
Multistep ε–algorithm and Shanks’ transformation
by Hirota’s method

Michela Redivo–Zaglia
University of Padua - Italy

Joint work with C. Brezinski, Y. He, X.-B. Hu, J.-Q. Sun

Ü Shanks’ transformation and the ε–algorithm
Ü Relations between Hankel determinants
Ü The Hirota’s bilinear method
Ü From the ε–algorithm to Shanks’ transforma-

tion
Ü From Shanks’ transformation to the ε–

algorithm
Ü The multistep ε–algorithm
Ü Extended discrete Lotka–Volterra equation
Ü Conclusions

1

Hirota’s bilinear method was invented for resolving integrable
nonlinear partial differential or difference evolution equations
that have soliton solutions.

We will show how Hirota’s bilinear method can lead to a
proof that the ε–algorithm of Wynn implements Shanks’
sequence transformation and, reciprocally, that the
quantities computed by this algorithm are expressed by the
ratios of Hankel determinants defining Shanks’ transformation.

The link between this algorithm and the Lotka–Volterra
equation will be studied.

Then we will propose a multistep extension of Shanks’
transformation, the ε–algorithm, and the Lotka–Volterra
equation.

2

Shanks’ transformation and the ε–algorithm

Shanks’ transformation (1949, 1955) consists in transforming
(Sn) into the set of sequences {(ek(Sn)} given by

ek(Sn) =
Hk+1(Sn)

Hk(∆2Sn)
, k,n = 0,1, . . .

where ∆ is the usual forward difference operator and where
Hk(un) denotes the Hankel determinants

Hk(un) =

∣∣∣∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k−1

∆un ∆un+1 · · · ∆un+k−1

...
...

...

∆k−1un ∆k−1un+1 · · · ∆k−1un+k−1

∣∣∣∣∣∣∣∣∣∣∣∣
, H0(un) = 1.

Shanks’ transformation and the ε–algorithm 3

The ε–algorithm is a recursive algorithm due to Wynn (1956)
for implementing Shanks’ transformation without computing
the Hankel determinants. Its rule is

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k,n = 0,1, . . .

with ε
(n)
−1 = 0 and ε

(n)
0 = Sn, n = 0, 1, . . .

It holds, for all k and n,

ε
(n)
2k = ek(Sn) and ε

(n)
2k+1 =

1

ek(∆Sn)
.

The ε
(n)
2k+1’s are intermediated results, and it holds

ε
(n)
2k =

Hk+1(Sn)

Hk(∆2Sn)
and ε

(n)
2k+1 =

Hk(∆
3Sn)

Hk+1(∆Sn)
.

Shanks’ transformation and the ε–algorithm 4

Sylvester’s determinantal identity

Let A be a square matrix, α, β, γ and δ numbers, a,b, c and d

vectors of the same dimension as A.

Let M be the matrix

M =


α aT β

b A c

γ dT δ

 .

The Sylvester’s determinantal identity is

|M | · |A| =

∣∣∣∣∣∣ α aT

b A

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ A c

dT δ

∣∣∣∣∣∣−
∣∣∣∣∣∣ aT β

A c

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ b A

γ dT

∣∣∣∣∣∣ .

Sylvester’s determinantal identity 5

Wynn proved that Shanks’ transformation can be
implemented via the ε–algorithm. His proof was based on
Sylvester’s and Schweins determinantal identities.

Recently, a generalization of Shanks’ transformation was
proposed by Hu, Weniger et al. (SISC 2011). It can be
implemented by a two–step ε–algorithm whose construction
relies on Hirota’s bilinear method (1992).

These results were further extended by Brezinski, Hu, R.-Z. et
al. (AMS MCOM, in press) to a multilevel Shanks’s
transformation and the corresponding multilevel ε–algorithm.

Since this last extension needs a pretty complicated
explanation, in order to give a flavour of these ideas, we will
show how they can also be used in the case of the original
Shanks’ transformation and the ε–algorithm of Wynn.

6

Relations between Hankel determinants

First, we will give some relations between Hankel
determinants that will be used in the sequel.
We consider the following determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

∆Sn ∆Sn+1 · · · ∆Sn+k+1

...
...

...

∆kSn ∆kSn+1 · · · ∆kSn+k+1

Sn Sn+1 · · · Sn+k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is easy to show that, after some algebraic manipulations,

D = (−1)kHk+1(∆Sn).

Relations between Hankel determinants 7

Applying only the Sylvester’s identity to D, in different ways,
after some algebraic manipulations, we obtain several
relations. For instance

Hk+1(∆Sn)Hk(∆Sn+1) =

Hk(∆
2Sn)Hk+1(Sn+1)−Hk(∆

2Sn+1)Hk+1(Sn)

Hk+1(Sn)Hk−1(∆Sn+1) =

Hk(Sn)Hk(∆Sn+1)−Hk(Sn+1)Hk(∆Sn).

Hk(∆
2Sn)Hk−1(∆Sn+1) =

Hk−1(∆
2Sn)Hk(∆Sn+1)−Hk−1(∆

2Sn+1)Hk(∆Sn)

Hk−1(∆Sn+1)[Hk+1(Sn)Hk−1(∆
2Sn+1)−Hk(∆

2Sn)Hk(Sn+1)] =

Hk(∆Sn+1)[Hk−1(∆
2Sn+1)Hk(Sn)−Hk(Sn+1)Hk−1(∆

2Sn)]

Relations between Hankel determinants 8

Hk(∆Sn+1)Hk(∆Sn) =

Hk(Sn+1)Hk(∆
2Sn)−Hk+1(Sn)Hk−1(∆

2Sn+1)

Hk+1(∆Sn)Hk−1(∆
2Sn+1) =

Hk(∆Sn)Hk(∆
2Sn+1)−Hk(∆Sn+1)Hk(∆

2Sn)

Hk−1(∆Sn+1)[Hk(∆
3Sn)Hk(∆Sn+1)−Hk+1(∆Sn)Hk−1(∆

3Sn+1)] =

Hk(∆
2Sn+1)[Hk(∆Sn+1)Hk−1(∆

3Sn)−Hk−1(∆
3Sn+1)Hk(∆Sn)]

. .

. .

Relations between Hankel determinants 9

The Hirota’s bilinear method

Hirota’s bilinear method is a technique which could be much
useful for solving certain nonlinear differential and difference
equations. It consists in expressing the unknown as a ratio of
quantities and, then, treating separately the numerator and
the denominator, trying to find the quantities for which the
equality holds.

We will now apply this method to the ε–algorithm. We set

ε
(n)
k =

Gn
k

Fn
k

.

The Hirota’s bilinear method 10

Plugging this expression into the recursive rule of the
ε–algorithm given by Wynn, we get

Gn
k+1

Fn
k+1

−
Gn+1

k−1

Fn+1
k−1

=
1

Gn+1
k

Fn+1
k

− Gn
k

Fn
k

Gn
k+1F

n+1
k−1 − Fn

k+1G
n+1
k−1

Fn
k+1F

n+1
k−1

=
Fn+1
k Fn

k

Gn+1
k Fn

k − Fn+1
k Gn

k

,

and equating the numerators and the denominators of both
sides of this last identity, we obtain the following coupled
relations

Gn
k+1F

n+1
k−1 − Fn

k+1G
n+1
k−1 = (−1)kFn+1

k Fn
k (1)

Gn+1
k Fn

k − Fn+1
k Gn

k = (−1)kFn
k+1F

n+1
k−1. (2)

The Hirota’s bilinear method 11

Link between ε–algorithm and Shanks’ transformation

We will now prove that the quantities ε(n)k computed by the

rule of the ε–algorithm, are expressed by the ratio ε
(n)
k =

Gn
k

Fn
k

,

when we set

Even lower indexes Odd lower indexes

Gn
2k = Hk+1(Sn) Gn

2k+1 = Hk(∆
3Sn)

Fn
2k = Hk(∆

2Sn) Fn
2k+1 = Hk+1(∆Sn)

We assume that the preceding determinantal expressions for
the Gn

k and Fn
k hold true.

We use some of the determinantal relations between Hankel
determinants previously given, obtained by using Sylvester
determinantal identity.

Link between ε–algorithm and Shanks’ transformation 12

By replacing the Hankel determinants by the corresponding
Gn

k’s and Fn
k’s , we obtain the two relations

Gn
2k+2F

n+1
2k − Fn

2k+2G
n+1
2k = −Fn+1

2k+1F
n
2k+1

Gn
2k+1F

n+1
2k−1 − Fn

2k+1G
n+1
2k−1 = Fn+1

2k Fn
2k,

which gives the coupled relation (1) given above, that is

Gn
k+1F

n+1
k−1 − Fn

k+1G
n+1
k−1 = (−1)kFn+1

k Fn
k,

when the lower index k is, respectively, odd and even.

Link between ε–algorithm and Shanks’ transformation 13

Similarly, we can obtain the following relations

Gn+1
2k+1F

n
2k+1 − Fn+1

2k+1G
n
2k+1 = −Fn

2k+2F
n+1
2k

Gn+1
2k Fn

2k − Fn+1
2k Gn

2k = Fn
2k+1F

n+1
2k−1

that leads to the coupled relation (2) given above, that is

Gn+1
k Fn

k − Fn+1
k Gn

k = (−1)kFn
k+1F

n+1
k−1,

when the lower index k is, respectively, odd and even.

Thus, when we assume that the determinantal expressions for
the Gn

k and Fn
k hold, the ε–algorithm implements the Shanks’

transformation, that is

e
(n)
k (Sn) = ε

(n)
2k =

Hk+1(Sn)

Hk(∆2Sn)
.

Link between ε–algorithm and Shanks’ transformation 14

It is also possible to verify that the determinantal definitions of
the Shanks’ transformation

ek(Sn) =
Hk+1(Sn)

Hk(∆2Sn)
and

1

ek(∆Sn)
=

Hk(∆
3Sn)

Hk+1(∆Sn)

and the recursive rule of the ε–algorithm with

ek(Sn) = ε
(n)
2k+2 and

1

ek(∆Sn)
= ε

(n)
2k+1

produce identical results.

This verification is based on tricky manipulations of the
identities and the relations given above.

It’s too technical to give them in details.

Link between ε–algorithm and Shanks’ transformation 15

We were able to show that (rule of the ε–algorithm with even
lower indexes)

ε
(n)
2k+2 − ε

(n+1)
2k =

1

ε
(n+1)
2k+1 − ε

(n)
2k+1

,

since we obtained

ε
(n)
2k+2 − ε

(n+1)
2k = −Hk+1(∆Sn+1)Hk+1(∆Sn)

Hk(∆2Sn+1)Hk+1(∆2Sn)
,

and

ε
(n+1)
2k+1 − ε

(n)
2k+1 = −Hk(∆

2Sn+1)Hk+1(∆
2Sn)

Hk+1(∆Sn+1)Hk+1(∆Sn)
.

Link between ε–algorithm and Shanks’ transformation 16

Similarly (rule of the ε–algorithm with odd lower indexes)

ε
(n)
2k+1 − ε

(n+1)
2k−1 =

1

ε
(n+1)
2k − ε

(n)
2k

,

since we obtained

ε
(n)
2k+1 − ε

(n+1)
2k−1 =

Hk(∆
2Sn+1)Hk(∆

2Sn)

Hk(∆Sn+1)Hk+1(∆Sn)
,

and

ε
(n+1)
2k − ε

(n)
2k =

Hk(∆Sn+1)Hk+1(∆Sn)

Hk(∆2Sn+1)Hk(∆2Sn)
.

Link between ε–algorithm and Shanks’ transformation 17

The confluent ε-algorithm

Similar results can be obtained through the Hirota’s bilinear
method for the confluent form of the ε–algorithm obtained
by Wynn (1960) that transforms a function f into a set of
functions {ε2k} which, under some assumptions, converge to
S, the limit of f(t) when t −→ ∞, faster than f . The rule is

εk+1(t) = εk−1(t) +
1

ε′k(t)
,

with ε−1(t) = 0 and ε0(t) = f(t), and it holds

ε2k(t) =
H

(0)
k+1(t)

H
(2)
k (t)

and ε2k+1(t) =
H

(3)
k (t)

H
(1)
k+1(t)

,

The confluent ε-algorithm 18

where

H
(n)
k (t) =

∣∣∣∣∣∣∣∣∣∣∣∣

f (n)(t) f (n+1)(t) · · · f (n+k−1)(t)

f (n+1)(t) f (n+2)(t) · · · f (n+k)(t)
...

...
...

f (n+k−1)(t) f (n+k)(t) · · · f (n+2k−2)(t)

∣∣∣∣∣∣∣∣∣∣∣∣
,

with H
(n)
0 (t) = 1.

The confluent ε-algorithm 19

Setting (Hirota’s bilinear method)

εk(t) =
Gk(t)

Fk(t)
,

and plugging this expression into the recursive rule of the
confluent ε–algorithm, leads to the coupled equations

Gk+1(t)Fk−1(t)− Fk+1(t)Gk−1(t)= (−1)kF2
k(t) (3)

G′
k(t)Fk(t)−Gk(t)F

′
k(t)= (−1)kFk+1(t)Fk−1(t),(4)

that hold true if

Even lower indexes Odd lower indexes

G2k(t) = H
(0)
k+1(t) G2k+1(t) = H

(3)
k (t)

F2k(t) = H
(2)
k (t) F2k+1(t) = H

(1)
k+1(t)

The confluent ε-algorithm 20

The Lotka–Volterra equation

By differentiating the recursive rule of the confluent form of
the ε–algorithm, and by setting Mk(t) = ε′k(t), we obtain a
closed–form solution of the difference-differential equation

M′
k(t) = M2

k(t)[Mk−1(t)−Mk+1(t)].

If we set Nk(t) = Mk(t)Mk+1(t), this relation becomes

M ′
k(t) = Mk(t)[Nk−1(t)−Nk(t)].

Moreover, by replacing the expressions for M′
k(t) and

M′
k+1(t) into

N ′
k(t) = M ′

k(t)Mk+1(t) +Mk(t)M
′
k+1(t),

The Lotka–Volterra equation 21

we obtain the Lotka–Volterra equation

N′
k(t) = Nk(t)[Nk−1(t)−Nk+1(t)].

Now, since Mk(t) = ε′k(t) and εk(t) =
Gk(t)

Fk(t)
, we also have

Mk(t) =
G′

k(t)Fk(t)−Gk(t)F
′
k(t)

F 2
k (t)

,

and it follows

Nk(t) =
G′

k(t)Fk(t)−Gk(t)F
′
k(t)

F 2
k (t)

G′
k+1(t)Fk+1(t)−Gk+1(t)F

′
k+1(t)

F 2
k+1(t)

.

The Lotka–Volterra equation 22

Thanks to (4), we finally obtain a closed–form solution of the
Lotka–Volterra equation

Nk(t) = −Fk−1(t)Fk+2(t)

Fk(t)Fk+1(t)
,

that is

N2k(t) = −
H

(1)
k (t)H

(2)
k+1(t)

H
(2)
k (t)H

(1)
k+1(t)

N2k+1(t) = −
H

(2)
k (t)H

(1)
k+2(t)

H
(1)
k+1(t)H

(2)
k+1(t)

,

with N−1(t) = 0 and N0(t) = −f ′′(t)/f ′(t).

The Lotka–Volterra equation 23

The multistep ε–algorithm

A two-step generalization of Shanks’ transformation and the
ε–algorithm were obtained by Hu, Weniger et al.
We extended this work to the multistep Shanks transformation

ek,m(Sn) =
H

(m)
k+1(Sn)

H
(m)
k (∆m+1Sn)

,

where the determinants H(m)
k (which depend on m) are

H
(m)
k (un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k−1

∆mun ∆mun+1 · · · ∆mun+k−1

∆2mun ∆2mun+1 · · · ∆2mun+k−1

...
...

...

∆(k−1)mun ∆(k−1)mun+1 · · · ∆(k−1)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The multistep ε–algorithm 24

The multistep Shanks’ transformation can be implemented by
the multistep ε–algorithm

ε
(n)
k+1,m = ε

(n+1)
k−m,m+

1∏m
i=1(ε

(n+1)
k−m+i,m − ε

(n)
k−m+i,m)

, k,n = 0,1, . . . ,

with the initial values

ε
(n)
−m,m = 0, ε

(n)
−m+1,m = ε

(n)
−m+2,m = · · · = ε

(n)
−1,m = n, ε

(n)
0,m = Sn, n = 0,1,

Displaying these quantities in a double array similar to the
ε–array, we see that this rule relates 2m+ 2 quantities located
in an extended lozenge covering m+ 2 columns (the first
lower index represents the column in this array) and two
descending diagonals as showed below

The multistep ε–algorithm 25

ε
(n)
k−m+1,m

ε
(n+1)
k−m,m ε

(n)
k−m+2,m

ε
(n+1)
k−m+1,m

. . .
.

. . . ε
(n)
k,m

ε
(n+1)
k−1,m ε

(n)
k+1,m

ε
(n+1)
k,m

The multistep ε–algorithm 26

By Hirota’s bilinear method, following the same lines as for the
ε–algorithm for extending the determinantal relations, we are
able to prove that

ε
(n)
(m+1)k,m = ek,m(Sn) =

H
(m)
k+1(Sn)

H
(m)
k (∆m+1Sn)

and that

ε
(n)
(m+1)(k−1)+1,m =

H
(m)
k−1(∆

m+2Sn)

H
(m)
k (∆Sn)

,

ε
(n)
(m+1)(k−1)+i,m =

Φ
(m)
k+1(∆

i−1Sn)

H
(m)
k (∆iSn)

, i = 2,3, . . . ,m,

where the determinants Φ(m)
k , which also depend on m, are

given by

The multistep ε–algorithm 27

Φ
(m)
k (un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n n+ 1 · · · n+ k − 1

un un+1 · · · un+k−1

∆mun ∆mun+1 · · · ∆mun+k−1

∆2mun ∆2mun+1 · · · ∆2mun+k−1

...
...

...

∆(k−2)mun ∆(k−2)mun+1 · · · ∆(k−2)mun+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with Φ
(m)
−1 (un) = 0 and Φ

(m)
0 (un) = 1.

Sorry, but the proofs are too technical to be given here !!

The multistep ε–algorithm 28

The multistep Shanks’ transformation can be implemented by
the E–algorithm with the initializations gi(n) = ∆imSn for
i = 1, 2, · · · , and for all n, and we get, for all k and n,

E
(n)
k = ek,m(Sn).

Thus, we have the

Theorem 1
A necessary and sufficient condition that, for all n,
ek,m(Sn) = S is that there exist constants a1, . . . ,ak, ak ̸= 0,
such that, for all n,

Sn = S+ a1∆
mSn + a2∆

2mSn + · · ·+ ak∆
kmSn.

The multistep ε–algorithm 29

Let us remind that the kernel of the original Shanks’
transformation

ekm : (Sn) 7−→ (ekm(Sn) = ε
(n)
2km)

is the set of sequences such that, for all n,

Sn = S+ b1∆Sn + · · ·+ bkm∆kmSn,

where b1, . . . , bkm, bkm ̸= 0, are constants. Thus, we have the

Corollary 1
The kernel of the multistep Shanks’ transformation ek,m is
contained into the kernel of the Shanks’ transformation ekm.

The multistep ε–algorithm 30

An extended discrete Lotka–Volterra equation

If we set
(
a
(n)

k−m−1
2

)−1

= ε
(n+1)
k,m − ε

(n)
k,m, then the relation of the

multistep ε–algorithm is transformed into the extended
discrete Lotka–Volterra equation

m−1∏
i=0

a
(n+1)

k−m−1
2 +i

−
m−1∏
i=0

a
(n)

k−m−1
2 +i

=
1

a
(n)

k+m+1
2

− 1

a
(n+1)

k−m+1
2

.

This equation can be considered as the time discretization,
for N = −1, of the extended Lotka–Volterra equation

d

dt

(
m−1∏
i=0

ak−m−1
2 +i

)
=

−N−1∏
i=0

a−1

k+m+1
2 +i

−
−N−1∏
i=0

a−1

k−m+1
2 −i

.

An extended discrete Lotka–Volterra equation 31

Conclusions

The approach developed above could possibly be
extended to other nonlinear convergence acceleration
algorithms such as, for example, the q-difference version of
the ε–algorithm (already done by Hu et al.), or its two
generalizations, or the general ε–algorithm, or the
ρ–algorithm, and the γ–algorithm.

Other algorithms related to them, such as the qd, the η, the ω,
and the rs–algorithms, and the g–decomposition, could also
possibly be treated in a similar way.

Conclusions 32

References
Ü C. Brezinski, Y. He, X.-B. Hu, M. Redivo-Zaglia, J.-Q. Sun, Multistep

ε-algorithm, Shanks’ transformation, and Lotka-Volterra system
by Hirota’s method, Math. Comput., in press.

Ü C. Brezinski, Y. He, X.–B. Hu, J.–Q. Sun, H.–W. Tam, Confluent form
of the multistep ε-algorithm, and the relevant integrable system,
Stud. Appl. Math., 127 (2011) 191-209.

Ü C. Brezinski, M. Redivo–Zaglia, Extrapolation Methods. Theory
and Practice, North–Holland, Amsterdam, 1991.

Ü Y. He, X.–B. Hu, J.–Q. Sun, E.J. Weniger, Convergence
acceleration algorithm via an equation related to the lattice
Boussinesq equation, SIAM J. Sci. Comput, 33 (2011) 1234–1245.

References 33

Ü R. Hirota, The Direct Method in Soliton Theory, Cambridge
University Press, Cambridge, 1992.

Ü D. Shanks, An analogy between transient and mathematical
sequences and some nonlinear sequence–to–sequence
transforms suggested by it, Part I, Memorandum 9994, Naval
Ordnance Laboratory, White Oak, July 1949.

Ü D. Shanks, Non linear transformations of divergent and slowly
convergent sequences, J. Math. Phys., 34 (1955) 1–42.

Ü P. Wynn, On a device for computing the em(Sn) transformation,
MTAC, 10 (1956) 91–96.

Ü P. Wynn, Confluent forms of certain nonlinear algorithms, Arch.
Math., 11 (1960) 223-234.

References 34

