Some new results in geometrical optics

F. Borghero

Dip. di Matematica e Informatica, Università di Cagliari, Italy borghero@unica.it

In this talk I want to present some recent results obtained in the framework of Geometrical Optics from the inverse point of view. We shall be concerned with the propagation of light in a continuous transparent inhomogeneous and isotropic medium, dispersive or not. We put and solve the two following inverse problems of geometrical optics:

1) **3-dimensional inverse problem**: Given a two-parametric family of curves \mathcal{F}_2 : $f(x, y, z) = c_1$, $g(x, y, z) = c_2$, inside a 3-dimensional medium \mathcal{M}_3 , we want to find the refractive-index distributions n(x, y, z) allowing for the creation of the given family of curves as a family of monochromatic light rays.

2) **2-dimensional inverse problem**: Given a monoparametric family of curves \mathcal{F}_1 : inside a 2-dimensional medium \mathcal{M}_2 , lying on a regular surface S, we want to find the refractive-index distributions n = n(u, v) allowing for the creation of the given family of curves as a family of monochromatic light rays. Our main results are:

Proposition 1: Given a family \mathcal{F}_2 lying on a medium \mathcal{M}_3 , all the refractiveindex distributions n(x, y, z) allowing for the creation of the given family of curves as a family of monochromatic light rays, are solutions of the system of two first order linear PDE: $\alpha n_x - n_y + \Omega_1 n = 0$, $\beta n_x - n_z + \Omega_2 n = 0$, in the unique unknown function n(x, y, z) where $\alpha(x, y, z)$, $\beta(x, y, z)$, $\Omega_1(x, y, z)$, $\Omega_2(x, y, z)$ are functions depending only on the given family of light rays.

Proposition 2: Given a family \mathcal{F}_1 , inside a medium \mathcal{M}_2 lying on a regular surface S, with a line element given by $ds^2 = Edu^2 + 2Fdudv + Gdv^2$, all the refractive-index distributions n(u, v) allowing for the creation of the given family of curves as a family of monochromatic light rays, are solutions of the linear first order PDE: $(G - \gamma F)n_u - (F - \gamma E)n_v + \Omega n = 0$, in the unknown function n(u, v), where $\gamma = \frac{f_v}{f_u}$ is a function of u, v depending only on the given family; E, F, G are the coefficients of the assigned metric on S, and Ω is a functions of u, v depending both of the family and on the metric.