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Dual Bernstein basis polynomials

e Bernstein basis polynomials of degree n
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Dual Bernstein basis polynomials

e Bernstein basis polynomials of degree n

Bl'(x) = (?) XHT —x)v (0 <1< n).

e Associated with the Bernstein basis, there is a unique dual basis

DB(X; Xy B)> D?(X; X,y B)> RS DE(X; Xy 6) SHIM

defined so that

<DIL, B]Tl>]=6ij (i,ij,],...,n),
where
1

(£, )y = jo -0 fx) gl dx (o B > —1)
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Dual Bernstein basis polynomials

e Bernstein basis polynomials of degree n

BM(x) = C‘) T—x)"" (0<i<m).

e Associated with the Bernstein basis, there is a unique dual basis D} (x; &, 3) € Tl
(0 < k < n) defined so that

(DL, B, =8y (L,j=0,1,...,n),
where

1

(£, g); = jo -0 ) gl dx (o B > —1)

e Shifted Jacobi polynomials R]((“’B)(x) are orthogonal wrt the inner product (f, g)j, i.e.,

<R§;">B), R{"‘>B)>] — g (k1=0,1,...: h>0).
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Constrained dual Bernstein basis polynomials

e |et us define

ﬂ(k>”::{Peﬂn:Pm(O):0 (0<i<k), PY(1)=0 (0§1<U}>

n

where k +1 < n. Certainly, TTh®" = lin {B2, B, ..., B | }.
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Constrained dual Bernstein basis polynomials

e |et us define

n

el .— {P cTl, : PU0)=0 (0<i<k), PI(1)=0 (0<j< 1)},
where k + 1 < n. Certainly, ﬂ%k’ = lin {B KT - B?L_l}.
e There is a unique constrained dual Bernstein basis of degree n
DY (6 &, By DYy (.06 B), -y DI (5 o, B) € TIEY,
satisfying the relation
<D£“’k’”, B}l>] =8 (L,j=kk+1,...,n—1),
where

1

mmszu—mwwmmumx (0B > 1)
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Constrained and unconstrained dual Bernstein polynomials

e (onstrained dual Bernstein polynomials Dgn’k’l)(x; &, [3) can be expressed in terms of
the unconstrained dual Bernstein polynomials of degree n — k — 1, with parameters
o« + 21 and 3 + 2k in the following way:

n—k—1

—1
: ) (n) X1 —x)" D{‘__kk_l(x; o+ 21, 3 + 2k)
1—k 1

DMV o, B) = (
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Constrained dual Bernstein basis polynomials. Previous results

o Ciesielski, 1987 (xu = =0, k =1 =0): definition, recurrence relation
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Constrained dual Bernstein basis polynomials. Previous results

o Ciesielski, 1987 («u = =0, k =1 = 0): definition, recurrence relation.

o Jittler, 1998 (&« = 3 = 0, k = 1): Bernstein-Bézier representation
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Constrained dual Bernstein basis polynomials. Previous results
o Ciesielski, 1987 («u = =0, k =1 = 0): definition, recurrence relation.
o Jittler, 1998 («x = 3 = 0, k = 1): Bernstein-Bézier representation.

o L&W, 2006 (e, p > —1, k=1=0): recurrence relation, orthogonal expansion,
"short’" representation
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Constrained dual Bernstein basis polynomials. Previous results
o Ciesielski, 1987 («u = =0, k =1 = 0): definition, recurrence relation.
o Jittler, 1998 («x = 3 = 0, k = 1): Bernstein-Bézier representation.

o L&W, 2006 (e, p > —1, k=1=0): recurrence relation, orthogonal expansion,
"short" representation.

e Rababah and Al-Natour, 2007: extented Jiittler's results to the case of arbitrary
x, B> —1
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Constrained dual Bernstein basis polynomials. Previous results

Ciesielski, 1987 («x = =0, k =1 = 0): definition, recurrence relation.
Juttler, 1998 (o« = 3 = 0, k = 1): Bernstein-Bézier representation.

L&W, 2006 («, B > —1, k=1=0): recurrence relation, orthogonal expansion,
"short" representation.

Rababah and Al-Natour, 2007: extented Jiittler's results to the case of arbitrary
x, p>—1.

W&L, 2009 (&, B > —1, and k,1 € N): recurrence relation, orthogonal expansion,
"short” representation, relation beetwen constrained and unconstrained dual Bernstein
polynomials
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Constrained dual Bernstein basis polynomials. Applications

e |east-squares approximation by Bézier curves (Jittler, 1998)
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Constrained dual Bernstein basis polynomials. Applications

e |east-squares approximation by Bézier curves (Juttler, 1998).

e Computing roots of polynomials (Barton and Jittler, 2007; Liu et al., 2009)
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Constrained dual Bernstein basis polynomials. Applications

e |east-squares approximation by Bézier curves (Juttler, 1998).
e Computing roots of polynomials (Barton and Jittler, 2007; Liu et al., 2009).

e Degree reduction of Bézier curves and surfaces (L&W)
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Constrained dual Bernstein basis polynomials. Applications

e |east-squares approximation by Bézier curves (Juttler, 1998).
e Computing roots of polynomials (Barton and Jittler, 2007; Liu et al., 2009).
e Degree reduction of Bézier curves and surfaces (L&W).

e Polynomial approximation of rational Bézier curves (L&W).

)

e Problem. Given a function f. Find the Bézier form of the polynomial P, € ﬂ%k’l)
which gives the minimum value of the norm

||f — Pn”l_z = \/<f — Pn) T — Pn>]
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Constrained dual Bernstein basis polynomials. Applications

e |east-squares approximation by Bézier curves (Juttler, 1998).
e Computing roots of polynomials (Barton and Jittler, 2007; Liu et al., 2009).
e Degree reduction of Bézier curves and surfaces (L&W).

e Polynomial approximation of rational Bézier curves (L&W).

)

e Problem. Given a function f. Find the Bézier form of the polynomial P, € ﬂ%k’l)
which gives the minimum value of the norm

If — Pn”l_z = \/<f — Pn, T — Pn>]-

e Solution:

Pn(t) — Z aJ'B)TL(t% aj .= <f> Dj(n)k,l)('; X, ﬁ)>]
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Constrained dual Bernstein basis polynomials. Applications

e |east-squares approximation by Bézier curves (Juttler, 1998).
e Computing roots of polynomials (Barton and Jittler, 2007; Liu et al., 2009).
e Degree reduction of Bézier curves and surfaces (L&W).

e Polynomial approximation of rational Bézier curves (L&W)

)

e Problem. Given a function f. Find the Bézier form of the polynomial P, € ﬂ%k’l)
which gives the minimum value of the norm

If — Pn”l_z = \/<f — Pn, T — Pn>]-

e Solution:

1
Palt) =) aBl'(t), a= JO (1 —x)P £(x) D} (x; o, B) dx
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Dual Bernstein polynomials: explicit formulae (L&W, 2006)

e Recurrence relation

DTL+1 . — 1 — i DM (- i n .
P B) = (1= ) DR B) D (xi B) +
DR (),
where
or o (_pyn-i Mt BH1) (Int ot B43)(at B+ 2)n

Floe+ TR+ 1) (B + Diloe + -
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Dual Bernstein polynomials: explicit formulae (L&W, 2006)

e Recurrence relation

1
n+1

1
n+1

DM (x; 0, B) = (1 _ )D?(x; o B) + N o B) + OTRIE ().

e Orthogonal expansion

e a1 e Nk (2K/o+ 1) (o)
DY (x;00 B) =K ) _ (=D~

k=0

where Qy(1; 3, &, ) are Hahn orthogonal polynomials,
k

(—k)i(k + o) (—x)i
Z (OC—|— 1)1(—]\])1 1!

Qk(x; X, [33 N) =

1=0
MNMoa+p+1)

Mot TR +1)

ando:=a+p+1, K:=
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Dual Bernstein polynomials: explicit formulae (L&W, 2006)

e Recurrence relation

1
n+1

1
(o B) + ORI (x),

D™(x: !
) 1(X’(X)B)+n—|—1 i—1

DI (x; 0, B) = <1 -
e Orthogonal expansion

e a1 e Nk (2K/o+ 1) (o)
DY (x;00 B) =K ) _ (=D~

k=0

e Short representations

(=)™ o+

et B = e D s e e 0
N (= Dio+Dn ¢ vk (TR Skt
S e T M E S
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Dual Bernstein polynomials: Bézier form

n
o Di(x;ex,B) =) Ci(n, o B)B}x)
j=0
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Dual Bernstein polynomials: Bézier form

n
e DM'x;0t, Z Cy(m, o, B)Bj*(x).
j=0

o Jittler, 1998 (. = 3 = 0):

min(i,j)
H—] _ _
Cy(m,0,0) = n] (2hi1) (n—i—h+1)<n h)(n—l—h—!%)(n h)
i) ) = i n—i n—j n—j
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Dual Bernstein polynomials: Bézier form

n
e DM'x;0t, Z Cy(m, o, B)Bj*(x).
j=0

o Jittler, 1998 (. = 3 = 0):

min(i,j)
)i h+1 —h h+1 —h
Cim 0.0 ol (H ‘ )(ﬁ—i)(”ii )G—i)’
j =0

e Rababah and Al-Natour, 2007:

extented Jiittler's results to the case of arbitrary o, f > —1
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Dual Bernstein polynomials: Bézier form

n
e DM'x;0t, Z Cy(m, o, B)Bj*(x).
j=0

o Jittler, 1998 (. = 3 = 0):

2h1 n+h+1\/n—h\/n+h+1\/n—h
111) — —1 n—i n—j n—j/’

o L&W, 2011 (o, B > —1):

1 = 2m/o+ 1) (B + Dm(0)m
Bl +T1,p+1) — m!(oc+ 1)

Qm(i; [?)) (x) n)Qm(j; (‘))) CX’) n))
where Qx(x; o, 3, N) are Hahn orthogonal polynomials, and 0 := ot + 3 + 1

Cij(n> X,y B) —
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

1 = (2m/oc+ 1)(B + m(0)m
B(oc+1,[3+1)z ml o+ 1) 8

i Cij(“) X,y B) —

m=0

SC 2011 Pawet Wozny, University of Wroctaw, Poland



8/21

Dual Bernstein polynomials: Bézier form (L&W, 2011)

B 1 = 2m/o+ 1) (B + m(0)m
° Cij(n’(x’B)_B(OC—F],B"'”n;) m!(OC—|—”m X

)

® I—me(X; B, «, n)=m(m-+ o) Qm(x; B, «, nj,

e where

Loy(x) = alx)y(x +1) —c(x)y(x) +b(x)y(x — 1),

2

alx) = x—n)(x+p+1),
¢ b(x) i =x(x—a—m—1),
a(x) + b(x)

\ c(x) :
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

1 = (2m/oc+ 1)(B + m(0)m
B(oc+1,[3+1)z ml o+ 1) 8

i Cij(“) X,y B) —

m=0

LiCy(n, e, B) = L;Cy5(n, &, B)
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Dual Bernstein

i Cij(“) X,y B) —

SC 2011

8/21

polynomials: Bézier form (L&W, 2011)

1 = (2m/oc+ 1)(B + m(0)m
B(oc+1,[3+1)z ml o+ 1) 8

m=0

LiCy(n, e, B) = L;Cy5(n, &, B)

)

Recurrence relation for Cyj(n, «, 3)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

1 = (2m/oc+ 1)(B + m(0)m
B(oc+1,[3+1)z ml o+ 1) 8

i Cij(“) X,y B) —

m=0

1 L] L] L] ]
o Cip1j= W{(l—])(Zl—l—Z) —2n — o+ B)Cy+
B(j)Cij—1 +A()Cije1 — B(i)ci—m}»

where Cy; = Cy(n, &, 3), and

A =u—m)u+Tu+p+1)/(ut+1),
Blu=uu—-m—aoa—1u—-nn—-1)/([u—m-—1)
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

1 i (2m/o+1)([3+1)m(cr)m><

° Cij(n’(x)B):B(Oc—l—],B"'” m!(OC—|—”m

m=0
1 . vy :
o Cip;= m{(l —§)(2i+2j — 2n— o+ B)Cy+
B()Cij1 + AG)Cijer — BRI}
Ci1,;
o Cross rule: Cij—1 Cy  Cijm
Cit1,;
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

1 i (2m/o+1)([3+1)m(cr)m><

° Cij(n’(x)B):B(Oc—l—],B"'” m!(OC—|—”m

m=0
1 N :
o Cip;= m{(l —§)(2i+2j — 2n— o+ B)Cy+
B()Cij1 + AG)Cijer — BRI}
Citj
e Cross rule: Cij—1 Cy  Cijm — complexity O(n?)
Cit1,;
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Dual Bernstein polynomials: Bézier form (L&W, 2011)

Cij(“) X,y B) —

1
Cipry = Al

Cross rule:

1

n

B(oc—l—],[S—H)Z

2m/o+1)(B+ 1n(0)n_

m=0

m!(oc+ 1)

{(i=9)2i+2) - m— o+ BICy+
B()Cij1 + AG)Cijer — BRI}

Cij

Citj

Cij

Juttler, Rababah and Al-Natour

SC 2011

—

—

complexity O(n?)

complexity O(n?)
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Generalizations of Bernstein polynomials

e Discrete Bernstein polynomials (Sablonniére, 1992)
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e Discrete Bernstein polynomials (Sablonniére, 1992)
e (-Bernstein polynomials (Phillips, 1997)
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Generalizations of Bernstein polynomials

e Discrete Bernstein polynomials (Sablonniére, 1992)
e (-Bernstein polynomials (Phillips, 1997)

e Generalized Bernstein polynomials (L&W, 2004)

)

One can consider dual basis also in all these cases
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Generalizations of Bernstein polynomials

e Discrete Bernstein polynomials (Sablonniére, 1992)
e (-Bernstein polynomials (Phillips, 1997)

e Generalized Bernstein polynomials (L&W, 2004)

)

One can consider dual basis also in all these cases

\

Now, we focus on the discrete dual Bernstein polynomials and show that
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Generalizations of Bernstein polynomials

e Discrete Bernstein polynomials (Sablonniére, 1992)
e (-Bernstein polynomials (Phillips, 1997)

e Generalized Bernstein polynomials (L&W, 2004)

)

One can consider dual basis also in all these cases

\

Now, we focus on the discrete dual Bernstein polynomials and show that

e these polynomials have a very nice application

in CAGD
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Generalizations of Bernstein polynomials
e Discrete Bernstein polynomials (Sablonniére, 1992)
e (-Bernstein polynomials (Phillips, 1997)

e Generalized Bernstein polynomials (L&W, 2004)

)

One can consider dual basis also in all these cases

\

Now, we focus on the discrete dual Bernstein polynomials and show that

e these polynomials have a very nice application

in CAGD

e and are closely related to the (classical) dual
Bernstein polynomials
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Dual discrete Bernstein polynomials

e Discrete Bernstein basis polynomials of degree n (Sablonniére, 1992)

b (xN) = (_]1\]) (Tll

)(_X)i(X_N)ni 0<i<n<N; NeN)
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Dual discrete Bernstein polynomials

e Discrete Bernstein basis polynomials of degree n (Sablonniére, 1992)

b O6N) = (T.l‘)(—x)i(x—mm 0<i<n<N;NeN.

e Dual discrete Bernstein basis polynomials of degree n,

dg(x; o, 3, N), d?(x; o By NJy ..., dﬁ(x; %, B, N) € Ty,
are defined so that

<d{l, b]TL>H:6ij (i,j:O,1,...,Tl).

e Here

N
o= (“T) (PR ) et (a s

x=0
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Dual discrete Bernstein polynomials

e Discrete Bernstein basis polynomials of degree n (Sablonniére, 1992)

b?th)=:t_L) (?

)P«Mx—Nhi (0<i<n<N; NeN).
e Dual discrete Bernstein basis polynomials of degree n,

dg(x; o, 3, N), d?(x; o By NJy ..., dﬁ(x; %, B, N) € Ty,
are defined so that

<d{l, b]TL>H:6ij (i,j:O,1,...,Tl).

e Here

N
ST S G | G [ PSR G !

X
=0

X

e Recall that Hahn polynomials are orthogonal with respect to this inner product

SC 2011 Pawet Wozny, University of Wroctaw, Poland



11/21

Dual discrete Bernstein polynomials: difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials di'(x) = d*(x; «, 3, N) satisfy the
following difference-recurrence relation:

an(x)di(x + 1) 4 [cn(i) — en(x)] di*(x)

+bn(x)di (x — 1) — an(i) {:L] (x) —bn(i)dii;(x) =0,

where 0 <1 <n <N, d"(x) =dy ;(x):=0, and

an(x) = (x—m)(x+a+1), bn(x):=x(x—p—n—1), cn(x):= an(x)+bn(x).
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Dual discrete Bernstein polynomials: difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials di'(x) = d*(x; «, 3, N) satisfy the
following difference-recurrence relation:

an(x)di(x + 1) 4 [cn(i) — en(x)] di*(x)
+bn(x)di(x — 1) — an(i)dit (x) —ba(i)di;(x) =0,

where 0 <1 <n <N, d"(x) =dy ;(x):=0, and

n

an(x) = (x—m)(x+a+1), bn(x):=x(x—p—n—1), cn(x):= an(x)+bn(x).

Remark. Thanks to the above result, we can propose an efficient algorithm of solving
the so-called problem of the degree reduction of Bézire curves, which is important in

CAGD.
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Multi-degree reduction of Bézier curves with constraints

o Given a Bézier curve of degree n, with control points p; € RY,
n

Pa(t) =) PiBI()  (0<t<T),
1=0

where

B(x) = (T‘)m M 0<i<n)

are Bernstein basis polynomials.

12/21
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Multi-degree reduction of Bézier curves with constraints

o Given a Bézier curve of degree n, with control points p; € RY,
n

Pa(t) =) PiBI()  (0<t<T),
1=0

where Bl (0 < i < m) are Bernstein basis polynomials.

e Problem. Find a degree m (m < n) Bézier curve,

Qm(t) =) qiBMt) (0<t<1),
1=0
such that the value of the error

1
JO (1= %P [Pa(t) — Qu(t)Pdt (@ B> —T)

is minimized in the space TT¢ under the additional conditions that

PUO)=Ql(0) (0<i<k), PIM)=QU() (0<j<U,

where kK +1 < m, and || - || denote the Euclidean vector norm
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Degree reduction: previous results

e Many papers relevant to this problem: Eck, 1995; Brunett et al., 1996; Farouki, 2000;
Chen and Wang, 2002; Lee et al., 2002, Ahn, 2003; Ahn et al., 2004; Sunwoo and
Lee, 2004; Sunwoo, 2005; Zang and Wang, 2005; Lu and Wang, 2006, 2007; Rababah
et al., 2006.

e Part of them deal with the unconstrained case, ie. k =1=0.
e In most cases, kK =1, and the Legendre parameters, i.e., « = 3 = 0, are chosen.

e Chebyshev parameters, ie., « = 3 = £1/2, are also considered: Rababah et al,
2006; Lu and Wang, 2007.

e The main tool used was transformation between the Bernstein and orthogonal poly-
nomial bases.

e The total complexity of known algorithms for optimal multi-degree reduction of Bézier
curves with constraints is O(n?)
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Degree reduction: motivation

e Data transfer and exchange between design systems.

e Data compression.
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Multi-degree reduction of Bézier curves with constraints

e Given the polynomial P,, € T1,,,

Pu(t) = ) piBl(t).
i=0

e We look for a polynomial Q, € Ty (M < M),

Qum(t) =) aiBPt),
1=0

which gives minimum value of the squared norm

[Pn — QmH%z = (Pn— Qm, Pn— Qum);
with the constraints
PR (0) =Qm(0) (i=0,1,...,k—1),

Pg)(]):le)(” (j:())])---)l_]))
where Kk +1<m
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Solution

e (onstraints
qoy g1y« - -y qx—1, Jm—14+1y gm—1+42y -+ -y dm
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Solution

e (onstraints
qoy g1y« - -y qx—1, Jm—14+1y gm—1+2y « « « y gm-

e Other coefficients

n—l
gi=) wdy (k<i<m-1),
=k

where
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Solution

e (onstraints
qoy g1y« - -y qx—1, Jm—14+1y gm—1+42y -+ -y dm

e Other coefficients

n—l
gi=) wdy (k<i<m-1),
=k

where
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Problem

Fork <i<m—1land k <j <n—1, propose an efficient algorithm of computing the
quantities @y, where
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Relation between ®;; and dual discrete Bernstein polynomials

Theorem. Fori=k,k+1,....m—1(0<k+1<m), andj=0,1,...,m the

following formula holds:

Kl
Oy = (BY, ng )>I

(m— k — 1) (n) <m>] (¢ + 21+ 1)n—5(B + 2k + ”j—k\y,,
i—x )\ )\ (m—k—1) )

with

Yy =W (o B) =AM — KB+ 2k, o+ 2L n —k — 1),
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Relation between ®;; and dual discrete Bernstein polynomials

Theorem. Fori=k,k+1,....m—1(0<k+1<m), andj=0,1,...,m the

following formula holds:

Kl
Oy = (BY, ng )>I

(m— k — 1) (n) <m>] (¢ + 21+ 1)n—5(B + 2k + ”j—k\y,,
i—x )\ )\ (m—k—1) )

with

Yy =W (o B) =AM — KB+ 2k, o+ 2L n —k — 1),

Remark. All we need is a fast method for evaluation of
d™ G-k B+ 2k, o+ 2L, n —k— 1)
fork<i<m-—-1L k<j<n—1
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Difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials di'(x) = d*(x; «, 3, N) satisfy the
following difference-recurrence relation:

an(x)di(x + 1) 4 [cn(i) — en(x)] di*(x)

+bn(x)di (x — 1) — an(i) {:L] (x) —bn(i)dii;(x) =0,

where 0 <1 <n <N, d"(x) =dy ;(x):=0, and

an(x) = (x—m)(x+a+1), bn(x):=x(x—p—n—1), cn(x):= an(x)+bn(x).
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Difference-recurrence relation

Theorem. Dual discrete Bernstein polynomials di'(x) = d*(x; «, 3, N) satisfy the
following difference-recurrence relation:

an(x)di(x + 1) 4 [cn(i) — en(x)] di*(x)

+bn(x)di (x — 1) — an(i) {:L] (x) —bn(i)dii;(x) =0,

where 0 <1 <n <N, d"(x) =dy ;(x):=0, and

an(x) = (x—m)(x+a+1), bn(x):=x(x—p—n—1), cn(x):= an(x)+bn(x).

Remark. Thanks to the above result, we can propose an efficient algorithm of computing
the quantities Wy
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WY-table

o Wy=W"" (o B)i=dM -k B+ 2k a+2l,n—k—1)
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WY-table

o W=y (o, )= dM G — KB + 2k, a+2Ln—k—1).

o Quantities Wy (k <1 <m—1; k <j <n—1) can be put in a rectangular table,

Wi Wy ooo Yo

Witk Yirien o0 Yiina

Yk Yokt -0 Ymoina
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WY-table
e (n>m>k>1) - m—k—1: . . . .
o Wy =W, (o, B):=d™ (G —KkpB+2k,x+2l,n —k —1).

e Quantities Wy (k <i<m—1; k <j<n—1) can be put in a rectangular table.

e Using difference-recurrence relation for dual discrete Bernstein polynomials, one may
obtain the element Wi, ; in terms of four elements from the rows number i and i—1.

Wiy
Wi Wy Wi

Wit
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Y_table

o W=y (o, )= dM G — KB + 2k, a+2Ln—k—1).
e Quantities Wy (k <i<m—1; k <j<n—1) can be put in a rectangular table.

e Using difference-recurrence relation for dual discrete Bernstein polynomials, one may
obtain the element Wi, ; in terms of four elements from the rows number i and i—1.

Wi Wy Wi

Wit

e More specifically,
Vi = {AMm,j) Yij—1 + [C(m,1) — C(n,j)] Wy +

B (TL, ]) \yi,j_i_] — A(m, 1) Wi_])j}/B (TTL, 1),
A(r,s) .= (k—s)(r+1l—s+a+1), B(r,s) := (s+1—71)(k+s+p+1), C(r,s) := A(r,s)+B(r,s).
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Y-table
L — (n>m>k>1) . Agm—k—Ll: 1 _ _
o Wy =1, (o, B):=d™ (G —KkpB+2k,x+2l,n —k —1).
e Quantities Wy (k <i<m—1; k <j<n—1) can be put in a rectangular table.

e Using difference-recurrence relation for dual discrete Bernstein polynomials, one may
obtain the element Wi, ; in terms of four elements from the rows number i and i—1.

Wiy
Wi Wy Wi

Wit

e Cost: O(nm)
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Degree reduction: conclusions

e We solved the problem of optimal multi-degree reduction of Bézier curves with con-
straints in the general case, ie., for o¢, 3 > —1, and arbitrary k,1 € N.

e In our approach, we use the dual constrained Bernstein and dual discrete Bernstein
polynomials.

e Our method does not use explicitly transformation between the Bernstein and ortho-
gonal polynomial bases.

e The main tool is the difference—recurrence relation for dual discrete Bernstein polyno-
mials.

e The complexity of the method is O(nm), which seems to be significantly less than
complexity of most known algorithms for multi-degree reduction of Bézier curves with
constraints.
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