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Fixed-Point Iteration

xk+1 = F (xk ), k = 0,1, . . . .

F : Ω ⊂ Rp 7→ Ω, and differentiable

F is a contraction: ||F (x)− F (y)|| ≤ ||x − y ||, ∀x , y ∈ Ω

Associated Lyapunov function L(x) such that
L(xk+1) ≥ L(xk )

Guaranteed convergence: {xk} → x∗ ∈ Ω
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EM Algorithm

Let y , z, x , be observed, missing, and complete data,
respectively.
The k -th step of the iteration:

θk+1 = argmax Q(θ|θk ); k = 0,1, . . . ,

where

Q(θ|θk ) = E [Lc(θ)|y , θk ],

=

∫
Lc(θ)f (z|y , θk )dz,

Ascent property: Lobs(θk+1) ≥ Lobs(θk )

The goal is to maximize Lobs(θ; y)
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Why is EM So Popular?

Seminal work of Dempster, Laird, and Rubin (1977)
Most popular approach in computational statistics
Computes MLE in “incomplete” data type problems
Reduces incomplete-data problem (difficult) to
complete-data problem (easier).
Versatile, stable (ascent property), globally convergent
under weak regularity conditions (Wu, 1983)
Meng’s paper: EM: An old folk song sung to a new tune
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MM Algorithm

A majorizing function, g(θ| θk ):

f (θk ) = g(θk | θk ),

f (θ) ≤ g(θ| θk ), ∀ θ.

To minimize f (θ), construct a majorizing function and
minimize it (MM)

θk+1 = argmin g(θ|θk ); k = 0,1, . . .

Descent property: f (θk+1) ≤ f (θk )

EM may be viewed as a subclass of MM.
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Linear Convergence of EM/MM

The EM/MM as a fixed-point iteration F :

θk+1 = F (θk ), k = 0,1, . . . .

Assume θk → θ∗ and F is differentiable at θ∗,

θk+1 − θ∗ = J(θ∗)(θk − θ∗) + o(‖θk − θ∗‖2),

Jacobian of F can be written as (DLR77):

J(θ∗) = Imiss(θ∗; y)I−1
comp(θ∗; y)

= Ip×p − Iobs(θ∗; y)I−1
comp(θ∗; y)

Rate of convergence ∝ ρ [J(θ∗)] .
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Why Accelerate the EM?

Slow, linear convergence in practice.
Acceleration is useful in:

high-dimensional and/or large scale problems (e.g., PET
imaging, machine learning)
complex statistical models (e.g., GLMM, NLME, longitudinal
data)
repeated model estimation (e.g., simulations,
bootstrapping)
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What is Desirable in an Accelerator?

Ken Lange (1995) - “it is likely that no acceleration method
can match the stability and simplicity of the unadorned EM
algorithm.”
Simple and easy to apply (low intellectual and
implementation costs)
Stability (monotonicity and/or global convergence)
Generally applicable to (most) all EM problems (exception,
MCEM)
Automatic - no problem-specific “tweaking”.
Without much additional information (e.g., gradient/hessian
of Lobs)
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Iterative Acceleration Schemes

At least 2 ways to motivate these acceleration methods
1 Vector sequence extrapolation with cycling
2 Classical Newton-type root-finders
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Steffensen-Type Methods (STEM)

Define g(θ) = F (θ)− θ; Mn = J(θn)− I; u0 = θn; u1 =
F (θn); rn = u1 − u0; vn = g(u1)− g(u0)
Newton’s method is obtained by finding the zero of the linear
approximation of g(θ):

g(θ) = g(u0) + Mn . (θ − u0).

We approximate Mn with the scalar matrix 1
αn

I, and write two
different approximations for the fixed point θ∗ : g(θ∗) = 0:

t0
n+1 = u0 − αn g(u0)

t1
n+1 = u1 − αn g(u1).
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Steffensen-Type Methods(STEM)

We now choose αn to minimize discrepancy between t0
n+1 and

t1
n+1.

An obvious measure of discrepancy is ‖t1
n+1 − t0

n+1‖
2, yielding

steplength

αn =
rT
n vn

vT
n vn

, (1)

Another measure of discrepancy: ‖t1
n+1 − t0

n+1‖
2/α2

n, yielding
the steplength

αn =
rT
n rn

rT
n vn

. (2)

Another minimizes the discrepancy: −‖t1
n+1 − t0

n+1‖
2/αn, where

αn < 0:

αn = − ‖rn‖
‖vn‖

. (3)
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STEM

STEM:
θn+1 = θn − αnrn,

where rn = F (θn)− θn and vn = F (F (θn))− 2F (θn) + θn.

αn can be one of 3 steplengths as defined in previous slide.

Mediocre performance. How can we improve it?
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Cauchy-Barzilai-Borwein

Motivation: Cauchy-Barzilai-Borwein for quadratic minimization
(Raydan and Svaiter, 2002)

min f (x) =
1
2

xT Ax + bT x

where A is symmetric and positive-definite.
Cauchy (steepest-descent) ill-conditioned when ρ(A) ≈ 1
Barzilai-Borwein gradient method uses previous steplength
RS2002 combined Cauchy and BB to obtain:

xn+1 = xn − 2αngn + α2
nhn

where gn = Axn − bn, hn = Agn, αn = gT
n gn

gT
n hn
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SQUAREM

SQUAREM:
θn+1 = θn − 2αnrn + α2

nvn.

SqS1: αn = rT
n vn

vT
n vn

SqS2: αn = rT
n rn

rT
n vn

SqS3: αn = − ‖rn‖
‖vn‖ ,
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Pseudocode of SQUAREM

While not converged
1. θ1 = F (θ0)
2. θ2 = F (θ1)
3. r = θ1 − θ0
4. v = (θ2 − θ1)− r
5. Compute α with r and v .
6. θ′ = θ0 − 2α r + α2 v
7. θ0 = F (θ′) (stabilization)
8. Check for convergence.
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SQUAREM

An R package implementing a family of algorithms for
speeding-up any slowly convergent multivariate sequence
from a monotone fixed-point mapping
Also contains higher-order cycled, squared, extrapolation
schemes
Very easy to use
Ideal for high-dimensional problems
Input: fixptfn = fixed-point mapping F
Optional Input: objfn = merit function (if any)
Two main control parameter choices: order of extrapolation
and monotonicity
Available on CRAN.
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Table: Data from The London Times on deaths during 1910-1912

Deaths, yi Frequency, ni Deaths, yi Frequency, ni
0 162 5 61
1 267 6 27
2 271 7 8
3 185 8 3
4 111 9 1
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Binary Poisson Mixture

The incomplete-data likelihood:

9∏
i=0

[
pe−µ1µi

1/i! + (1− p)e−µ2µi
2/i!
]ni

.

The EM algorithm is as follows:

p(k+1) =
∑

i

ni π̂
(k)
i1

/∑
i

ni ,

µ
(k+1)
j =

∑
i

i ni π̂
(k)
ij

/∑
i

ni π̂
(k)
ij , j = 1,2,

π̂
(k)
ij = p(k)

(
µ

(k)
j

)i
e−µ

(k)
j /

2∑
l=1

p(k)
l

(
µ

(k)
l

)i
e−µ

(k)
l , j = 1,2.
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Binary Poisson Mixture (cont...)

MLE: (p, µ1, µ2) = (0.3599,1.256,2.663).

Eigenvalues of Jacobian at MLE: (0.9957, 0.7204 and 0)
Eigenvalues of (J − I)−1 : (-1, -3.58, and -230.7)
Major separation of the largest eigenvalue.
Steplength αn must approximate all eigenvalues.
EM always takes αn = −1.
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Performance of Schemes

Table: Poisson mixture estimation: initial guess θ0 = (0.3, 1.0, 2.5)

EM S1 S2 S3 SqS1 SqS2 SqS3
CPU (sec) 0.26 0.11 0.13 0.16 0.01 0.03 0

fevals 2055 396 477 576 66 84 66
log-lik −1989.9 −1989.9 −1989.9 −1989.9 −1989.9 −1989.9 −1989.9
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Concluding Thoughts

SQUAREM tested on a number of applications.
Significant acceleration (depends on the linear rate of F )
Globally convergent (with EM/MM safeguard)
Works efficiently and reliably on high-dimensional and
complex nonlinear statistical models
R package called SQUAREM available on CRAN
Our work has stimulated a lot of research interest in
devising acceleration schemes for EM/MM algorithms
We have compiled state-of-art accelerators and are
performing extensive benchmarking studies
R package called turboEM

Varadhan SQUAREM



Background
Development of SQUAREM

An Example of EM Acceleration
Conclusions

What Needs to be Done?

Theoretical characterization of the local convergence of
SQUAREM (cf. Barzilai-Borwein)
Theoretical characterization of the local convergence of
k-SQUAREM
Improved constraints handling
Multi-parameter schemes of Brezinski and Chehab (1999)
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For Further Reading I

R. Varadhan, and C. Roland
Scandinavian Journal of Statistics.
2008.
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Thank You!
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Scalar Extrapolation

A sequence that depends on a parameter
Extrapolation usually at 0 or∞
Romberg integration; Aitken’s ∆2 process
Given a scalar sequence: θ1, . . . , θn

Asymptotic behavior (explicit kernel): θn = x∗ + c λn.

Asymptotic behavior (implicit kernel):
θn+1 − x∗ = λ(θn − x∗)

Aitken’s extrapolation: tn = θn − (∆θn)2

∆2θn
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Extension to Vector Extrapolation

Kernel of Aitken’s extrapolation: θn = x∗ + c λn.

For vector x , assume kernel: θn = x∗ +
∑k

i=1 ci λ
n
i .

Implicit kernel: a0(θn − x∗) + · · ·+ ak (θn+k − x∗) = 0.
By subtraction: a0∆θn + · · ·+ ak ∆θn+k = 0.
Inner product : a0〈y ,∆θn〉 + · · ·+ ak 〈y ,∆θn+k 〉 = 0.
Write out k more equations and solve for a0, . . . ,ak

Many ways to obtain a0, . . . ,ak (open problem!)
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General Vector Extrapolation Methods

t(k)
n =

∣∣∣∣∣∣∣∣∣
θn θn+1 · · · θn+k

〈y (n)
1 ,∆θn〉 〈y (n)

1 ,∆θn+1〉 · · · 〈y (n)
1 ,∆θn+k 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈y (n)

k ,∆θn+k−1〉 〈y
(n)
k ,∆θn+k 〉 · · · 〈y

(n)
k ,∆θn+2k−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

〈y (n)
1 ,∆θn〉 〈y (n)

1 ,∆θn+1〉 · · · 〈y (n)
1 ,∆θn+k 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈y (n)

k ,∆θn+k−1〉 〈y
(n)
k ,∆θn+k 〉 · · · 〈y

(n)
k ,∆θn+2k−1〉

∣∣∣∣∣∣∣∣∣

.
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Special Classes of Schemes

Minimal polynomial extrapolation (MPE) : y (n)
i = ∆θn+i

Reduced rank extrapolation (RRE) : y (n)
i = ∆2θn+i .

Topological epsilon algorithm (TEA): y (n)
i = y

Henrici’s method : k = p and y (n)
i = ei

Louis (1982), Laird (1987): Henrici’s (multivariate Aitken)
Compact matrix representation

t(k)
n = xn −∆Xk ,n(Y T

k ,n∆2Xk ,n)
−1

Y T
k ,n∆xn
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Cycling with Extrapolation Schemes

Most common and optimal way to implement extrapolation.
1 Let xn be the value of parameters at the start of the

(n + 1)-th cycle, and let u(n+1)
0 = xn.

2 Apply F () k + 1 times to get u(n+1)
1 , . . . ,u(n+1)

k+1 , where

u(n+1)
i+1 = F (u(n+1)

i ), i = 0, . . . , k .

3 Apply the extrapolation scheme to the sequence
u(n+1)

0 , . . . ,u(n+1)
k+1 to obtain t(k)

n .

4 Set xn+1 = t(k)
n , and check for convergence.

5 If no convergence, back to step (1) for next cycle.
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