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Fixed-Point lteration

Xk+1:F(Xk), k:0,1,....
F : Q Cc RP — Q, and differentiable

@ Fis acontraction: ||F(x) — F(Y)|| < ||x = y||, Vx,y € Q

@ Associated Lyapunov function L(x) such that
L(Xk+1) = L(xk)
@ Guaranteed convergence: {xx} — x* € Q
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EM Algorithm

Let y, z, x, be observed, missing, and complete data,
respectively.
The k-th step of the iteration:

Ok+1 = argmax Q(016x); k=0,1,...,
where
Q(010k) = E[Lc(0)]y, 04l
— [ Loy o0z

Ascent property: Lops(6i+1) > Lops(6k)

The goal is to maximize Lys(0; y)
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Why is EM So Popular?

@ Seminal work of Dempster, Laird, and Rubin (1977)
@ Most popular approach in computational statistics
@ Computes MLE in “incomplete” data type problems

@ Reduces incomplete-data problem (difficult) to
complete-data problem (easier).

@ Versatile, stable (ascent property), globally convergent
under weak regularity conditions (Wu, 1983)

@ Meng’s paper: EM: An old folk song sung to a new tune
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MM Algorithm

A majorizing function, g(6| 6%):

f0k) = 9Okl 0k),
f(o) < g(8)6k), V0.

@ To minimize f(0), construct a majorizing function and
minimize it (MM)
Ok 1 =argming(0|0x); k=0,1,...

@ Descent property: f(0x11) < f(0k)
@ EM may be viewed as a subclass of MM.
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Linear Convergence of EM/MM

The EM/MM as a fixed-point iteration F:
Oki1 = F(6k), k=0,1,....
Assume 6, — 0* and F is differentiable at 6*,
Okt — 07 = J(07)(0k — 07) + o([|0k — 0% ||?),
Jacobian of F can be written as (DLR77):
JOF) = Imiss(0%; ¥) loomp(67: ¥)
= Tpxp — lobs(07: ¥) loomp(67: ¥)

Rate of convergence x p[J(6%)].
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Why Accelerate the EM?

@ Slow, linear convergence in practice.

@ Acceleration is useful in:
e high-dimensional and/or large scale problems (e.g., PET
imaging, machine learning)
e complex statistical models (e.g., GLMM, NLME, longitudinal
data)
e repeated model estimation (e.g., simulations,
bootstrapping)
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What is Desirable in an Accelerator?

@ Ken Lange (1995) - “it is likely that no acceleration method
can match the stability and simplicity of the unadorned EM
algorithm.”

@ Simple and easy to apply (low intellectual and
implementation costs)

@ Stability (monotonicity and/or global convergence)

@ Generally applicable to (most) all EM problems (exception,
MCEM)

@ Automatic - no problem-specific “tweaking”.

@ Without much additional information (e.g., gradient/hessian
of Lops)
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Development of SQUAREM

lterative Acceleration Schemes

At least 2 ways to motivate these acceleration methods
@ Vector sequence extrapolation with cycling
© Classical Newton-type root-finders
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Steffensen-Type Methods (STEM)

Define g() = F(0) — 6; My = J(0n) — I, up = 0n; Uy =
F(0n); rn = u1 — Uo; Vo = g(u1) — 9(Uo)
Newton’s method is obtained by finding the zero of the linear
approximation of g(0):

9(0) = 9(uo) + My . (6 — uo).
We approximate M, with the scalar matrix alnl, and write two
different approximations for the fixed point 6* : g(6*) = 0:

t2+1 = U — ang(Uo)

tf17+1 = u1—ang(u1).
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Steffensen-Type Methods(STEM)

We now choose a,, to minimize discrepancy between t2, , and

A
An obvious measure of discrepancy is ||t} ; — ||, yielding
steplength
;
rTvy
— , 1
an v, Vs M
Another measure of discrepancy: |t} , — t2.,[|?/a3, yielding
the steplength
;
rlr,
= . 2
“n rl vy @
Another minimizes the discrepancy: —||t!,, — t2 ,[12/an, where
an < 0:
r

an — .
Vn
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STEM:
9n+1 = 0On — anln,

where r, = F(0,) — 0, and v, = F(F(0n)) — 2F(0n) + 0.
an can be one of 3 steplengths as defined in previous slide.

Mediocre performance. How can we improve it?
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Cauchy-Barzilai-Borwein

Motivation: Cauchy-Barzilai-Borwein for quadratic minimization
(Raydan and Svaiter, 2002)

min f(x) = %XTAX +b"x

where A is symmetric and positive-definite.
@ Cauchy (steepest-descent) ill-conditioned when p(A) ~ 1

@ Barzilai-Borwein gradient method uses previous steplength
@ RS2002 combined Cauchy and BB to obtain:

2
Xnt1 = Xn — 2angn + aphp

.
where g, = Axp — by, hy = Agn, an = %
n'in
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SQUAREM

SQUAREM:
0n+1 == 9,7 — zanrn + O[%Vn
. rIva
@ SgS1:ap=
@ SgS2: a, = :"TT"/"
@ SgS3: ap = _|‘|“’/"n“|‘,
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Pseudocode of SQUAREM

While not converged

01 = F(0o)
0 = F(64)
f:91 *00

V = (92 — 91) —-r
Compute o with r and v.
0 =0y —2ar + v
0y = F(0') (stabilization)
Check for convergence.

©®NO Ok wN -
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SQUAREM

@ An R package implementing a family of algorithms for
speeding-up any slowly convergent multivariate sequence
from a monotone fixed-point mapping

@ Also contains higher-order cycled, squared, extrapolation
schemes

@ \ery easy to use

@ |deal for high-dimensional problems

@ Input: fixptfn = fixed-point mapping F

@ Optional Input: objfn = merit function (if any)

@ Two main control parameter choices: order of extrapolation
and monotonicity

@ Available on CRAN.



An Example of EM Acceleration

Table: Data from The London Times on deaths during 1910-1912

Deaths, y; Frequency, n; Deaths, y; Frequency, n;
0 162 5 61
1 267 6 27
2 271 7 8
3 185 8 3
4 111 9 1
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An Example of EM Acceleration

Binary Poisson Mixture

The incomplete-data likelihood:

9 )
I1 [peui/it+ (1~ peveus/in]”

i=0

The EM algorithm is as follows:

plk+) Z”/Wn Zn,,
) = Zinf ﬁf,-“/Zn,-ﬁf,"’, j=1.2

()—p(k)< > “1 /Zp ( ) e_/‘gk),j:‘l,Z.



An Example of EM Acceleration

Binary Poisson Mixture (cont...)
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MLE: (p, 11, 12) = (0.3599, 1.256,2.663).

Eigenvalues of Jacobian at MLE: (0.9957, 0.7204 and 0)
Eigenvalues of (J — )~" : (-1, -3.58, and -230.7)

Major separation of the largest eigenvalue.

Steplength a, must approximate all eigenvalues.

EM always takes o, = —1.



An Example of EM Acceleration

Performance of Schemes

Table: Poisson mixture estimation: initial guess 6, = (0.3, 1.0, 2.5)

EM ST 52 S3 SqSt SqS2 SqS3

CPU (sec) 0.26 0.11 0.13 0.16 0.01 0.03 0
fevals 2055 396 477 576 66 84 66
log-lik —1989.9 —1989.9 —1989.9 —1989.9 —1989.9 —1989.9  —1989.9
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An Example of EM Acceleration
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An Example of EM Acceleration
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Conclusions

Concluding Thoughts

@ SQUAREM tested on a number of applications.
@ Significant acceleration (depends on the linear rate of F)
@ Globally convergent (with EM/MM safeguard)

@ Works efficiently and reliably on high-dimensional and
complex nonlinear statistical models

@ R package called SQUAREM available on CRAN

@ Our work has stimulated a lot of research interest in
devising acceleration schemes for EM/MM algorithms

@ We have compiled state-of-art accelerators and are
performing extensive benchmarking studies

@ R package called turboEM
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Conclusions

What Needs to be Done?

@ Theoretical characterization of the local convergence of
SQUAREM (cf. Barzilai-Borwein)

@ Theoretical characterization of the local convergence of
k-SQUAREM

@ Improved constraints handling
@ Multi-parameter schemes of Brezinski and Chehab (1999)
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Appendix For Further Reading

For Further Reading |

¥ R. Varadhan, and C. Roland
Scandinavian Journal of Statistics.
2008.
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Thank You!
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Appendix For Further Reading

Scalar Extrapolation

@ A sequence that depends on a parameter
@ Extrapolation usually at 0 or co
@ Romberg integration; Aitken’s A? process
@ Given a scalar sequence: 64, ...,0,
@ Asymptotic behavior (explicit kernel): 6, = x* + c \".
@ Asymptotic behavior (implicit kernel):
Oni1 — X* = Xln — x*)

@ Aitken’s extrapolation: t, = 6, — (A6n)°

A20,
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Appendix For Further Reading

Extension to Vector Extrapolation

Kernel of Aitken’s extrapolation: 6, = x* + c \".

For vector x, assume kernel: 0, = x* + 35 | ¢ AP
Implicit kernel: ag(0n — x*) + - - - + ak(Oprk — x*) = 0.
By subtraction: ayAf, + - - - + axAbp = 0.

Inner product : ay(y, Abn) + - -+ ax(y, Abpik) = 0.
Write out k more equations and solve for ay, .. ., ax

Many ways to obtain ag, . .., ax (open problem!)
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General Vector Extrapolation Methods

On On i1 .. Ok
O 80 A A) e (A A
() _ <Y;En)7 AbOnyik-1) <}’;((n), ANOpyk) - <y,£"), Abpyok_1)
n 1 1 - 1
(n) (n) (n)
<y1 7A9n> <y1 >A9n+1> e <y1 7A9n+k>
<y/£n)7 AbOpyk—1) <Y;((n)> DNOpyk) - <)’/£n), AbOnyok—1)

Varadhan SQUAREM



Appendix For Further Reading

Special Classes of Schemes

@ Minimal polynomial extrapolation (MPE) :y(") = Afpy;

i

@ Reduced rank extrapolation (RRE) : y{") = A24,,, ;.

1
o Topological epsilon algorithm (TEA): y\”) = y
@ Henrici’s method : k = p and y,.(”) =g

@ Louis (1982), Laird (1987): Henrici’'s (multivariate Aitken)
@ Compact matrix representation

—1
1) = xo — DXin(Y{nD2Xk ) Vi nixn
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Cycling with Extrapolation Schemes

Most common and optimal way to implement extrapolation.
@ Let x, be the value of parameters at the start of the
(n+ 1)-th cycle, and let u{™") = x,.
@ Apply F() k + 1 times to get u!"™ .., u,(('j:”, where
u™ = F™y i=o0,... k.
© Apply the extrapolation scheme to the sequence
ud™, ™ to obtain £,
Q Setx, 1= t,gk), and check for convergence.

@ If no convergence, back to step (1) for next cycle.
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