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The case of continuous functions

Let

w(x) = (1− x)α(1 + x)β, α, β > −1

be a Jacobi weight.
If f ∈ C[−1, 1]

Lm(w , f , x)

denotes the Lagrange interpolating polynomial based on the zeros
of the orthonormal system {pm(w)} w.r.t. w , i.e.

Lm(w , f , xi ) = f (xi ), i = 1, . . . ,m

where pm(w , xi ) = 0, i = 1 . . . ,m
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Let BV denote the set of all functions of bounded variation on
[−1, 1].
Consider f ∈ C ([−1, 1]) ∩ BV

I In 1963 Geronimus proved pointwise convergence in compact
subintervals of (−1, 1) for arbitrary α, β > −1

I In 1980, 1983 P. Vértesi proved that for −1 < α, β < 1/2

lim
m

max
x∈[−1,1]

|Lm(w , f , x)− f (x)| = 0 (1)

and that (1) usually does not hold if max(α, β) ≥ 1/2.

I Nevai (1974), Kelzon (1979, 1984), Sun (1989), Kvernadze
(1996)

We will consider continuous functions with f (r) ∈ BV, r ≥ 1.
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Main results

Now let Q = {qm(x)}m=0,1,... be a sequence of polynomials such
that:

a) for any m the zeros {zk}k=1,m of qm ∈ Pm belong to [−1, 1]

b) for any k,

∣∣∣∣∣
k∑

i=1

1

q′m(zi )

∣∣∣∣∣ ≤ C

m
, C 6= C (m, k)

and consider the Lagrange interpolation process based on the
zk , k = 1 . . . ,m, i.e.

Lm(Q, f , zk ) = f (zk ), k = 1, . . . ,m
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Examples of polynomial sequences satisfying properties a)-b)

I orthonormal polynomials w.r.t. a Jacobi weight
w(x) = (1− x)α(1 + x)β, α, β > −1

I orthonormal polynomials w.r.t. a Generalized Jacobi weight of
the type w(x) = (1− x)α(1 + x)β|x |η, α, β > −1, η ≥ 0
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Theorem

Let f be a continuos and convex function on [−1, 1] and Lm(Q, f )
be the interpolating operator constructed on the nodes of the
polynomials Q = {qm}m defined by properties a)-b). The following
estimate holds

|f (x)− Lm(Q, f , x)| ≤ C
m
|qm(x)| [z1, x , zm; f ], |x | ≤ 1 (2)

where C is a positive constant independent of m, x ad f .
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Now if f ′ ∈ BV, denoting by Γt,1(x) the first truncated power i.e.

Γt,1(x) :=

 (x − t), x > t

0, x ≤ t

it results

|f (x)− Lm(Q, f , x)| ≤
∫ 1

−1
|Γt,1(x)− Lm(Q, Γt,1, x)| |df ′(t)|

≤ C
m
|qm(x)|

∫ 1

−1
[z1, x , zm; Γt,1] |df ′(t)| ≤ C

m
|qm(x)|

∫ 1

−1
|df ′(t)|

By iteration on r , using the Peano formula and the estimate

Em(Γt,0)1 ≤
C
m

√
1− t2, C 6= C(m, t)

we get the following
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Theorem

Let f ∈ C ([−1, 1]) be such that f (r), r ≥ 1, (eventually
discontinuous) is of bounded variation. Moreover let Lm(Q, f ) be
the interpolating operator defined above with m > r . Then for all
x ∈ [−1, 1]

|f (x)− Lm(Q, f , x)| ≤ C
mr
|qm(x)|

∫ 1

−1

(√
1− t2

)r−1
|df (r)(t)|

(3)
where C is a positive constant independent of m, x ad f .

Remark In the Timan book the following Nikolskii result (1947) is
proved

lim
m

mr Em(f ) = C max
x∈(−1,1)

|f (r)(x)+ − f (r)(x)−|
(√

1− x2
)r

where C depends only on r ≥ 1
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Corollary

If u,w are two Jacobi weights then for all x ∈ [−1, 1]

|f (x)− Lm(w , f , x)|u(x) ≤
C

mr
|pm(w , x)u(x)|

∫ 1

−1

(√
1− t2

)r−1
|df (r)(t)|

where C is a positive constant independent of m, x ad f .

Hence if u is chosen such that u√
wϕ ∈ L∞, where ϕ(t) =

√
1− t2,

(i.e. s.t. {pm(w)u}m is uniformly bounded w.r.t. m) then we get
an optimal interpolation process.
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u case

Let u(x) = (1− x)γ(1 + x)δ, γ, δ > −1 be a Jacobi weight and Lp
u

denote the usual Lp weighted space.
Let ϕ(x) =

√
1− x2, r ≥ 1, 1 ≤ p ≤ ∞

W p
r (u) =

{
f ∈ Lp

u : f (r−1) ∈ AC(−1, 1) and ‖f (r)ϕr u‖p <∞
}

‖f ‖W p
r

:= ‖fu‖p + ‖f (r)ϕr u‖p

Moreover let
w(x) = (1− x)α(1 + x)β, α, β > −1, be another Jacobi weight
If f ∈ C[−1, 1]

Lm(w , f , x)

denote the Lagrange interpolating polynomial based on the zeros
of the orthonormal system w.r.t. w
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‖Lm(w , f )‖W p
r (u) ≤ C‖f ‖W p

r (u), r ≥ 1, 1 < p <∞ (4)

and

0 ≤ s ≤ r , ‖[f − Lm(w , f )]‖W p
s (u) ≤ C

‖f ‖W p
r (u)

mr−s
(5)

hold if and only if

u
√

wϕ
∈ Lp,

√
wϕ

u
∈ Lq, q =

p

p − 1
(6)

(Mastroianni, R., 1999)
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Now let f ∈ BV.

If y is a jump point we will define the value of f in y as follows

f (y) :=
f (y)− + f (y)+

2
(7)

where f (y)± = limx→y± f (x).
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The previous result can be completed by the following

Theorem

Let f (r) ∈ BV, r ≥ 0. Then for all 1 < p <∞ and with
C 6= C(m, f ) it results

‖[f −Lm(w , f )]u‖p ≤
C

mr+ 1
p

∫ 1

−1

(√
1− t2

)r+ 1
p

u(t)|df (r)(t)| (8)

if and only if (6) hold true.

Remark
Hence if f (r) ∈ BV, r ≥ 1 we get an extra 1

p in the order of
convergence, as in the error of best approximation.
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In 1993 Prestin proved for 1 ≤ p <∞ and for arbitrary
α, β, γ, δ > −1, ε > 0, that for f ∈ BV

(∫ 1−ε

−1+ε
|f (x)− Lm(w , f , x)|pup(x) dx

) 1
p

≤ C

m
1
p

V (f )

[
log m, p = 1
1, 1 < p <∞

where V (f ) denotes the total variation of f on [−1, 1].
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Remark
By the stated Theorem it results

‖[f − Lm(w , f )]u‖p = O
(

m−r− 1
p

)
.

The arising question is: when the “O” can be replaced by “o”?
A simple Lp condition is∫ 1

0

Ωs
ϕ(f (r), t)u,p

t1+ 1
p

dt < +∞, s > r , (9)

since by the Theorem in [Mastroianni,R.] it easily follows that

‖[f − Lm(w , f )]u‖p = o
(

m−r− 1
p

)
.

Note that (9) implies that f (r) ∈ C 0(−1, 1).
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More in general we get the following Corollary.

Corollary

Under the assumptions (6), if f (r) ∈ BV, r ≥ 0, is continuous on
[−1, 1], then

‖[f − Lm(w , f )]u‖p = o
(

m−r− 1
p

)
.

and the constants in “o” are independent of m.
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That’s all.

Thank you for your attention!
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