥
(
∑m

j=i+1 p0,j)(1−
∑m

j=i+1 pi ,j)

(
∑m

j=i+1 pi ,j)(1−
∑m

j=i+1 p0,j)
. (3)

M. Gaviano, D. Lera () 11 / 41

The latter links the probability pi ,j with the number k of function
evaluations performed at each local search in order to choose the most
convenient value of di : if the condition is met, di = 0 is suitable to be
chosen otherwise di = 1. That is,

di =

{
0 if k > (p2 · (1− p3))/(p3 · (1− p2)),
1 otherwise,

(4)

with

p2 =
m∑

j=i+1

p0,j , p3 =
m∑

j=i+1

pi ,j ,

M. Gaviano, D. Lera () 12 / 41

In real problems usually the values p0,j and pi ,j are not known; hence the
choice of probabilities d1, d2, ..., dm−1 in the optimization of the function
in problem 1 cannot be calculated exactly.
Algorithm Glob has been completed with di given by 4 and p2, p3 and k
approximated as follows

p2 = 1/(number of searches carried out);

p3 = 1/(number of iterations already carried out); (6)

k = mean number of function evaluations carried out

in each local search.

M. Gaviano, D. Lera () 13 / 41

.

New results

We consider the overall minimization process from the starting point until
the global minimum has being found.

We calculate the computational cost of this process.

A comparison with the local analysis is done.

M. Gaviano, D. Lera () 14 / 41

.

Notation and Definition

• ti ≡ the probability that having found the local minimum li , in a
subsequent iteration no new local minimum is detected;

• tr(i1, ..., ip) ≡ the set (trajectory) of p local minimum points
li1 ,, lip found in a run of algorithm Glob;

M. Gaviano, D. Lera () 15 / 41

.

Notation and Definition

• Probi ,j(di) ≡ the probability that algorithm Glob having found the
local minimum li can find the local minimum lj in a subsequent
iteration;

• Prob
(∞)
i ,j (di) ≡ the probability that algorithm Glob having found the

local minimum li can find lj assuming that an infinity number of
iterations are carried out;

• Prob
(n)
tr (di1 , ..., dip−1) ≡ the probability that algorithm Glob

constructs the trajectory tr = (i1, ..., ip) in n iterations.

M. Gaviano, D. Lera () 16 / 41

We have two lemmas.

Lemma 1.

ti =
i∑

j=1

p0,j + (
m∑

j=i+1

p0,j −
m∑

j=i+1

pi ,j)(1− di),

Probi ,j(di) = pi ,j + di (p0,j − pi ,j),

Prob
(n)
tr (d1, . . . , dp−1) = p0,i1 · (pi1,i2 + (p0,i2 − pi1,i2)di1) · . . . ·

· (pip−i ,ip + (p0,ip − pip−1,ip)dip−1) ·

·
n−p∑

j1,...,jp−1=0
j1+...+jp−1≤n−p

t j1
i1
· t j2

i2
· ... · t jp−1

ip−1
.

with n > p and tr = (i1, ..., ip), ip = m.

M. Gaviano, D. Lera () 17 / 41

. Lemma 2.

Prob
(∞)
i ,j (di) =

pi ,j + di (p0,j − pi ,j)∑m
l=i+1(pi ,l + di (p0,l − pi ,l))

,

Prob
(∞)
(i1,...,ip)

(d1, . . . , dp−1), = p0,i1 · Prob
(∞)
i1,i2
· ...Prob

(∞)
ip−1,ip

,

with ip = im.

M. Gaviano, D. Lera () 18 / 41

Theorem 2.
The average number of function evaluations so that algorithm Glob finds
the global minimum point is given by

evals2(d1, ..., dm−1) =
∑

tr(·)∈T

Prob
(∞)
tr (·)(k+fi1

1

Probi1,i2

, ...+fip−1

1

Probip−1,ip

)

where

fi = k
m∑

l=i+1

pi ,l + kdi (1−
m∑

l=i+1

pi ,l) + (1− di)(1−
m∑

l=i+1

pi ,l).

and T denotes the set of all feasible trajectories tr(i1, ..., ip) whose last
local minimum point is a global one.

M. Gaviano, D. Lera () 19 / 41

Problem 2.
Let consider problem (1) and values k, p0,j and pi ,j be given. Find values
d∗i , i = 1, ...,m − 1, so that

evals2(d
∗
1 , ..., d∗m−1) = min

d1,...,dm−1

evals2(d1, ..., dm−1). (7)

with (d1, ..., dm−1) ∈ I ≡ {x ∈ Rn | 0 ≤ xj ≤ 1, j = 1..., n}.

M. Gaviano, D. Lera () 20 / 41

We prove

Lemma 3.

evals2(d1, ..., dm−1) attains its minimum at a vertex of the simplex I .

Remarks
• evals1(di) is part of the expression of evals2(d1, ..., dm−1).

• A counterexample shows that the optimal values di for evals1(di) are
not necessarily optimal for evals2(d1, ..., dm−1).

M. Gaviano, D. Lera () 21 / 41

. Counterexample

Let m = 3. We have four trajectories and

T = {(3), (1, 2, 3), (1, 3), (2, 3)}.

evals2(d1, d2) =

+ k + p0,1
(k − 1)(p1,2 + p1,3) + 1 + d1(k − 1)(1 − p1,2 − p1,3)

p1,2 + p1,3 + d1(p0,2 − p1,2 + p0,3 − p1,3)

+ p0,1
p1,2 + d1(p0,2 − p1,2)

p1,2 + p1,3 + d1(p0,2 − p1,2 + p0,3 − p1,3)
·

(k − 1)p2,3 + 1 + d2(k − 1)(1 − p2,3)

p2,3 + d2(p0,3 − p2,3)

+ p0,2

(
(k − 1)p2,3 + 1 + d2(k − 1)(1 − p2,3)

p2,3 + d2(p0,3 − p2,3)

)
.

M. Gaviano, D. Lera () 22 / 41

evals1 d1(d1) =
(k − 1)(p1,2 + p1,3) + 1 + d1(k − 1)(1− p1,2 − p1,3)

p1,2 + p1,3 + d1(p0,2 − p1,2 + p0,3 − p1,3)

evals1 d2(d2) =
(k − 1)p2,3 + 1 + d2(k − 1)(1− p2,3)

p2,3 + d2(p0,3 − p2,3)
.

M. Gaviano, D. Lera () 23 / 41

Values pi ,j are given by

p0,1 = 0.5 p0,2 = 0.4 p0,3 = 0.1
p1,2 = 0.05 p1,3 = 0.04 p2,3 = 0.01

evals2(d1, d2) is evaluated at each vertex of the simplex I.
evals1 d1(d1) and evals1 d2(d2) are evaluated at the endpoints of [0.1]

M. Gaviano, D. Lera () 24 / 41

For k = 16 and k = 4, evals2(d1, d2)) , evals1 d1(d1) and evals1 d2(d2)
attain the minimum at the same values of d1 and d2. That does not hold
for k = 8.

k evals2(0, 0) evals2(0, 1) evals2(1, 0) evals2(1, 1)

16 120.06 150.56 140.00 176.00

8 98.63 80.33 109.60 88.00

4 87.92 45.22 87.92, 44.00

k evals1 d1(0) evals1 d1(1) evals1 d2(0) evals1 d2(1)

16 26.11 32.00 115.00 160.00

8 18.11 16.00 107.00 80.00

4 14.11 8.00 103.00 40.00

M. Gaviano, D. Lera () 25 / 41

The number of fun evaluations for k = 16 [min (0,0)] and k = 8 [min(0,1)].

M. Gaviano, D. Lera () 26 / 41

. Numerical Results

In [5] a parallel version of Glob, was presented.
This follows the MIMD model.
N processors: one server and N-1 clients.

Server task

• reads all the initial data and sends them to each client;

• receives the intermediate data from a sender client;

• combines them with all the data already received;

• sends back the updated data to the client sender;

• gathers the final data from each client.

M. Gaviano, D. Lera () 27 / 41

Client task

• receives initial data from server;

• runs algorithm Glob;

• sends intermediate data to server;

• receives updated values from server;

• stops running Glob whenever its stop rule is met in any client
execution;

• sends final data to server.

M. Gaviano, D. Lera () 28 / 41

The communication between the server and each client concerns the
parameters p2, p3 and k.

Each client, as soon as either finds a new local minimizer or after fixed
number of iterations, sends the following data to the server.

• last minimum found;

• the number of function evaluations since last message sending;

• the number of iterations since last message sending;

• the number of local searches carried out since last message sending;

• status variable of value 0 or 1 denoting that the stop rule has been met.

The server processes them and sends back the new values.

M. Gaviano, D. Lera () 29 / 41

. Test Problems

(1)min f (x) =
π

n
{10sin2(πy1) +

n−1∑
i=1

[(yi − 1)2(1 + 10sin2(πyi+1))] + (yn − 1)2}

with n = 100, yi = 1 + 1
4 (xi − 1), S ≡ {x ∈ Rn | − 10 ≤ xi ≤ 10, i = 1, ..., n} ;

(2)min f (x) = (x1 − 1)2 +
n∑

i=2

i(2x2
i − xi−1)

2

with n = 25, S ≡ {x ∈ Rn | − 10 ≤ xi ≤ 10, i = 1, ..., n};

M. Gaviano, D. Lera () 30 / 41

(3)min f (x) = 10n +
n∑

i=1

(x2
j − 10cos(2πxj));

with n = 8, S ≡ {x ∈ Rn | − 2.56 ≤ xi ≤ 2.56, i = 1, ..., n};

(4)min f (x) =



(
2
ρ2

i

〈x−mi ,xt−mi 〉
‖x−mi‖ − 2

ρ3
i
(‖xt −mi‖2 + 4− fi)

)
‖x −mi‖3 + (x ∈ Bi)(

1− 4
ρi

〈x−mi ,xt−mi 〉
‖x−mi‖ + 3

ρ2
i
(‖xt −mi‖2 + 4− fi)

)
‖x −mi‖2 + fi ,

‖x − xt‖2 + 4, (x /∈ Bi),

with n = 20, Bi ≡ {x ∈ Rn | ‖x −mi‖ ≤ ρi}, for i = 1, ..., 9,
S ≡ {x ∈ Rn | − 1 ≤ xj ≤ 1, j = 1, . . . , n}, mi , (i = 1, ..., 9), and xt denoting ten
points uniformly chosen in S such that the Bi balls do not overlap each other, fi
real values to be taken as the values of f (·) at mi .

M. Gaviano, D. Lera () 31 / 41

. Local Search

The local minimization has been carried out by a code, called cgtrust,
written by C.T. Kelley [7].

This code implements a trust region type algorithm that uses a polynomial
procedure to compute the step size along a search direction.

M. Gaviano, D. Lera () 32 / 41

. Software and Hardware

The parallel algorithm version of Glob has been tested in a parallel MatLab
environment under the Linux operating system.

Two computers have been used; the first equipped with an Intel Quad
CPU Q9400 based on four processors, the second with a AMD PHENOM
II X6 1090T based on six processors.

Experiments have been carried out both on each single computer and on
the two connected to a local network.

In the table we report the fourteen configurations of the computing
resources used in each of our experiments.

M. Gaviano, D. Lera () 33 / 41

config. no. computer 1 computer 2 workers in 1 workers in 2
1 Intel Quad 1
2 Intel Quad 2
3 Intel Quad 3
4 Intel Quad 4
5 Amd phenom 6 1
6 Amd phenom 6 2
7 Amd phenom 6 4
8 Amd phenom 6 6
9 Intel Quad Amd phenom 6 2 2
10 Intel Quad Amd phenom 6 4 4
11 Intel Quad Amd phenom 6 4 6
12 Amd phenom 6 Intel Quad 2 2
13 Amd phenom 6 Intel Quad 4 4
14 Amd phenom 6 Intel Quad 6 4

Table: The configurations of the computing resources

M. Gaviano, D. Lera () 34 / 41

• The code used with one worker is largely simpler than that with more
than one worker.

• 100 runs of the algorithm have been done on each problem. The
averages are reported.

• The computational cost of local searches is the sum of function and
gradient evaluations.

• The algorithm stops whenever the global minimum has been found
within a fixed accuracy.

• To evaluate the performance of our algorithm speedup and the
efficiency are given.

M. Gaviano, D. Lera () 35 / 41

. Speedup

Sp =
T1

Tp

where T1 is the time of execution of the algorithm with 1 processor and
Tp is the time of execution of the algorithm with p processors.
Sp ideal = p

Efficiency

Ep =
Sp

p

estimates how much the parallel execution exploit the computer resources.
Ep ideal = 1

M. Gaviano, D. Lera () 36 / 41

fun1 fun2 fun3 fun4

processors secs speed eff secs speed eff secs speed eff secs speed eff

1 0.0574 472.2093 478.1111 84.5026

2 0.0819 0.70 0.35 618.5813 0.76 0.38 685.4575 0.70 0.35 90.8027 0.93 0.47

4 0.0252 2.28 0.57 196.6817 2.40 0.60 225.4558 2.12 0.53 34.7754 2.43 0.61

6 0.0222 2.59 0.43 122.9062 3.84 0.64 146.722 3.26 0.54 19.8663 4.25 0.71

Table: Results working with Amd Phenom 6

fun1 fun2 fun3 fun4

processors secs speed eff secs speed eff secs speed eff secs speed eff

1 0.150493 803.5487 820.9142 143.0092

2 0.117475 1.28 0.64 996.9096 0.81 0.40 855.5212 0.96 0.48 154.8207 0.92 0.46

3 0.027 5.57 1.86 520.4818 1.54 0.51 482.2071 1.70 0.57 84.1986 1.70 0.57

4 0.0262 5.74 1.44 280.6494 2.86 0.72 337.9634 2.43 0.61 59.7636 2.39 0.60

Table: Results working with Intel Quad

M. Gaviano, D. Lera () 37 / 41

fun1 fun2 fun3 fun4

processors secs speed eff secs speed eff secs speed eff secs speed eff

1 0.1039 637.879 649.51265 113.7559

2+2 0.0263 3.95 0.99 307.2342 2.08 0.52 275.5479 2.36 0.59 54.6751 2.08 0.52

4+4 0.027 3.85 0.48 131.8754 4.84 0.60 134.5788 4.83 0.60 24.226 4.70 0.59

4+6 0.0253 4.11 0.41 83.555 7.63 0.76 96.1157 6.76 0.68 18.9221 6.01 0.60

Table: Results working with Intel Quad and Amd Phenom 6

fun1 fun2 fun3 fun4

processors secs speed eff secs speed eff secs speed eff secs speed eff

1 0.1039 637.879 649.51265 113.7559

2+2 0.0265 3.92 0.98 255.9299 2.49 0.62 287.6572 2.26 0.56 48.0993 2.37 0.59

4+4 0.0263 3.95 0.49 133.6477 4.77 0.60 116.5528 5.57 0.70 19.179 5.93 0.74

6+4 .0256 4.06 0.41 90.5088 7.05 0.70 109.5831 5.93 0.59 13.689 8.31 0.83

Table: Results working with Amd Phenom 6 and Intel Quad

M. Gaviano, D. Lera () 38 / 41

. Remarks
• In almost all the experiments the parallel algorithm improves largely

the speedup of the computation. The efficiency in many experiments
is above 0.70 although the task of a worker is to start the process and
to collect and to distribute the intermediate and final data.

• The speedup becomes less than one only when two workers are
employed. Clearly this has to be related to the fact that the
complexity of the parallel code is not balanced by the use of just one
additional worker.

M. Gaviano, D. Lera () 39 / 41

fun1 fun2 fun3 fun4

processors secs speed eff secs speed eff secs speed eff secs speed eff

1 0.09 14.96 22.12 19.74

2+2 0.07 1.29 0.32 9.15 1.63 0.41 27.26 0.81 0.20 6.3 3.13 0.78

4+4 0.07 1.29 0.16 4.75 3.15 0.39 11.06 2.00 0.25 3.36 5.88 0.73

4+6 0.07 1.29 0.13 4.54 3.30 0.33 11.49 1.92 0.19 2.52 7.83 0.78

Table: Results working with Intel Quad and Amd Phenom 6, codes in C

In this table we give for the configurations 9-11 the results with the codes
written in C . The speedup is smaller; the function evaluations are carried
out in a more efficient way, hence the advantages of the parallel
computation is less clear.

M. Gaviano, D. Lera () 40 / 41

C.G.E. Boender and A.H.G. Rinooy Kan.

Bayesian stopping rules for a class of stochastic global optimization methods.
Technical Report Report 8319/0, Erasmus University Rotterdam, 1985.

B. C. Cetin, J. Barhen, and J. W. Burdick.

Terminal repeller unconstrained subenergy tunnelling (trust) for fast global optimization.
Journal of Optimization Theory and Applications, 77 (1):97–126, 1993.

R. Desai and R. Patil.

Salo: combining simulated annealing and local optimization for efficient global optimization.
In Proceedings of the 9th Florida AI Research Simposium,FLAIRS-96’, pages 233–237. 1996.

M. Gaviano, D. Lera, and Steri A.M.

A local search method for continuous global optimization.
Journal of Global Optimization, 48: 73–85, 2010.

M. Gaviano, D. Lera, and Mereu E.

A parallel algorithm for global optimization prpoblems in a distribuited computing environment.
Thesis, ??:?, 2010.

Abdel-Rahman Hedar and Masao Fukushima.

Tabu search directed by direct search methods for non linear global optimization.
European Journal of Operational Research, 170 (2):329–349, 2006.

C. T. Kelley.

Iterative Methods for Optimization.
SIAM, Philadelphia, 1999.

A. Levy and A. Montalvo.

The tunneling algorithm for the global minimization of functions.
SIAM Journal on Scientific and Statistical Comuting, 6:15–29, 1985.

S. Lucidi and M. Piccioni.

Random tunneling by means of acceptance-rejection sampling for global optimization.
Journal of Optimization Theory and Applications, 62 (2):255–277, 1989.

A.S. Nemirovsky and D.B. Yudin.

Problem Complexity and Method Efficiency in Optimization.
John Wiley and Sons, Chichester, 1983.

E. M. Oblow.

Spt: a stochastic tunneling algorithm for global optimization.
Journal of Global Optimizaion, 20:195–212, 2001.

S.A. Vavasis.

Complexity issues in global optimization: a survey.
In R. Horst and P.M. Pardalos, editors, Handbook of Global Optimization, pages 27–41. Kluwer Academic Publishers,
1995.

M. Gaviano, D. Lera () 41 / 41

