
Kogbetliantz–like Method for the Hyperbolic SVD

Sanja Singer, Vedran Novaković

Faculty of Mechanical Engineering and Naval Architecture

University of Zagreb, Croatia

International Conference on Scientific Computing, SC2011
Santa Margherita di Pula, Sardinia, Italy

14th October 2011

Outline of the talk

Main topics:

I motivation for the construction of the hyperbolic SVD,
I the basics of the hyperbolic SVD,
I 2× 2 matrices and their hyperbolic SVD,
I remaining problems and possible solutions,
I numerical examples.

Introduction

Modern eigenvalue algorithms need to be:

I accurate in the relative sense (“accurate”):

|λ̃i − λi | ≤ f (n)ε|λi |,

where f is a slowly growing function of the matrix dimension
n, for all eigenvalues λi , λi 6= 0.

I fast – comparable in speed with the “inaccurate” algorithms
(algorithms accurate in absolute sense)

|λ̃i − λi | ≤ f (n)ε|λmax|.

Motivation — accurate eigenvalue computation

Common knowledge

I For general nonsymmetric matrices – we know almost nothing
about accurate eigenvalue computation.

I For symmetric (Hermitian) positive definite matrices –
eigenvalue computation is equivalent to the SVD of the full
column rank (e.g. Cholesky) factor G (or SVD of G ∗) of A. If

A = GG ∗ and G = U
[

Σ
0

]
V ∗ =⇒ λi (A) = σ2i (G).

This is the easiest case, with several accurate algorithms
I the one-sided Jacobi algorithm,
I the Kogbetliantz algorithm,
I differential qd algorithm. . .

Motivation — accurate eigenvalue computation (cnt.)

Common knowledge

I For symmetric (Hermitian) indefinite matrices – eigenvalue
computation is equivalent to hyperbolic SVD (HSVD) of the
Hermitian indefinite factor G of A = GJG ∗, where
J = diag(±1) is a signature matrix.
If G ∈ Cm×n, m ≥ n is of full column rank then

G = U
[

Σ
0

]
V ∗,

where U ∈ Cm×m is unitary, Σ diagonal with nonnegative
elements, and V ∈ Cn×n is J-unitary, i.e., V ∗JV = J.
If A = GJG ∗ is given by G and J then HSVD of G implies

G = UΣV ∗, V ∗JV = J =⇒ λi (A) = σ2i (G)Jii .

The one–sided hyperbolic Jacobi algorithm

Accurate algorithm for the HSVD

1. Optional first step: if A is given, A is factored by the
Hermitian indefinite factorization (Bunch, Parlett (’71)) to
obtain full column rank factor G :

A = GJG ∗.

Spectrum of A = spectrum of the matrix pair (G ∗G , J).
2. The matrix pair (G ∗G , J) is simultaneously diagonalized

(Veselić (’93)) by
I ordinary trigonometric rotations (signs in J equal), or
I hyperbolic rotations (signs in J different).

This diagonalization is performed implicitly—as the one-sided
algorithm.

The one–sided hyperbolic Jacobi algorithm (cnt.)

The sines/cosines of the angles are computed from the pair
(G ∗G , J), but applied from the right-hand side on G .

For example, if

J = diag(1,−1, 1,−1)

and the strategy is row-cyclic

alg. on G ∗G : alg. on G :

0

0

Diagonalization of a pivot block in G ∗G is equivalent to
orthogonalization of the two columns in G .

The one–sided hyperbolic Jacobi algorithm (cnt.)

The sines/cosines of the angles are computed from the pair
(G ∗G , J), but applied from the right-hand side on G .

For example, if

J = diag(1,−1, 1,−1)

and the strategy is row-cyclic

alg. on G ∗G : alg. on G :

0

0

Diagonalization of a pivot block in G ∗G is equivalent to
orthogonalization of the two columns in G .

The one–sided hyperbolic Jacobi algorithm (cnt.)

The sines/cosines of the angles are computed from the pair
(G ∗G , J), but applied from the right-hand side on G .

For example, if

J = diag(1,−1, 1,−1)

and the strategy is row-cyclic

alg. on G ∗G : alg. on G :

0

0

Diagonalization of a pivot block in G ∗G is equivalent to
orthogonalization of the two columns in G .

The one–sided hyperbolic Jacobi algorithm (cnt.)

The sines/cosines of the angles are computed from the pair
(G ∗G , J), but applied from the right-hand side on G .

For example, if

J = diag(1,−1, 1,−1)

and the strategy is row-cyclic

alg. on G ∗G : alg. on G :

0

0

Diagonalization of a pivot block in G ∗G is equivalent to
orthogonalization of the two columns in G .

The one–sided hyperbolic Jacobi algorithm (cnt.)

The sines/cosines of the angles are computed from the pair
(G ∗G , J), but applied from the right-hand side on G .

For example, if

J = diag(1,−1, 1,−1)

and the strategy is row-cyclic

alg. on G ∗G : alg. on G :

0

0

Diagonalization of a pivot block in G ∗G is equivalent to
orthogonalization of the two columns in G .

The one–sided hyperbolic Jacobi algorithm (cnt.)

The sines/cosines of the angles are computed from the pair
(G ∗G , J), but applied from the right-hand side on G .

For example, if

J = diag(1,−1, 1,−1)

and the strategy is row-cyclic

alg. on G ∗G : alg. on G :

0

0

Diagonalization of a pivot block in G ∗G is equivalent to
orthogonalization of the two columns in G .

The Kogbetliantz algorithm

Accurate algorithm for the SVD

1. If it is used for the eigenvalue computation, matrix A should
be factored by the Cholesky factorization as A = GG ∗.

2. Matrix G is diagonalized (directly, i.e., two-sided) by ordinary
trigonometric rotations from both left and right, but with
different angles, ϕ and ψ.

3. If the matrix G is symmetric, the Kogbetliantz algorithm is
just the ordinary two-sided Jacobi eigenvalue algorithm, with
ϕ = ψ.

4. The initial matrix G is usually preprocessed, to be “more
diagonal”, by one or two QR factorizations.

The Kogbetliantz algorithm (cnt.)

The sines/cosines of the angles are computed directly from G .

For example, if and the strategy is row-cyclic, and the matrix is
upper triangular,

alg. on G :

0

0

The Kogbetliantz algorithm (cnt.)

The sines/cosines of the angles are computed directly from G .

For example, if and the strategy is row-cyclic, and the matrix is
upper triangular,

alg. on G :

0

0

The Kogbetliantz algorithm (cnt.)

The sines/cosines of the angles are computed directly from G .

For example, if and the strategy is row-cyclic, and the matrix is
upper triangular,

alg. on G :

0

0

The Kogbetliantz algorithm (cnt.)

The sines/cosines of the angles are computed directly from G .

For example, if and the strategy is row-cyclic, and the matrix is
upper triangular,

alg. on G :

0

0

The Kogbetliantz algorithm (cnt.)

The sines/cosines of the angles are computed directly from G .

For example, if and the strategy is row-cyclic, and the matrix is
upper triangular,

alg. on G :

0

0

The Kogbetliantz algorithm (cnt.)

The sines/cosines of the angles are computed directly from G .

For example, if and the strategy is row-cyclic, and the matrix is
upper triangular,

alg. on G :

0

0

Properties of the one-sided Jacobi algorithm

Favorable properties

1. Very accurate and fairly simple.
2. Very fast, provided all the tricks are used: dgejsv (Drmač).
3. Ideal for parallelization.
4. Can be generalized to work with the block-columns.
5. Output: matrix Ĝ = UΣ, accumulation of the eigenvectors

unnecesary.

Shortcomings

1. It destroys the initial almost diagonality/triangularity of G .
2. In the final stages of the process, there are huge cancelations

in computing the rotation parameters (dot products of almost
orthogonal vectors).

3. Checking for convergence is very expensive.

Properties of the Kogbetliantz algorithm

Favorable properties

1. It further diagonalizes the starting almost diagonal triangular
matrix (it preserves the triangular form).

2. It has very cheap and sound stopping criterion.
3. It is relatively accurate (Hari–Matejaš).
4. Some tricks can be borrowed from the one-sided Jacobi.
5. Algorithm can be parallelized (Hari–Zadelj-Martić).
6. Block version of the method can be designed (Bujanović).

Shortcomings

1. Algorithm is slower: transforms both rows and columns.
2. Less freedom in choosing the pivot strategy.
3. Eigenvector computation needs additional storage.

The algorithms

one sided two-sided
trigonometric Jacobi Kogbetliantz
hyperbolic Jacobi missing

Fill the missing algorithm

I all the existing algorithms are accurate in the relative sense,
I expectation: the missing one should be also accurate—proof

harder than expected!

An alternative to the hyperbolic Jacobi algorithm

The main goals:

1. Provide an alternative to the hyperbolic one-sided Jacobi
algorithm by the hyperbolic Kogbetliantz algorithm.

2. Find accurate 2× 2 HSVD for triangular matrices.
3. Prove accuracy of the obtained algorithm.
4. Prove the global and the asymptotic convergence.

An alternative to the hyperbolic Jacobi algorithm

The hyperbolic Kogbetliantz algorithm:

I usually works in sweeps,
I in each step (according to a pivot strategy) a 2× 2 pivot

submatrix is chosen for diagonalization,
I computes (hyperbolic) sines/cosines of the angles,
I trigonometric transformations are applied to rows,
I trigonometric/hyperbolic transformations are applied to

columns,
I pivot submatrix is updated (exact zeros are set to the

off-diagonal).

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Trigonometric annihilation relation in matrix form

[
cosϕ sinϕ
− sinϕ cosϕ

] [
gii gij
gji gjj

] [
cosψ − sinψ
sinψ cosψ

]
=

[
g ′ii 0
0 g ′jj

]
.

Hyperbolic annihilation relation in matrix form

[
cosϕ sinϕ
− sinϕ cosϕ

] [
gii gij
gji gjj

] [
coshψ − sinhψ
− sinhψ coshψ

]
=

[
g ′ii 0
0 g ′jj

]
.

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Trigonometric relations: left-hand side first (L-R)

(gii cosϕ+ gji sinϕ) cosψ + (gij cosϕ+ gjj sinϕ) sinψ = g ′ii
−(gii cosϕ+ gji sinϕ) sinψ + (gij cosϕ+ gjj sinϕ) cosψ = 0
−(gii sinϕ− gji cosϕ) cosψ − (gij sinϕ− gjj cosϕ) sinψ = 0

(gii sinϕ− gji cosϕ) sinψ − (gij sinϕ− gjj cosϕ) cosψ = g ′jj .

Hyperbolic relations: left-hand side first (L-R)

(gii cosϕ+ gji sinϕ) coshψ − (gij cosϕ+ gjj sinϕ) sinhψ = g ′ii
−(gii cosϕ+ gji sinϕ) sinhψ + (gij cosϕ+ gjj sinϕ) coshψ = 0
−(gii sinϕ− gji cosϕ) coshψ + (gij sinϕ− gjj cosϕ) sinhψ = 0

(gii sinϕ− gji cosϕ) sinhψ − (gij sinϕ− gjj cosϕ) coshψ = g ′jj .

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Trigonometric case: L-R

tanψ =
gij + gjj tanϕ
gii + gji tanϕ

=
−gii tanϕ+ gji

gij tanϕ− gjj
,

τ := tan 2ϕ =
2(giigji + gijgjj)

g2ii − g2jj + g2ij − g2ji
.

Hyperbolic case: L-R

tanhψ =
gij + gjj tanϕ
gii + gji tanϕ

=
gii tanϕ− gji

gij tanϕ− gjj
,

τ := tan 2ϕ =
2(giigji − gijgjj)

g2ii + g2jj − g2ij − g2ji
.

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Two solutions for tanϕ, trigonometric case: L-R
Both tangents can be taken for annihilation.

(tanϕ)1 = −1 +
√
1 + τ2

τ
, (tanϕ)2 =

τ

1 +
√
1 + τ2

.

Two solutions for tanϕ, hyperbolic case: L-R
At most one solution is suitable, since it has to give | tanhψ| < 1 in
the later computation. Which one? Not clear immediately. . .

(tanϕ)1 = −1 +
√
1 + τ2

τ
, (tanϕ)2 =

τ

1 +
√
1 + τ2

.

Hyperbolic Kogbetliantz algorithm

Hyperbolic case: L-R
Note that |τ | can be infinity or zero. For example, let

G =

[
1 2
2 1

]
.

In this case tan 2ϕ = 0, and if we take tanϕ = 0 we obtain

tanhψ = 2 (!!!)

The other solution is tanϕ = ±∞, and in this case

tanhψ =
1
2
.

Hyperbolic Kogbetliantz algorithm

Theorem
In the L-R algorithm, if both (tanϕ)1,2 are well-defined, exactly one
is suitable for the definition of the hyperbolic tangent.

Note that

(tanϕ)1 = −1 +
√
1 + τ2

τ
, (tanϕ)2 =

τ

1 +
√
1 + τ2

can be accurately computed (no subtractions!).

Previous example with tanϕ = ±∞ motivates us to try the
right-hand side first algorithm.

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Trigonometric relations: right-hand side first (R-L)

(gii cosψ + gij sinψ) cosϕ+ (gji cosψ + gjj sinψ) sinϕ = g ′ii
−(gii sinψ − gij cosψ) cosϕ− (gji sinψ − gjj cosψ) sinϕ = 0
−(gii cosψ + gij sinψ) sinϕ+ (gji cosψ + gjj sinψ) cosϕ = 0

(gii sinψ − gij cosψ) sinϕ− (gji sinψ − gjj cosψ) cosϕ = g ′jj .

Hyperbolic relations: right-hand side first (R-L)

(gii coshψ − gij sinhψ) cosϕ+ (gji coshψ − gjj sinhψ) sinϕ = g ′ii
−(gii sinhψ − gij coshψ) cosϕ− (gji sinhψ − gjj coshψ) sinϕ = 0
−(gii coshψ − gij sinhψ) sinϕ+ (gji coshψ − gjj sinhψ) cosϕ = 0

(gii sinhψ − gij coshψ) sinϕ− (gji sinhψ − gjj coshψ) cosϕ = g ′jj .

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Trigonometric case: R-L

tanϕ = −
gii tanψ − gij

gji tanψ − gjj
=

gji + gjj tanψ
gii + gij tanψ

,

σ := tan 2ψ =
2(giigij + gjigjj)

g2ii − g2ij + g2ji − g2jj
.

Hyperbolic case: R-L

tanϕ = −
gii tanhψ − gij

gji tanhψ − gjj
=

gji − gjj tanhψ
gii − gij tanhψ

,

σ := tanh 2ψ =
2(giigij + gjigjj)

g2ii + g2ij + g2ji + g2jj
.

Hyperbolic Kogbetliantz algorithm

Theorem
In the R-L algorithm, |σ| ≤ 1 since

(|gii | − |gij |)2 + (|gji | − |gjj |)2 ≥ 0.

Equality holds if and only if gii = gij and gji = gjj , or gii = −gij and
gji = −gjj , i.e., if and only if the pivot matrix is singular.

Note that if pivot matrix is triangular and nonsingular, tanh 2ψ is
always well-defined. Additionally, it is always computed accurately
(no subtractions!).

This motivates us to try the triangular R-L algorithm.

Trigonometric vs. hyperbolic Kogbetliantz algorithm

Two solutions for tanψ, trigonometric case: R-L
Both tangents can be taken for annihilation.

(tanψ)1 =
σ

1 +
√
1 + σ2

, (tanψ)2 = −1 +
√
1 + σ2

σ
.

Two solutions for tanhψ, hyperbolic case: R-L
At most one solution is suitable, and it is always | tanhψ1| < 1.
Note that we have unpleasant subtractions!

(tanhψ)1 =
σ

1 +
√
1− σ2

, (tanhψ)2 =
1 +
√
1− σ2
σ

.

Advantages of the triangular Kogbetliantz algorithm

Update of the diagonal elements for upper triangular G :

g ′ii =
gii cosϕ
cosψ

=
gjj sinψ
sinϕ

, g ′jj =
gii sinϕ
sinψ

=
gjj cosψ
cosϕ

.

Update of the diagonal elements for upper triangular G :

g ′ii =
gii cosϕ
coshψ

= −
gjj sinhψ
sinϕ

, g ′jj = −gii sinϕ
sinhψ

=
gjj coshψ
cosϕ

.

Formulæ for lower triangular G are similar.

Advantages of the triangular Kogbetliantz algorithm

Hari and Matejaš have proved that choice L-R or R-L
transformations (in the trigonometric case) depends on

I size of the elements in a triangle,
I structure of the matrix (lower or upper triangular).

In the hyperbolic case,
I examples indicate that always at least one transformation L-R

or R-L has accurately computed angles,
I it is not easy to say which transformation has this property,
I the algorithm works well with almost orthogonal factor.

Pathological examples

Example 1

G =

[
10−6 1

1

]
, J = diag(1,−1).

Exact values:

(tanϕ)1 = −0.9999999999995,
(tanϕ)2 = 1.0000000000005,

(tanhψ)1 = 4.99999999999875 · 10−7,
(tanhψ)2 = 2.0000000000005 · 106.

L-R algorithm:
(tanϕ)1 = −1,
(tanϕ)2 = 1,

(tanhψ)1 = 5.00044 · 10−7,
(tanhψ)2 = 2 · 106.

R-L algorithm:
(tanhψ)1 = 5.0 · 10−7,
(tanhψ)2 = 1.99982 · 106,

(tanϕ)1 = −1,
(tanϕ)2 = 0.999822.

Pathological examples

Example 2

G =

[
1 1

10−6

]
, J = diag(1,−1).

Exact values:

(tanϕ)1 = −0.999999500000125,
(tanϕ)2 = 1.000000500000125,

(tanhψ)1 = 0.9999990000005,
(tanhψ)2 = 1.0000010000005.

L-R algorithm:
(tanϕ)1 = −1,
(tanϕ)2 = 1,

(tanhψ)1 = 0.999999,
(tanhψ)2 = 1.

R-L algorithm:
(tanhψ)1 = 0.999999,
(tanhψ)2 = 1,

(tanϕ)1 = −0.999988,
(tanϕ)2 = 0.999989.

Pathological examples

Example 3

G =

[
10−6 1

10−6

]
, J = diag(1,−1).

Exact values:

(tanϕ)1 = −999999.999999,
(tanϕ)2 = 1.000000000001 · 10−6,

(tanhψ)1 = 9.99999999999 · 10−7,
(tanhψ)2 = 1.000000000001 · 106.

L-R algorithm:
(tanϕ)1 = −1.00002 · 106,
(tanϕ)2 = 1 · 10−6,

(tanhψ)1 = −22.1222,
(tanhψ)2 = 1 · 106.

R-L algorithm:
(tanhψ)1 = 1 · 10−6,
(tanhψ)2 = 999967,

(tanϕ)1 = −1 · 106,
(tanϕ)2 = −33.3883.

Conclusion

Future work
I decision procedure when L-R/R-L algorithm for 2× 2 matrix is

better than the other,
I proof of global and asymptotic convergence of the algorithm

(off-norm and norm of the matrix can increase in a sweep),
I blocking and parallelization.

	Motivation
	The basics of the hyperbolic Kogbetliantz algorithm
	Kogbetliantz algorithm for matrices of order 2
	Pathological examples

