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Recent results on propagating, solitary magnetic wave solutions of the
Landau-Lifshitz equation with uniaxial, easy-axis anisotropy in thin (two-
dimensional) magnetic films will be illustrated. These localized, nontopo-
logical wave structures, parametrized by their precessional frequency and
propagation speed, extend the stationary, coherently precessing “magnon
droplet” to the moving frame, a non-trivial generalization due to the lack of
Galilean invariance. Propagating droplets move on a spin wave background
with a nonlinear droplet dispersion relation that yields a limited range of
allowable droplet speeds and frequencies. The droplet is found to propagate
as a Nonlinear Schroedinger bright soliton in the weakly nonlinear regime
[1]. Using spin transfer torque underneath a nanocontact on a magnetic thin
film with perpendicular magnetic anisotropy (PMA), the generation of dissi-
pative magnetic droplet solitons was announced this year for the first time,
following its theoretical prediction [2]. Rich dynamical properties (includ-
ing droplet oscillatory motion, droplet spinning, and droplet breather states)
have been experimentally observed and reported. After reviewing the con-
servative magnetic droplet, some properties of the soliton in a lossy medium
will be discussed [3]. In particular, it will be shown that the propagation
of the dissipative droplet can be accelerated and controlled by means of an
external magnetic field. Soliton perturbation theory corroborated by two-
dimensional micromagnetic simulations predicts several intriguing physical
effects, including the acceleration of a stationary soliton by a magnetic field
gradient, the stabilization of a stationary droplet by a uniform control field
in the absence of spin torque, and the ability to control the solitons speed by
use of a time-varying, spatially uniform external field. Soliton propagation
distances approach 10 µm in low-loss media, suggesting that droplet soli-
tons could be viable information carriers in future spintronic applications,
analogous to optical solitons in fiber optic communications.
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