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Part I. Definitions and properties
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Dual Bernstein basis polynomials

• Bernstein basis polynomials of degree n

Bni (x) =

(
n

i

)
xi(1− x)n−i (0 ≤ i ≤ n).
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Dual Bernstein basis polynomials

• Bernstein basis polynomials of degree n

Bni (x) =

(
n

i

)
xi(1− x)n−i (0 ≤ i ≤ n).

• Associated with the Bernstein basis, there is a unique dual basis

Dn0 (x;α,β), D
n
1 (x;α,β), . . . , D

n
n(x;α,β) ∈ Πn

defined so that

〈Dni , Bnj 〉J = δij (i, j = 0, 1, . . . , n),

where

〈f, g〉J :=
∫ 1
0

(1− x)αxβ f(x)g(x) dx (α,β > −1)
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Dual Bernstein basis polynomials

• Bernstein basis polynomials of degree n

Bni (x) =

(
n

i

)
xi(1− x)n−i (0 ≤ i ≤ n).

• Associated with the Bernstein basis, there is a unique dual basis Dnk(x;α,β) ∈ Πn
(0 ≤ k ≤ n) defined so that〈

Dni , B
n
j

〉
J
= δij (i, j = 0, 1, . . . , n),

where

〈f, g〉J :=
∫ 1
0

(1− x)αxβ f(x)g(x) dx (α,β > −1)

• Shifted Jacobi polynomials R(α,β)k (x) are orthogonal wrt the inner product 〈f, g〉J, i.e.,〈
R
(α,β)
k , R

(α,β)
l

〉
J
= δklhk (k, l = 0, 1, . . . ; hk > 0).
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Constrained dual Bernstein basis polynomials

• Let us define

Π(k,l)
n :=

{
P ∈ Πn : P(i)(0) = 0 (0 ≤ i < k), P(j)(1) = 0 (0 ≤ j < l)

}
,

where k+ l ≤ n. Certainly, Π(k,l)
n = lin

{
Bnk , B

n
k+1, . . . , B

n
n−l

}
.
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Constrained dual Bernstein basis polynomials

• Let us define

Π(k,l)
n :=

{
P ∈ Πn : P(i)(0) = 0 (0 ≤ i < k), P(j)(1) = 0 (0 ≤ j < l)

}
,

where k+ l ≤ n. Certainly, Π(k,l)
n = lin

{
Bnk , B

n
k+1, . . . , B

n
n−l

}
.

• There is a unique constrained dual Bernstein basis of degree n

D
(n,k,l)
k (x;α,β), D

(n,k,l)
k+1 (x;α,β), . . . , D

(n,k,l)
n−l (x;α,β) ∈ Π(k,l)

n ,

satisfying the relation〈
D

(n,k,l)
i , Bnj

〉
J
= δij (i, j = k, k+ 1, . . . , n− l),

where

〈f, g〉J :=
∫ 1
0

(1− x)αxβ f(x)g(x) dx (α,β > −1)
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Constrained and unconstrained dual Bernstein polynomials

• Constrained dual Bernstein polynomials D(n,k,l)
i (x;α,β) can be expressed in terms of

the unconstrained dual Bernstein polynomials of degree n − k − l, with parameters
α+ 2l and β+ 2k in the following way:

D
(n,k,l)
i (x;α,β) =

(
n− k− l

i− k

)(
n

i

)−1

xk(1− x)lDn−k−li−k (x;α+ 2l, β+ 2k)
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Constrained dual Bernstein basis polynomials. Previous results

• Ciesielski, 1987 (α = β = 0, k = l = 0): definition, recurrence relation
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Constrained dual Bernstein basis polynomials. Previous results

• Ciesielski, 1987 (α = β = 0, k = l = 0): definition, recurrence relation.

• Jüttler, 1998 (α = β = 0, k = l): Bernstein-Bézier representation
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Constrained dual Bernstein basis polynomials. Previous results

• Ciesielski, 1987 (α = β = 0, k = l = 0): definition, recurrence relation.

• Jüttler, 1998 (α = β = 0, k = l): Bernstein-Bézier representation.

• L&W, 2006 (α, β > −1, k = l = 0): recurrence relation, orthogonal expansion,
”short” representation
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Constrained dual Bernstein basis polynomials. Previous results

• Ciesielski, 1987 (α = β = 0, k = l = 0): definition, recurrence relation.

• Jüttler, 1998 (α = β = 0, k = l): Bernstein-Bézier representation.

• L&W, 2006 (α, β > −1, k = l = 0): recurrence relation, orthogonal expansion,
”short” representation.

• Rababah and Al-Natour, 2007: extented Jüttler’s results to the case of arbitrary
α, β > −1
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Constrained dual Bernstein basis polynomials. Previous results

• Ciesielski, 1987 (α = β = 0, k = l = 0): definition, recurrence relation.

• Jüttler, 1998 (α = β = 0, k = l): Bernstein-Bézier representation.

• L&W, 2006 (α, β > −1, k = l = 0): recurrence relation, orthogonal expansion,
”short” representation.

• Rababah and Al-Natour, 2007: extented Jüttler’s results to the case of arbitrary
α, β > −1.

• W&L, 2009 (α, β > −1, and k, l ∈ N): recurrence relation, orthogonal expansion,
”short” representation, relation beetwen constrained and unconstrained dual Bernstein
polynomials
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Constrained dual Bernstein basis polynomials. Applications

• Least-squares approximation by Bézier curves (Jüttler, 1998)
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Constrained dual Bernstein basis polynomials. Applications

• Least-squares approximation by Bézier curves (Jüttler, 1998).

• Computing roots of polynomials (Bartoň and Jüttler, 2007; Liu et al., 2009).

• Degree reduction of Bézier curves and surfaces (L&W).

• Polynomial approximation of rational Bézier curves (L&W).

⇓
• Problem. Given a function f. Find the Bézier form of the polynomial Pn ∈ Π(k,l)

n

which gives the minimum value of the norm

||f− Pn||L2 :=
√
〈f− Pn, f− Pn〉J.
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Constrained dual Bernstein basis polynomials. Applications

• Least-squares approximation by Bézier curves (Jüttler, 1998).

• Computing roots of polynomials (Bartoň and Jüttler, 2007; Liu et al., 2009).

• Degree reduction of Bézier curves and surfaces (L&W).

• Polynomial approximation of rational Bézier curves (L&W).

⇓
• Problem. Given a function f. Find the Bézier form of the polynomial Pn ∈ Π(k,l)

n

which gives the minimum value of the norm

||f− Pn||L2 :=
√
〈f− Pn, f− Pn〉J.

• Solution:

Pn(t) =

l∑
j=k

ajB
n
j (t), aj :=

〈
f,D

(n,k,l)
j (·;α,β)

〉
J
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Constrained dual Bernstein basis polynomials. Applications

• Least-squares approximation by Bézier curves (Jüttler, 1998).

• Computing roots of polynomials (Bartoň and Jüttler, 2007; Liu et al., 2009).

• Degree reduction of Bézier curves and surfaces (L&W).

• Polynomial approximation of rational Bézier curves (L&W)

⇓
• Problem. Given a function f. Find the Bézier form of the polynomial Pn ∈ Π(k,l)

n

which gives the minimum value of the norm

||f− Pn||L2 :=
√
〈f− Pn, f− Pn〉J.

• Solution:

Pn(t) =

l∑
j=k

ajB
n
j (t), aj =

∫ 1
0

(1− x)αxβ f(x)D
(n,k,l)
j (x;α,β) dx
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Dual Bernstein polynomials: explicit formulae (L&W, 2006)

• Recurrence relation

Dn+1i (x;α,β) =

(
1−

i

n+ 1

)
Dni (x;α,β) +

i

n+ 1
Dni−1(x;α,β) +

ϑni R
(α,β)
n+1 (x),

where

ϑni := (−1)n−i+1
Γ(α+ β+ 1)

Γ(α+ 1)Γ(β+ 1)

(2n+ α+ β+ 3)(α+ β+ 2)n
(β+ 1)i(α+ 1)n+1−i
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Dual Bernstein polynomials: explicit formulae (L&W, 2006)

• Recurrence relation

Dn+1i (x;α,β) =

(
1−

i

n+ 1

)
Dni (x;α,β) +

i

n+ 1
Dni−1(x;α,β) + ϑ

n
i R

(α,β)
n+1 (x).

• Orthogonal expansion

Dni (x;α,β) = K

n∑
k=0

(−1)k
(2k/σ+ 1)(σ)k

(α+ 1)k
Qk(i;β,α, n)R

(α,β)
k (x),

where Qk(i;β,α, n) are Hahn orthogonal polynomials,

Qk(x;α,β,N) :=

k∑
i=0

(−k)i(k+ σ)i
(α+ 1)i(−N)i

(−x)i
i!

,

and σ := α+ β+ 1, K :=
Γ(α+ β+ 1)

Γ(α+ 1)Γ(β+ 1)
.
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Dual Bernstein polynomials: explicit formulae (L&W, 2006)

• Recurrence relation

Dn+1i (x;α,β) =

(
1−

i

n+ 1

)
Dni (x;α,β) +

i

n+ 1
Dni−1(x;α,β) + ϑ

n
i R

(α,β)
n+1 (x).

• Orthogonal expansion

Dni (x;α,β) = K

n∑
k=0

(−1)k
(2k/σ+ 1)(σ)k

(α+ 1)k
Qk(i;β,α, n)R

(α,β)
k (x).

• Short representations

Dni (x;α,β) =
(−1)n−i(σ+ 1)n

K (α+ 1)n−i(β+ 1)i

i∑
k=0

(−i)k
(−n)k

R
(α,β+k+1)
n−k (x),

Dnn−i(x;α,β) =
(−1)i(σ+ 1)n

K (α+ 1)i(β+ 1)n−i

i∑
k=0

(−1)k
(−i)k
(−n)k

R
(α+k+1,β)
n−k (x)

SC 2011 Paweł Woźny, University of Wrocław, Poland



8/21

Dual Bernstein polynomials: Bézier form

• Dni (x;α,β) =

n∑
j=0

Cij(n,α, β)B
n
j (x)
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Dual Bernstein polynomials: Bézier form

• Dni (x;α,β) =

n∑
j=0

Cij(n,α, β)B
n
j (x).

• Jüttler, 1998 (α = β = 0):

Cij(n, 0, 0)=
(−1)i+j(
n
i

)(
n
j

) min(i,j)∑
h=0

(2h+1)

(
n+ h+ 1

n− i

)(
n− h

n− i

)(
n+ h+ 1

n− j

)(
n− h

n− j

)
..
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Dual Bernstein polynomials: Bézier form

• Dni (x;α,β) =

n∑
j=0

Cij(n,α, β)B
n
j (x).

• Jüttler, 1998 (α = β = 0):

Cij(n, 0, 0)=
(−1)i+j(
n
i

)(
n
j

) min(i,j)∑
h=0

(2h+1)

(
n+ h+ 1

n− i

)(
n− h

n− i

)(
n+ h+ 1

n− j

)(
n− h

n− j

)
.

• Rababah and Al-Natour, 2007:

extented Jüttler’s results to the case of arbitrary α, β > −1
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Dual Bernstein polynomials: Bézier form

• Dni (x;α,β) =

n∑
j=0

Cij(n,α, β)B
n
j (x).

• Jüttler, 1998 (α = β = 0):

Cij(n, 0, 0)=
(−1)i+j(
n
i

)(
n
j

) min(i,j)∑
h=0

(2h+1)

(
n+ h+ 1

n− i

)(
n− h

n− i

)(
n+ h+ 1

n− j

)(
n− h

n− j

)
.

• L&W, 2011 (α,β > −1):

Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n),

where Qk(x;α,β,N) are Hahn orthogonal polynomials, and σ := α+ β+ 1
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n)

⇓
• LxQm(x;β,α, n) = m(m+ σ)Qm(x;β,α, n),

• where
Lxy(x) = a(x)y(x+ 1) − c(x)y(x) + b(x)y(x− 1),

a(x) := (x− n)(x+ β+ 1),

b(x) := x(x− a− n− 1),

c(x) := a(x) + b(x)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n)

⇓
LiCij(n,α, β) = LjCij(n,α, β)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n)

⇓
LiCij(n,α, β) = LjCij(n,α, β)

⇓
Recurrence relation for Cij(n,α, β)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n)

• Ci+1,j =
1

A(i)

{
(i− j)(2i+ 2j− 2n− α+ β)Cij+

B(j)Ci,j−1 +A(j)Ci,j+1 − B(i)Ci−1,j

}
,

where Cij ≡ Cij(n,α, β), and A(u) := (u− n)(u+ 1)(u+ β+ 1)/(u+ 1),

B(u) := u(u− n− α− 1)(u− n− 1)/(u− n− 1)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n)

• Ci+1,j =
1

A(i)

{
(i− j)(2i+ 2j− 2n− α+ β)Cij+

B(j)Ci,j−1 +A(j)Ci,j+1 − B(i)Ci−1,j

}
,

• Cross rule:

Ci−1,j

Ci,j−1 Cij Ci,j+1

Ci+1,j

=⇒ complexity O(n2)
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×
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• Ci+1,j =
1

A(i)

{
(i− j)(2i+ 2j− 2n− α+ β)Cij+
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

• Cij(n,α, β) =
1

B(α+ 1, β+ 1)

n∑
m=0

(2m/σ+ 1)(β+ 1)m(σ)m
m!(α+ 1)m

×

Qm(i;β,α, n)Qm(j;β,α, n)

• Ci+1,j =
1

A(i)

{
(i− j)(2i+ 2j− 2n− α+ β)Cij+

B(j)Ci,j−1 +A(j)Ci,j+1 − B(i)Ci−1,j

}
,

• Cross rule:

Ci−1,j

Ci,j−1 Cij Ci,j+1

Ci+1,j

=⇒ complexity O(n2)

• Jüttler, Rababah and Al-Natour =⇒ complexity O(n3)
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Generalizations of Bernstein polynomials

• Discrete Bernstein polynomials (Sablonniére, 1992)
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Generalizations of Bernstein polynomials

• Discrete Bernstein polynomials (Sablonniére, 1992)

• q-Bernstein polynomials (Phillips, 1997)

• Generalized Bernstein polynomials (L&W, 2004)

⇓
One can consider dual basis also in all these cases
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Generalizations of Bernstein polynomials

• Discrete Bernstein polynomials (Sablonniére, 1992)

• q-Bernstein polynomials (Phillips, 1997)

• Generalized Bernstein polynomials (L&W, 2004)

⇓
One can consider dual basis also in all these cases

⇓
Now, we focus on the discrete dual Bernstein polynomials and show that

• these polynomials have a very nice application
in CAGD
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Generalizations of Bernstein polynomials

• Discrete Bernstein polynomials (Sablonniére, 1992)

• q-Bernstein polynomials (Phillips, 1997)

• Generalized Bernstein polynomials (L&W, 2004)

⇓
One can consider dual basis also in all these cases

⇓
Now, we focus on the discrete dual Bernstein polynomials and show that

• these polynomials have a very nice application
in CAGD

• and are closely related to the (classical) dual
Bernstein polynomials
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Dual discrete Bernstein polynomials

• Discrete Bernstein basis polynomials of degree n (Sablonnière, 1992)

bni (x;N) =
1

(−N)n

(
n

i

)
(−x)i(x−N)n−i (0 ≤ i ≤ n ≤ N; N ∈ N).
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Dual discrete Bernstein polynomials

• Discrete Bernstein basis polynomials of degree n (Sablonnière, 1992)

bni (x;N) =
1

(−N)n

(
n

i

)
(−x)i(x−N)n−i (0 ≤ i ≤ n ≤ N; N ∈ N).

• Dual discrete Bernstein basis polynomials of degree n,

dn0 (x;α,β,N), dn1 (x;α,β,N), . . . , dnn(x;α,β,N) ∈ Πn,

are defined so that 〈
dni , b

n
j

〉
H
= δij (i, j = 0, 1, . . . , n).

• Here

〈f, g〉H :=

N∑
x=0

(
α+ x

x

)(
β+N− x

N− x

)
f(x)g(x) (α, β > −1).
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Dual discrete Bernstein polynomials

• Discrete Bernstein basis polynomials of degree n (Sablonnière, 1992)

bni (x;N) =
1

(−N)n

(
n

i

)
(−x)i(x−N)n−i (0 ≤ i ≤ n ≤ N; N ∈ N).

• Dual discrete Bernstein basis polynomials of degree n,

dn0 (x;α,β,N), dn1 (x;α,β,N), . . . , dnn(x;α,β,N) ∈ Πn,

are defined so that 〈
dni , b

n
j

〉
H
= δij (i, j = 0, 1, . . . , n).

• Here

〈f, g〉H :=

N∑
x=0

(
α+ x

x

)(
β+N− x

N− x

)
f(x)g(x) (α, β > −1).

• Recall that Hahn polynomials are orthogonal with respect to this inner product
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Dual discrete Bernstein polynomials: difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials dni (x) ≡ dni (x;α,β,N) satisfy the
following difference-recurrence relation:

aN(x)d
n
i (x+ 1) + [cn(i) − cN(x)]d

n
i (x)

+ bN(x)d
n
i (x− 1) − an(i)d

n
i+1(x) − bn(i)d

n
i−1(x) = 0,

where 0 ≤ i ≤ n ≤ N, dn−1(x) = d
n
n+1(x) := 0, and

an(x) := (x−n)(x+α+1), bn(x) := x(x−β−n−1), cn(x) := an(x)+bn(x).
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Dual discrete Bernstein polynomials: difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials dni (x) ≡ dni (x;α,β,N) satisfy the
following difference-recurrence relation:

aN(x)d
n
i (x+ 1) + [cn(i) − cN(x)]d

n
i (x)

+ bN(x)d
n
i (x− 1) − an(i)d

n
i+1(x) − bn(i)d

n
i−1(x) = 0,

where 0 ≤ i ≤ n ≤ N, dn−1(x) = d
n
n+1(x) := 0, and

an(x) := (x−n)(x+α+1), bn(x) := x(x−β−n−1), cn(x) := an(x)+bn(x).

Remark. Thanks to the above result, we can propose an efficient algorithm of solving
the so-called problem of the degree reduction of Bézire curves, which is important in
CAGD.
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Multi-degree reduction of Bézier curves with constraints

• Given a Bézier curve of degree n, with control points pi ∈ Rd,

Pn(t) =

n∑
i=0

piB
n
i (t) (0 ≤ t ≤ 1),

where

Bni (x) =

(
n

i

)
xi(1− x)n−i (0 ≤ i ≤ n)

are Bernstein basis polynomials.
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Multi-degree reduction of Bézier curves with constraints

• Given a Bézier curve of degree n, with control points pi ∈ Rd,

Pn(t) =

n∑
i=0

piB
n
i (t) (0 ≤ t ≤ 1),

where Bni (0 ≤ i ≤ n) are Bernstein basis polynomials.

• Problem. Find a degree m (m < n) Bézier curve,

Qm(t) =

m∑
i=0

qiB
m
i (t) (0 ≤ t ≤ 1),

such that the value of the error∫ 1
0

(1− t)αtβ ‖Pn(t) −Qm(t)‖2 dt (α, β > −1)

is minimized in the space Πdm under the additional conditions that

P(i)n (0) = Q(i)
m (0) (0 ≤ i < k), P(j)n (1) = Q(j)

m (1) (0 ≤ j < l),

where k+ l ≤ m, and ‖ · ‖ denote the Euclidean vector norm
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Degree reduction: previous results

• Many papers relevant to this problem: Eck, 1995; Brunett et al., 1996; Farouki, 2000;
Chen and Wang, 2002; Lee et al., 2002, Ahn, 2003; Ahn et al., 2004; Sunwoo and
Lee, 2004; Sunwoo, 2005; Zang and Wang, 2005; Lu and Wang, 2006, 2007; Rababah
et al., 2006.

• Part of them deal with the unconstrained case, i.e., k = l = 0.

• In most cases, k = l, and the Legendre parameters, i.e., α = β = 0, are chosen.

• Chebyshev parameters, i.e., α = β = ±1/2, are also considered: Rababah et al.,
2006; Lu and Wang, 2007.

• The main tool used was transformation between the Bernstein and orthogonal poly-
nomial bases.

• The total complexity of known algorithms for optimal multi-degree reduction of Bézier
curves with constraints is O(n3)
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Degree reduction: motivation

• Data transfer and exchange between design systems.

• Data compression.
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Multi-degree reduction of Bézier curves with constraints

• Given the polynomial Pn ∈ Πn,

Pn(t) :=

n∑
i=0

piB
n
i (t).

• We look for a polynomial Qm ∈ Πm (m < n),

Qm(t) :=

m∑
i=0

qiB
m
i (t),

which gives minimum value of the squared norm

‖Pn −Qm‖2L2 := 〈Pn −Qm, Pn −Qm〉J
with the constraints

P
(i)
n (0) = Q

(i)
m (0) (i = 0, 1, . . . , k− 1),

P
(j)
n (1) = Q

(j)
m (1) (j = 0, 1, . . . , l− 1),

where k+ l ≤ m
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Solution

• Constraints
q0, q1, . . . , qk−1, qm−l+1, qm−l+2, . . . , qm.
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Solution

• Constraints
q0, q1, . . . , qk−1, qm−l+1, qm−l+2, . . . , qm.

• Other coefficients

qi =

n−l∑
j=k

wjΦij (k ≤ i ≤ m− l),

where

Φij := 〈Bnj , D
(m,k,l)
i 〉J
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• Other coefficients

qi =

n−l∑
j=k

wjΦij (k ≤ i ≤ m− l),

where

Φij := 〈Bnj , D
(m,k,l)
i 〉J
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Problem

For k ≤ i ≤ m− l and k ≤ j ≤ n− l, propose an efficient algorithm of computing the
quantities Φij, where

Φij ≡ Φ(n,m,k,l)
ij (α,β) := 〈Bnj , D

(m,k,l)
i 〉J
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Relation between Φij and dual discrete Bernstein polynomials

Theorem. For i = k, k + 1, . . . ,m − l (0 ≤ k + l ≤ m), and j = 0, 1, . . . , n the
following formula holds:

Φij := 〈Bnj , D
(m,k,l)
i 〉J

=

(
m− k− l

i− k

)(
n

j

)(
m

i

)−1
(α+ 2l+ 1)n−l−j(β+ 2k+ 1)j−k

(n− k− l)!
Ψij

with

Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).
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Relation between Φij and dual discrete Bernstein polynomials

Theorem. For i = k, k + 1, . . . ,m − l (0 ≤ k + l ≤ m), and j = 0, 1, . . . , n the
following formula holds:

Φij := 〈Bnj , D
(m,k,l)
i 〉J

=

(
m− k− l

i− k

)(
n

j

)(
m

i

)−1
(α+ 2l+ 1)n−l−j(β+ 2k+ 1)j−k

(n− k− l)!
Ψij

with

Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).

Remark. All we need is a fast method for evaluation of

dm−k−l
i−k (j− k;β+ 2k, α+ 2l, n− k− l)

for k ≤ i ≤ m− l, k ≤ j ≤ n− l
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Difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials dni (x) ≡ dni (x;α,β,N) satisfy the
following difference-recurrence relation:

aN(x)d
n
i (x+ 1) + [cn(i) − cN(x)]d

n
i (x)

+ bN(x)d
n
i (x− 1) − an(i)d

n
i+1(x) − bn(i)d

n
i−1(x) = 0,

where 0 ≤ i ≤ n ≤ N, dn−1(x) = d
n
n+1(x) := 0, and

an(x) := (x−n)(x+α+1), bn(x) := x(x−β−n−1), cn(x) := an(x)+bn(x).
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Difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials dni (x) ≡ dni (x;α,β,N) satisfy the
following difference-recurrence relation:

aN(x)d
n
i (x+ 1) + [cn(i) − cN(x)]d

n
i (x)

+ bN(x)d
n
i (x− 1) − an(i)d

n
i+1(x) − bn(i)d

n
i−1(x) = 0,

where 0 ≤ i ≤ n ≤ N, dn−1(x) = d
n
n+1(x) := 0, and

an(x) := (x−n)(x+α+1), bn(x) := x(x−β−n−1), cn(x) := an(x)+bn(x).

Remark. Thanks to the above result, we can propose an efficient algorithm of computing
the quantities Ψij
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Ψ-table

• Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).
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Ψ-table

• Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).

• Quantities Ψij (k ≤ i ≤ m− l; k ≤ j ≤ n− l) can be put in a rectangular table,

Ψkk Ψk,k+1 . . . Ψk,n−l

Ψk+1,k Ψk+1,k+1 . . . Ψk+1,n−l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψm−l,k Ψm−l,k+1 . . . Ψm−l,n−l
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Ψ-table

• Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).

• Quantities Ψij (k ≤ i ≤ m− l; k ≤ j ≤ n− l) can be put in a rectangular table.

• Using difference-recurrence relation for dual discrete Bernstein polynomials, one may
obtain the element Ψi+1,j in terms of four elements from the rows number i and i−1.

Ψi−1,j

Ψi,j−1 Ψij Ψi,j+1

Ψi+1,j
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Ψ-table

• Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).

• Quantities Ψij (k ≤ i ≤ m− l; k ≤ j ≤ n− l) can be put in a rectangular table.

• Using difference-recurrence relation for dual discrete Bernstein polynomials, one may
obtain the element Ψi+1,j in terms of four elements from the rows number i and i−1.

Ψi−1,j

Ψi,j−1 Ψij Ψi,j+1

Ψi+1,j

• More specifically,

Ψi+1,j = {A(n, j)Ψi,j−1 + [C(m, i) − C(n, j)]Ψij +

B(n, j)Ψi,j+1 −A(m, i)Ψi−1,j}/B(m, i),

A(r, s) := (k−s)(r+l−s+α+1), B(r, s) := (s+l−r)(k+s+β+1), C(r, s) := A(r, s)+B(r, s).
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Ψ-table

• Ψij ≡ Ψ(n,m,k,l)
ij (α,β) := dm−k−l

i−k (j− k;β+ 2k, α+ 2l, n− k− l).

• Quantities Ψij (k ≤ i ≤ m− l; k ≤ j ≤ n− l) can be put in a rectangular table.

• Using difference-recurrence relation for dual discrete Bernstein polynomials, one may
obtain the element Ψi+1,j in terms of four elements from the rows number i and i−1.

Ψi−1,j

Ψi,j−1 Ψij Ψi,j+1

Ψi+1,j

• Cost: O(nm)
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Degree reduction: conclusions

• We solved the problem of optimal multi-degree reduction of Bézier curves with con-
straints in the general case, i.e., for α, β > −1, and arbitrary k, l ∈ N.

• In our approach, we use the dual constrained Bernstein and dual discrete Bernstein
polynomials.

• Our method does not use explicitly transformation between the Bernstein and ortho-
gonal polynomial bases.

• The main tool is the difference–recurrence relation for dual discrete Bernstein polyno-
mials.

• The complexity of the method is O(nm), which seems to be significantly less than
complexity of most known algorithms for multi-degree reduction of Bézier curves with
constraints.
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