Some new results in geometrical optics

F. Borghero
Dip. di Matematica e Informatica, Università di Cagliari, Italy borghero@unica.it

In this talk I want to present some recent results obtained in the framework of Geometrical Optics from the inverse point of view. We shall be concerned with the propagation of light in a continuous transparent inhomogeneous and isotropic medium, dispersive or not. We put and solve the two following inverse problems of geometrical optics:

1) 3-dimensional inverse problem: Given a two-parametric family of curves $\mathcal{F}_{2}: f(x, y, z)=c_{1}, \quad g(x, y, z)=c_{2}$, inside a 3 -dimensional medium \mathcal{M}_{3}, we want to find the refractive-index distributions $n(x, y, z)$ allowing for the creation of the given family of curves as a family of monochromatic light rays.
2) 2-dimensional inverse problem: Given a monoparametric family of curves \mathcal{F}_{1} : inside a 2 -dimensional medium \mathcal{M}_{2}, lying on a regular surface S, we want to find the refractive-index distributions $n=n(u, v)$ allowing for the creation of the given family of curves as a family of monochromatic light rays. Our main results are:
Proposition 1: Given a family \mathcal{F}_{2} lying on a medium \mathcal{M}_{3}, all the refractiveindex distributions $n(x, y, z)$ allowing for the creation of the given family of curves as a family of monochromatic light rays, are solutions of the system of two first order linear PDE: $\alpha n_{x}-n_{y}+\Omega_{1} n=0, \beta n_{x}-n_{z}+\Omega_{2} n=0$, in the unique unknown function $n(x, y, z)$ where $\alpha(x, y, z), \beta(x, y, z), \Omega_{1}(x, y, z)$, $\Omega_{2}(x, y, z)$ are functions depending only on the given family of light rays.
Proposition 2: Given a family \mathcal{F}_{1}, inside a medium \mathcal{M}_{2} lying on a regular surface S, with a line element given by $d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}$, all the refractive-index distributions $n(u, v)$ allowing for the creation of the given family of curves as a family of monochromatic light rays, are solutions of the linear first order PDE: $(G-\gamma F) n_{u}-(F-\gamma E) n_{v}+\Omega n=0$, in the unknown function $n(u, v)$, where $\gamma=\frac{f_{v}}{f_{u}}$ is a function of u, v depending only on the given family; E, F, G are the coefficients of the assigned metric on S, and Ω is a functions of u, v depending both of the family and on the metric.
