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Hirota’s bilinear method was invented for resolving infegrable
nonlinear partial differential or difference evolution equations
that have solifon solutions.

We will show how Hirota’s bilinear method can lead to a
proof that the e=algorithm of Wynn implements Shanks’
sequence transformation and, reciprocally, that the
quantities computed by this algorithm are expressed by the
ratios of Hankel determinants defining Shanks” transformation.

The link between this algorithm and the Lotka-Volterra
equation will be studied.

Then we will propose a multistep extension of Shanks’
tfransformation, the e-algorithm, and the Lotka-Volterra
eqguation.




Shanks’ transformation and the =—algorithm
Shanks’ transformation (1949, 1955) consists in transforming
(Sn) into the set of sequences {(ex(Sy)} given by

_ I{k+1(Sn)
Hy (A2S,)’

ex(Sh) kn=0,1,...

where A is the usual forward difference operator and where
Hy (u,) denotes the Hankel determinants

Un Un41 T Un+Ek—1
k—1 k—1 k—1

Shanks’ transformation and the =-algorithm



The e=algorithm is a recursive algorithm due to Wynn (1956)
for implementing Shanks’ tfransformation without computing
the Hankel determinants. Ifs rule is

1
n n+1
= e+ kn=0,1,...
€k — &k
withe™ =0and e = 8,.n=0,1,...
IT holds, for all £ and n,
1

e = er(S,) and e, = STAST

The eg,?ﬂ’s are intermediated results, and it holds

(n)  Hik4+1(Sa) (n) Hy (A®S,)
— and = :
“2k T H, (A2S,) “2k+1 T H L (AS,)

Shanks’ transformation and the =-algorithm



Sylvester’s determinantal identity

Let A be a square maitrix, o, 5, and 6 numbers, a,b,cand d
vectors of the same dimension as A.

Let M be the matrix

The Sylvester’s determinantal identity is

a a’ A ¢ al B b A
M| 14| = IR S
b A 7/ A ¢ v d

Sylvester’s determinantal identity



Wynn proved that Shanks’ fransformation can be
implemented via the e—algorithm. His proof was based on
Sylvester’'s and Schweins determinantal identities.

Recently, a generalization of Shanks” transformation was
proposed by Hu, Weniger et al. (SISC 2011). It can be
iImplemented by a two-step s—algorithm whaose construction
relies on Hirota’s bilinear method (1992).

These results were further extended by Brezinski, Hu, R.-Z. et
al. (AMS MCOM, in press) to a multilevel Shanks’s
fransformartion and the corresponding multilevel e—algorithm.

Since this last extension needs a pretty complicated
explanation, in order to give a flavour of these ideas, we will
show how they can also be used in the case of the original
shanks’ transformation and the e-algorithm of Wynn.




Relations between Hankel determinants

First, we will give some relations between Hankel
determinants that will be used in the sequel.
We consider the following deferminant

1 1 - 1
AS, AS,i1 -+ ASnikii
D = . . Z
ARS, AFS,.i - AFS, .4
Sn Sn—l—l Sn—l—k—i—l

It is easy to show that, after some algebraic manipulations,

D= (—=1)*H, 1 (AS),).

Relations between Hankel determinants



Applying only the Sylvester’s identity to D, in different ways,
affer some algebraic manipulatfions, we obtain several
relafions. For instance

Hp 1 (AS,)Hp(AS,11) =
Hy.(A%Sy)Hyp1(Sns1) — Hi(A%Sn1) Hi41(Sn)
Hi1(Sn) Hg—1(ASp41) =
Hy(Sn)Hp(ASp11) — Hie(Sna1)Hig(AS,).
Hi(A%2S,)Hy_1(AS,,11) =
Hy_1(A?S,)Hyp (AS, 1) — Hi—1(A?S, 1) Hi(AS,,)
Hy—1(ASpt1) [Hi1(Sn) Hi—1(A%Sp41) — Hi(A*Sn) H (Sn+1)] =
Hy(ASp41) [Hi—1(A%Sp41) Hi(Sn) — Hi(Snt1) Hi—1(A%S,)]

Relations between Hankel determinants



Hi(AS,11)Hp(AS,) =
Hy,(Snt1)Hi(A%S,) — Hi41(Sn) Hi—1(A%Snt1)
Hy 1 (AS,))Hi—1(A?S,11) =
Hyo(AS,) Hy(A2S, 1) — Hy(AS, 1) Hy(A2S,)
Hy—1(ASp+1) [Hi (A%Sn) Hy (AS41) — Hi41(ASy) Hy—1(A%S),11)] =
Hi(A%2S, 1) [Hi(AS,y1)Hi—1(A3S,) — Hi_1(A%S, 1) Hi(AS,,)]

oooooooooooooooooooooooooooooooooooo

Relations between Hankel determinants Q



The Hirota’s bilinear method

Hirota’s bilinear method is a fechnique which could be much
useful for solving certain nonlinear differential and difference
equations. It consists in expressing the unknown as a ratio of
quantities and, then, freating separately the numerator and
the denominator, trying to find the quantities for which the
equality holds.

We will now apply this method to the s—algorithm. We set

m)  Gg
8k p— F—E

The Hirota’s bilinear method 10



Plugging this expression into the recursive rule of the
e—algorithm given by Wynn, we get

Giia Gyt 1
Fro, R GGy
Ry
GZHF,?lel —F,ﬁrlGZf% o F,?“HF]?
Fi Bty Gy P Fp = F G

and equating the numerators and the denominators of both
sides of this last identity, we obtain the following coupled
relations

Gp Fpfl —Fp G = (-1)*FpH'Fy (D

GPUFR-FPUIGE = (CDMFRLERL @

The Hirota’s bilinear method 11



Link between =—algorithm and Shanks’ transformation
We will now prove that the quantities 81({11) computed by the
Gy

rule of the e—algorithm, are expressed by the ratio (™ = T
k

when we set

Even lower indexes Odd lower indexes
G = Hic+1(Sn) Goky1 = Hy (A®Sy)
F3 = Hk(A%Sy) Foiy1 = Hir1(ASy)

We assume that the preceding determinantal expressions for
the G} and F} hold true.

We use some of the determinantal relations between Hankel
determinants previously given, obtained by using Sylvester
determinantal identity.

Link between =-algorithm and Shanks’ transformation 12



By replacing the Hankel determinants by the corresponding
G1l'sand F's , we obtain the fwo relations

n+1 n—+1 o n+1 n
G2k+2F F2k+2G — F2k+1F2k+1
n—+1 n—+1 L n—+1
2k—|—1F2k 1 2k+1G2k—1 _ F 2k7

which gives the coupled relatfion (1) given above, that is
ke1Fr 1 —FRa GRly = (1) FR T Fy,

when the lower index k is, respectively, odd and even.

Link between =-algorithm and Shanks’ transformation 13



Similarly, we can obtain the following relations

n—+1 n n+1 n - n n+1
G2k+1F2k+1 o F21<+1G2k+1 — _F2k—|-2F2k
n+1 rn n+1,n L n n+1
Gka F2k o FQk GZk _ 2k+1F2k—1

that leads to the coupled relation (2) given above, that is
GRUFR - FRt'GR = (-1)MFR, F
when the lower index k is, respectively, odd and even.

Thus, when we assume that the determinantal expressions for
the G} and F}! hold, the e—algorithm implements the Shanks’
transformation, that is

n n Hk—|—1(sn)
- A

Link between =-algorithm and Shanks’ transformation 14



It is also possible to verify tThat the determinantal definifions of
the Shanks’ fransformation

Hy.1(S,) 1 He(A3S,)

ek(Sn) = ana ex(AS,)  Hygi1(AS,)

- Hy(AZ2S,)

and the recursive rule of the e—algorithm with

n 1 n
ek (Sn) = 6(2k)+2 and e(ASn) E(zk)ﬂ

produce identical results.

This verification is based on tricky manipulations of the
identities and the relations given above.

It’s oo technical fo give them in details.

Link between =-algorithm and Shanks’ transformation 15



We were able to show that (rule of the e—algorithm with even
lower indexes)

S (1) _ !
2k+2 2k ~ _(n+1) (n)
€2k+1 ~ C2k+1

since we obtained

) (1) _ - Hi1(ASp41)Hi1+1(ASy)
sktz Tk Hp(A2S, 1) Hy1(A2S,)

and
D) ) Hy(A2S11)Hip1(A%S))
2k+1 2k+1 Hi 1 (ASp 1) Hik 1 (ASy)

Link between =-algorithm and Shanks’ transformation
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Similarly (rule of the e—algorithm with odd lower indexes)

(n) (n+1) _ 1
fo2k+1 ~ f2k-1 T (1) _ ()’
2k - <2k

since we obtained

L) (1) _ Hy (A2S,1+1)H(A%S,,)
2k+1 2k—1 Hk(ASn+1)Hk+1 (Asn) ’

and
E:('n—l—l) . g(n) _ Hk(ASn—l—l)Hk+1(ASn)
2k 2k HL(A2S, 1 1)HL(A2S,)

Link between =-algorithm and Shanks’ transformation



The confluent =-algorithm

Similar results can be obtained through the Hirota’s bilinear
method for the confluent form of the e—algorithm obtained
by Wynn (1960) that transforms a function f into a set of
functions {eox } Which, under some assumptions, converge to
S, the limit of f(t) when t — oo, faster than f. The rule is

<€k_|_1(t) = Ek_l(t) + 61{]&13)’

with e_1(t) = 0 and gy (t) = f(t), and it holds

H”, (t) H,”) (¢
cak(t) = —— and ez (t) (l;)(),
H,(t) H, 1, (t)

The confluent -algorithm 18



where

H™ (t) =

with H™ (t) =

R0
F )

fokD )

L.

Fo )
Fo )

f(n—|—k) (t)

fokD
IO

f(n+2k—2) (t)

The confluent c-algorithm
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Setting (Hirota's bilinear method)

G (t)
- F(t)’

and plugging this expression info the recursive rule of the
confluent e—algorithm, leads tfo the coupled equations

c‘ik(t)

Gic+1(t)Fi—1(t) — Ficr1 (t)Gio1(t) = (- 1) Fi (t) (3)
Gi(t)Fk(t) — Gi(t)Fi(t) = (1) Fics1 (t)Fic—1(t),(4)

that hold true if

Even lower indexes Odd lower indexes
Go(t) = H{Y), (t)  Gaeya(t) = HP (¢)
Fou(t) = HP(t)  Fapa(t) = HY, (t)

The confluent -algorithm 20



The Lotka-Volterra equation

By differentiafing the recursive rule of the confluent form of
the e—algorithm, and by sefting My (t) = ¢, (t), we obtain a
closed-form solution of the difference-differential equation

M (t) = Mg (t)[My_1(t) — Micq1(t)].
If we set Ny (t) = Mg (t)My.1(t), this relation becomes
M (t) = Mp(t)[Ne—1(t) — Ni(t)].

Moreover, by replacing the expressions for M _(t) and
M 4 (t) info

Ny (t) = My, (8) Myq1 () + My (£) My (1),

The Lotka-Volterra equation
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we obtain the Lotka-Volterra equation

Ni (t) = Ni(t)[Ni—1(t) — Nieya(t)].

Now, since My (t) = ¢} (t) and ek (t) = (;k((:)) , we also have
_ GO F(t) — Gr () F (1)
Mk:(t) — F]3<t) )

and it follows

Ny (t)

_ GLOE(t) — Gi() Fy(t) Ghya () Fra (t) — Gk%—l(t)Fl::Jrl(t).

Fi (1) Fia (1)

The Lotka-Volterra equation
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Thanks to (4), we finally obtain a closed-form solution of the
Lotka-Volterra equation

~ Fioa(t)Fii2(t)

Nkt = = O F i (6)

that is

1 2
H (H)HY), (¢

2 1
T - () ()
21(t) =~ (2) (1)’
H, . (6)HZ, (t)

)
)

with N_1(t) = 0 and No(t) = —£”(t) /£ (t).

The Lotka-Volterra equation



The multistep s—algorithm

A two-step generalization of Shanks’ transformation and the
e—algorithm were obtained by Hu, Weniger et al.
We extended this work to the multistep Shanks fransformation

H,'}) (Sh)
H,™ (Am+1S,,)

ek,m(Sn) —

where the determinants H{™ (which depend on m) are

Un Un+1 T Un+Ek—1
m 2 2 2
H™ (u,) = | A, A2my e ATy

A(k—l)mun+k_1

The multistep -algorithm



The multistep Shanks’ transformation can be implemented by
the multistep s—algorithm

()  _ _(n+1) L _
8k—i—l,m o gk—m,m—i_ m (n+1) (n) ) ka n=0,1,...,
Hi:1(5k—m+i,m - k—m+i,m>
with the inifial values
5(_nr11,m =0, 5&nr11+1’m = 5(_nr)n+2,m == 5(_n1)’m = n, 58?2n =S, n=0,1,....

Displaying these quantifies in a double array similar to the
e—array, we see that this rule relates 2m + 2 quantities located
iIN an extended lozenge covering m + 2 columns (the first
lower index represents the column in this array) and two
descending diagonals as showed below

The multistep =—algorithm 25



()

k—m+41,m
(n+1) (n)
gk—m,m 8k—m—|—2,m

(n+1)
k—m+1m

(n+1)

€k

—1,m

o

_(n+1)

k,m

(n)
€k+1,m

The multistep -algorithm
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By Hirota’s bilinear method, following the same lines as for the
e—algorithm for extending the determinantal relations, we are
able to prove that

. H,") (Sn)
Eérrz+1)k,m — ek,m(sn> — (m) Hm“
H, " (A Sh)
and that
_(n) _ BT (Aams,)
(m+1)(k—1)+1,m Hl({m)<ASn>
(I)(m) Ai—lsn
(n) _ Pl ), i=23...m,

E .
(m+1)(k—1)+i,m H]f{m) (AISH)

where the determinants <I>l({m), which also depend on m, are
given by

The multistep -algorithm
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n n+1 n+k—1

Unp Un+1 Un+k—1
(I)(m) Amun A Un+1 A Un4k—1
k (un) o A2m A2m AZm
Un Un+1 T Un+k—1

Un+k—1

with & (u,,) = 0 and ®{™ (u,,) = 1.

Sorry, but the proofs are too technical to be given here !!

The multistep =—algorithm
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The multistep Shanks’ transformation can be implemented by
the E-algorithm with the initializations g;(n) = A™S,, for
i=1,2,---,and for all n, and we get, for all Kk and n,

EM™ = exm(Sy).

Thus, we have the

Theorem 1
A necessary and sufficient condition that, for all n,
ex.m(Sn) = S is that there exist constants a,, ..., ax, ax # 0,

such that, for all n,

S,=S+a;A™S, +a,A%>™S_ + ...+ a AKTS .

The multistep -algorithm 29



Let us remind that the kernel of the original Shanks’
transformation

€km - (Sn> — (ekm(sn) — <C:(21rll<)m)

is The set of sequences such that, for all n,
S, =S+biAS, + - - + b A¥™TS,,,

where by, ..., bgm, bpm # 0, Are constants. Thus, we have the

Corollary 1
The kernel of the multistep Shanks’ transformation ey ,,, is
contained into the kernel of the Shanks’ fransformation ey,,,.

The multistep -algorithm
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An extended discrete Lotka-Volterra equation

1
fweset (al”,_,) =el"t? "), then the relation of the

k=
multistep e—algorithm is fransformed into the extended
discrete Lotka-Volterra equation

m—1 m—1
[T oah— 1o — -~
k— 214 k— m2—1+i (n) (n+1)

This equation can be considered as the fime discretization,

for N = —1, of the extended Lotka-Volterra equation

d m—1 —N-—-1 —N-—1
_ |I || —1
dt 0 A k+m+1—|—z a k— b g
1=

1=0
An extended discrete Lotka-Volterra equation
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Conclusions

The approach developed above could possibly e
extended to other nonlinear convergence acceleration
algorithms such as, for example, the ¢-difference version of
the e—algorithm (already done by Hu et al.), or ifs two
generalizations, or the general e—algorithm, or the
p—algorithm, and the y-algorithm.

Ofther algorithms related to them, such as the ¢d, the n, the w,

and the rs-algorithms, and the g—decomposition, could also
possibly be treated in a similar way.

Conclusions
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