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Outline

Electrical impedance tomography



Electrical impedance tomography (EIT)
is an emerging medical imaging technique

Feed electric currents through

electrodes. Measure the re-

sulting voltages. Repeat the

measurement for several cur- .
rent patterns.

Reconstruct distribution of Z
electric conductivity inside the
patient. Different tissues have
different conductivities, so EIT
gives an image of the patient's
inner structure.

EIT is a harmless and pain-

less imaging method suitable
for long-term monitoring. wﬁf



The most promising use of EIT is detection of
breast cancer in combination with mammography

Radiolucent electrodes

| A

Cancerous tissue is up to four times more conductive than healthy breast
tissue [Jossinet 1998]. The above setup of David Isaacson’s team mea-
sures 3D X-ray mammograms and EIT data at the same time.



Which of these three breasts have cancer?




Spectral EIT can detect cancerous tissue

[Kim, Isaacson, Xia, Kao, Newell & Saulnier 2007]



This talk concentrates on applications of EIT to
chest imaging

Applications: monitoring cardiac
activity, lung function, and pul-
monary perfusion. Also, electro-
cardiography (ECG) can be en-
hanced using knowledge about Z@

conductivity distribution.




The mathematical model of EIT is the inverse
conductivity problem introduced by Calderén

Let Q  R? be the unit disc and let
conductivity o : Q2 — R satisfy

0< M <o(z) <M.

Applying voltage f at the boundary 02
leads to the elliptic PDE

{V-UVU = 0in Q,

u‘ag = f.
Boundary measurements are modelled Calderén's problem is to re-
by the Dirichlet-to-Neumann map cover o from the knowledge

5y of A,. It is a nonlinear and
f U—|aQ ill-posed inverse problem.



Many different types of reconstruction methods
have been suggested for EIT in the literature

e Linearization: Barber, Bikowski, Brown, Cheney, Isaacson, Mueller,
Newell

e Iterative regularization: Dobson, Hua, Kindermann, Leitdo, Lechleiter,
Neubauer, Rieder, Rondi, Santosa, Tompkins, Webster, Woo

e Bayesian inversion: Fox, Kaipio, Kolehmainen, Nicholls, Pikkarainen,
Ronkanen, Somersalo, Vauhkonen, Voutilainen

e Resistor network methods: Borcea, Druskin, Mamonov, Vasquez

e Layer stripping: Cheney, Isaacson, Isaacson, Somersalo

e D-bar methods: Astala, Bikowski, Bowerman, Isaacson, Kao, Knudsen,
Lassas, Mueller, Murphy, Nachman, Newell, P&ivarinta, Saulnier, S,
Tamasan

e Teichmiiller space methods: Kolehmainen, Lassas, Ola

e Methods for partial information: Alessandrini, Ammari, Bilotta, Briihl,
Erhard, Gebauer, Hanke, Hyvonen, Ide, lkehata, Isozaki, Kang, Kim,
Kwon, Lechleiter, Lim, Morassi, Nakamura, Nakata, Potthast, Rossetand,
Seo, Sheen, S, Turco, Uhlmann, Wang, and others



History of CGO-based methods for real 2D EIT

Infinite-precision data

Practical data

1980 Calderén

2008 Bikowski & Mueller

1987 Sylvester & Uhlmann (d > 3)
1988 Nachman
1988 R G Novikov

2008 Boverman, Isaacson, Kao,
Saulnier & Newell
2010 Bikowski, Knudsen & Mueller

1996 Nachman (o € C*(Q))
1997 Liu

2000 S, Mueller & lsaacson

2003 Mueller & S

2004 Isaacson, Mueller, Newell & S
2006 Isaacson, Mueller, Newell & S
2007 Murphy & Mueller

2008 Knudsen, Lassas, Mueller & S
2009 Knudsen, Lassas, Mueller & S
2009 S & Tamminen

1997 Brown & Uhlmann (o € C'(9))
2001 Barceld, Barcel6 & Ruiz

2001 Knudsen & Tamasan
2003 Knudsen

2000 Francini

2003 Astala & Paivarinta (o € L*°(Q))
2005 Astala, Lassas & Péiviérinta

2007 Barceld, Faraco & Ruiz

2008 Clop, Faraco & Ruiz

2009 Astala, Mueller, Paivarinta & S
2011 Astala, Mueller, Paivérinta,
Peramiaki & S



Outline

Regularization of nonlinear inverse problems



The forward map F : X D D(F) — Y of an ill-posed
problem does not have a continuous inverse

Model space X Data space Y




Regularization means constructing a continuous
map [, : Y — X that inverts F approximately

Model space X

Data space Y




The regularization strategy need to be constructed
so that these assumptions are satisfied

A family I, : Y — X of continuous mappings parameterized by
0 < o < o0 is a regularization strategy for F if

lim [[Fo(As) —ol|x =0
a—0

for each fixed o € D(F).
Further, a regularization strategy with a choice o = «(¢) of
regularization parameter is called admissible if

a(d) - 0asd — 0,
and for any fixed o € D(F) the following holds:

suP{Hr y(A)) = ollx : Ny = Aslly <6} —0asd —0.



Outline

D-bar method for infinite-precision data



Nachman’'s 1996 uniqueness proof for 2D inverse
conductivity problem relies on CGO solutions

Define a potential g by setting g(z) = 0 for z outside Q2 and
q(z) = ——=—= forze Q.

Then g € Go(€2). We look for solutions of the Schrédinger equation
(—A+q)(-,k)=0 inR?
parametrized by k € C\ 0 and satisfying the asymptotic condition
e k(2 k) —1 € WHP(R?), p>2,

where ikz = i(ky + iko)(x + iy). By [Nachman 1996] we know that
there exists a unique solution (-, k) for any fixed k # 0.



The crucial intermediate object in the proof
is the non-physical scattering transform t(k)

We denote z = x + iy € C or z = (x, y) € R? whenever needed.
The scattering transform t : C — C is defined by

(k)= [ eq(z)i(z.k) ey 1)
R2
Sometimes (1) is called the nonlinear Fourier transform of q.
This is because asymptotically ¢(z, k) ~ e/ as |z| — o0,
and substituting e’*? in place of 1(z, k) into (1) results in

R2 ]Rz

—  G(—2kq, 2ko).



Another convenient trick in the proof is to
make use of the functions (z, k) = e %) (z, k)

Define u(z, k) = e *24)(z, k). Then (—A + q)i» = 0 implies
(—A—4lk5z+CI)M(,k) = 07 (2)

where the D-bar operator is defined by 9, = 3(2 + i%).
The asymptotic properties of ) imply that

:U’(Za k) —1le Wl’b(R2)7 p>2. (3)
Substituting k = 0 into (2) gives

& Ag u(-.0) =0, (4)

and /(z,0) = /o(z) gives the unique solution of (3) and (4).



These are the steps of Nachman’s 1996 proof:

Solve boundary integral equation
D(- k)loa = €™ — Sk(Ny — M)y

for every complex number k € C.

Fredholm equation of 2nd kind,
ill-posedness shows up here.

Evaluate the scattering transform:

t(k) = /BQ e 2 (N, — A )Y(-, k) ds.

Simple integration.

Fix z € Q. Solve D-bar equation
0 t(k

o (k)

Ok 4k

with p(z, -) —1€ L" N L>(C).

(Z, k) — __e—i(kz+EE)u(z’ k)

Well-posed problem, can be
analyzed by scattering theory.

Reconstruct: o(z) = (u(z,0))>2.

Trivial step.



Outline

Regularization using non-linear low-pass filtering



Let us analyze how the regularization works

using a simulated heart-and-lungs phantom




This is how the actual scattering transform looks
like in the disc |k| < 10, computed by knowing o

—8

Real part of t(k) Imaginary part




Scattering transform in the disc |k| < 10, here
computed from noisy measurement A’

Real part of t(k) Imaginary part
-r"l-
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Infinite-precision data:

Solve boundary integral equation
U+, K)loa = " = Sk(Ng — A1)y

for every complex number k € C.

Practical data:

Solve boundary integral equation
V(- K)lon = €™ — Sk(Ag — A )y’
for all [k| < R = R(0).

Evaluate the scattering transform:

t(k) = /m e 2 (A, — AL )Y(-, k) ds.

For |k| > R set ti(k) = 0. For k| < R

th(K) = / SRE(ND — A )y (-, k) ds.
o0

Fix z € Q. Solve D-bar equation

%M(Zv k) = ! —)

4k
with p(z, ) —1 € LN L>(C).

kz+kz

Ju(z, k)

Fix z € Q. Solve D-bar equation

J th(k)
- k)= R/
oRiR(Z ) =

) —1eLrnL>(C).

e~ HRD) T 7 1)

with u%(z

= (1(z,0))>.

Reconstruct: o(z)

Set Ta(5) (A7) = (1 (2, 0))%.



We define spaces for our regularization strategy
Model space X Data space Y

Consider F : X D D(F) — Y with X = L*>°(Q2). Let M > 0 and
0 < p < 1. Now D(F) consists of functions o : Q — R satisfying

HJHC2(§) <M, o(z)>M7 ando(z)=1forp<|z| <1

Y comprises bounded linear operators A : H/2(9Q) — H~1/2(6Q)
satisfying A(1) = 0 and / A(f)do = 0.
o2



Main result: nonlinear low-pass filtering yields a
regularization strategy with convergence speed

Theorem (Knudsen, Lassas, Mueller & S 2009)

There exists a constant 0 < dp < 1, depending only on M and p,
with the following properties. Let o € D(F) be arbitrary and
assume given noisy data N, satisfying

A2 = Aslly <0 < do.
Then T, with the choice

R(0) = —% log d, a(0) =

is well-defined, admissible and satisfies the estimate

ITa)(AY) = ol (@) < C(—log §) "1/,



Numerical solution of traces of CGO solutions
from the boundary integral equation

Define Fourier basis functions Electrodes Theory

1 ~\“Tllr,
9 = 7ein9. ﬁh ‘A
&
We invert the linear operator it
appearing in the equation
5 5 ikz (lh‘f
V(- k)loa = [1+Sk(Ag—N1)]e™ o L9
= =
as a matrix in span({@a}h__\ ). ‘\Z y’h
Ly
The single-layer operator
b,
(Sk9)(z Gk (z—w)p(w) ds(w) S Yo
- =
- -~
A ~
uses Faddeev s Green s function. )\/11 1\\\



Numerical solution of the D-bar equation is based
on the periodization approach of G. Vainikko

The generalization of Vainikko's
method for the D-bar equation is 4
described in [Knudsen, Mueller &

S 2004].

The D-bar equation
9 L 5
= = —=th(k)e_,(k)u :
5‘k'uR ark r(k)e—z(k)ug

together with the asymptotics

pR(z, -) —1e L' NL>(C)

can be combined in a generalized
Lippmann-Schwinger equation:

&(z k):l—i t6"‘(71")(9 (k") % (z, k') dk dkb
HRr\Z, a2 C(k—k’)/;’ —z\K' )HR\Z, 10K3-



This is the real-linear operation given to GMRES

[ Tr¢ Trd Trd Tro ]
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|-
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Regularized reconstructions from simulated data
with noise amplitude [|6]| = ||A2—A, ||y
6]l =~ 107% ||§|| ~ 1075

6] =~ 10=* ||d|| =~ 1073

) (O

6] ~ 102

©

The percentages are the relative square norm errors in the reconstructions.



The observed radii are better (=larger) than those
given by the theoretical formula R(§) = —1; logé

Practical radii

10° 10 10~



Conclusion

We have constructed the first direct (non-iterative) regularization
strategy for a global nonlinear PDE coefficient recovery problem.

Efficient implementation available, based on Vainikko's method.

The nonlinear low-pass filter regularization approach has an explicit
speed of convergence in a Banach space setting.

The method works with real data as well:

[Isaacson, Mueller,
Newell & S 2006]




Thank you for your attention!

Preprints available at www.siltanen-research.net.
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