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The Problem and its motivations
In certain applications we are given a set of k positive definite matrices
A1, . . . ,Ak ∈ Pn which represent measures of some physical object

Problem:

To compute an average G = G (A1, . . . ,Ak) ∈ Pn such that

G (A1, . . . ,Ak)−1 = G (A−11 , . . . ,A−1k )

Elasticity tensor analysis, image processing, radar detection, subdivision schemes,

[Hearmon 1952, Moakher 2006, Barbaresco 2009, Barachant et al. 2010, Itai,

Sharon 2012] ;

Scalar case: the geometric mean (
∏k

i=1 Ai )
1/k is the ideal choice

Matrix case: things are more complicated

An additional request: If A1, . . . ,Ak ∈ A ⊂ Pn then it is required that
G ∈ A. In the design of certain radar systems [Farina, Fortunati 2011],

[Barbaresco 2009] A is the set of Toeplitz matrices.
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Means of two matrices: an “easy” case

Many authors analyzed the problem of extending the concept of geometric
mean from scalars to matrices [Anderson, Trapp, Ando, Li, Mathias, Bhatia,

Holbrook, Kosaki, Lawson, Lim, Moakher, Petz, Temesi,...]

Some attempts to extend the geometric mean from scalars to matrices

G (A,B) := (AB)1/2: drawbacks G (A,B) 6∈ Pn, G (A,B) 6= G (B,A)

G (A,B) := exp(12(log A + log B)): several drawbacks Def. of matrix function

A good definition

G (A,B) = A(A−1B)1/2 = A1/2(A−1/2BA−1/2)1/2A1/2

This mean is uniquely defined by the Ando-Li-Mathias (ALM) axioms:
ten properties that a “good” mean should satisfy
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P1 Consistency with scalars. If A, B commute then G (A,B) = (AB)1/2

P2 Joint homogeneity. G (αA, βB) = (αβ)1/2G (A,B), α, β > 0

P3 Permutation invariance. G (A,B) = G (B,A)

P4 Monotonicity. If A � A′, B � B ′, then G (A,B) � G (A′,B ′)

P5 Continuity from above. If Aj , Bj are monotonic decreasing sequences
converging to A, B, respectively, then limj G (Aj ,Bj) = G (A,B)

P6 Joint concavity. If A = λA1 + (1− λ)A2, B = λB1 + (1− λ)B2, then

G (A,B) � λG (A1,B1) + (1− λ)G (A2,B2)

P7 Congruence invariance. G (STAS , STBS) = STG (A,B)S

P8 Self-duality G (A,B)−1 = G (A−1,B−1)

P9 Determinant identity det G (A,B) = (det A det B)1/2

P10 Arithmetic–geometric–harmonic mean inequality:(
A−1 + B−1

2

)−1
� G (A,B) � A + B

2
.
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Motivation in terms of Riemannian geometry

Several authors [Bhatia, Holbrook, Lim, Moakher, Lawson] studied the
geometry of positive definite matrices endowed with the Riemannian
metric with the distance defined by

d(A,B) = ‖ log(A−1/2BA−1/2)‖F

For scalars, d(a, b) = | log(a)− log(b)|

It holds that
d(A,B) = d(A−1,B−1)

moreover, the geodesic joining A and B has equation

γ(t) = A(A−1B)t , t ∈ [0, 1],

thus G (A,B) = A(A−1B)
1
2 is the midpoint of the geodesic joining

A and B
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Explog mean and geometric mean

D.A. Bini (Pisa) Geometric means of matrices Cagliari Sept. 2013 7 / 53



Explog mean and geometric mean

The explog mean does not satisfy the following ALM properties

P4 Monotonicity

P7 Congruence invariance
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The ALM mean: The case of k ≥ 3 matrices

Remark

The ALM-properties uniquely define the geometric mean of two matrices
A and B

For k > 2 matrices there exist infinitely many matrix means satisfying the
ALM-properties

One of these means is the Ando–Li–Mathias (ALM) mean
The ALM mean [Ando–Li–Mathias, 2003]:

A1 = G (B,C ) A2 = G (B1,C1) A3 = G (B2,C2)

B1 = G (C ,A) B2 = G (C1,A1) B3 = G (C2,A2) . . .

C1 = G (A,B) C2 = G (A1,B1) C3 = G (A2,B2)

The three sequences have a common limit defined as the ALM mean
GALM(A,B,C )
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Computing the ALM mean

1
1.5

2
2.5

3
3.5

4
4.5

5

1
1.5

2
2.5

31

1.1

1.2

1.3

1.4

1.5

1.6

1.7
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Remark

The same construction in the Euclidean geometry converges to the
centroid of the triangle ABC .

A

B

C

A1

B1

C1

A2 B2

C2
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Properties of the ALM mean

Recursively generalizable to k ≥ 4 matrices A1, . . . ,Ak

A
(ν+1)
i = G (A

(ν)
1 , . . . ,A

(ν)
i−1,A

(ν)
i+1, . . . ,A

(ν)
k ), i = 1, . . . , k

A

B

C

D

D'

A'

C'

B' it satisfies the 10 ALM properties

problem: slow convergence (linear
with rate 1/2)

problem: complexity O(k!pkn3), p:
number of iterations

We may provide a different definition which leads to a substantial
algorithmic improvement [B., Meini, Poloni, 2010], [Nakamura 2009]

In fact we overcome the first drawback about the slow convergence
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It is based on the following

Remark

The three medians of a triangle meet at a single point, the centroid, at
2/3 of their length.

A

B

C

G

M

2
3

1
3
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What happens with matrices?
Problem

In the Riemannian geometry the medians (geodesics) generally do not
intersect

1
1.5

2
2.5

3
3.5

4
4.5

5

1
1.5

2
2.5

3
3.5

4
4.5

51

1.2

1.4

1.6

1.8

2

2.2
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A new definition

Define A1, B1, C1 the points in the medians at distance 2/3 from the
vertices A,B,C , respectively.
Generally, A1, B1 and C1 are pairwise different

Similarly, define A2, B2, C2 from A1B1C1 and so forth

Aν+1 = Aν# 2
3
(Bν# 1

2
Cν)

Bν+1 = Bν# 2
3
(Cν# 1

2
Aν)

Cν+1 = Cν# 2
3
(Aν# 1

2
Bν)

where A#tB := γ(t) = A−1(AB)t is the matrix in the geodesic joining A
and B at distance t from A
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3
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4
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Properties and remarks

Theorem (A new mean)

For any positive definite matrices A,B,C , the sequences Aν , Bν , Cν
obtained this way converge to the same limit. We define this limit
G (A,B,C ) as the geometric mean of A,B,C

Theorem (Convergence with order 3)

The convergence speed is of order three, that is the error is O(λ3
ν
), for

0 < λ < 1, while for the ALM mean the error is O(2−ν).

Theorem (ALM properties)

In general G (A,B,C ) is different from GALM(A,B,C ), but fulfills the 10
ALM properties
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Properties and remarks

The mean can be generalized to k ≥ 4 matrices; for k = 4 the barycenter
of a tetrahedron is in the segment joining each vertex with the centroid of
the triangle (facet) formed by the remaining points, at distance 3/4; the
nice properties are preserved.

A

B

C

D

G

|AG| = 3/4 |AE|

E=Centroid(B,C,D)

E

In general on has:

A
(ν+1)
i = A

(ν)
i # k−1

k
G (A

(ν)
1 , . . . ,A

(ν)
i−1,A

(ν)
i+1, . . . ,A

(ν)
k ),

complexity O(k!pkn3), p: number of iterations
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Some numbers

5
1.92542947898189
2.90969918536362
2.35774114351751
2.61639158463414
2.48316587472793
2.54876054375880
2.51571460655576
2.53217471946628
2.52392903948587
2.52804796243998
2.52598752310721
2.52701749813482
2.52650244948321
2.52675995852183
2.52663120018107
2.52669557839604
2.52666338904971
2.52667948366316
2.52667143634151

5
2.59890269690271
2.53027293208879
2.53025171828977
2.53025171828977

Example

A =

[
5 2
2 1

]
B =

[
4 3
3 3

]
C =

[
1 0
0 5

]
The entry a11 is displayed at step i
Left: ALM mean
Right: New mean

Physical applications: speedup by a factor of 200
(mean of k = 6 matrices)
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A general class of means
Given 0 < s, t ≤ 1 define the sequences

A

B

C

A'

B'

C'

A′ = A#s(B#tC )

B ′ = B#s(C #tA)

C ′ = C #s(A#tB)

observe that for s = 1, t = 1/2 this gives the ALM mean.
For s = 2/3, t = 1/2 this gives the mean based on medians

the three sequences converge to the same limit G (s, t) for s, t ∈ [0, 1]
unless s = 0, or s = 1 and t = 0, 1

this limit G (s, t) satisfies the 10 ALM properties for any s, t

the set formed by G (s, t) has a “small” diameter

D.A. Bini (Pisa) Geometric means of matrices Cagliari Sept. 2013 20 / 53



Some experiments
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Important question

Is there a way to overcome the exponential complexity?

Two solutions:

the cheap mean

the Karcher mean
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The cheap mean (overcoming the exponential complexity)

Remark

In the Euclidean geometry, given the triangle of vertices A,B,C , the
centroid can be viewed as

G = A +
1

3
((B − A) + (C − A) + (A− A))

that is, the arithmetic mean of the tangent vectors of the geodesics
joining A with B, C and A, respectively

A

B

C

G

That is, G lies in the geodesic passing
through A and tangent to the arithmetic
mean of the tangent vectors in A to the
geodesics from A to B, from A to C and
from A to A
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We can repeat the construction in the Riemannian geometry.

In the Riemannian geometry the nonzero tangent vectors are easily
computable. In fact differentiating the equation of the two geodesics
γAB(t) = A(A−1B)t , γAC (t) = A(A−1C )t at t = 0 we get the tangent
vectors

VB = A log(A−1B), VC = A log(A−1C )

The geodesic passing through A tangent to V = 1
3(VB + VC ) is

γ(t) = A exp(A−1V )t

= A exp(
1

3
(log(A−1B) + log(A−1C )))t

For t = 1 we get the value

A′ = A exp(
1

3
(log(A−1B) + log(A−1C )))
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From the equation of the geodesic one deduces the iteration

Aν+1 = Aν exp[13(log((Aν)−1Bν) + log((Aν)−1Cν))]

Bν+1 = Bν exp[13(log((Bν)−1Cν) + log((Bν)−1Aν))]

Cν+1 = Cν exp[13(log((Cν)−1Aν) + log((Cν)−1Bν))]

In general, for k matrices A1,A2, . . . ,Ak we may define the non recursive
iteration [B., Iannazzo 2011]

A
(ν+1)
i = A

(ν)
i exp[

1

k

k∑
j=1

log((A
(ν)
i )−1A

(ν)
j )], i = 1, 2, . . . , k

Polynomial cost: O(pk2n3), where p is the number of iterations
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What we can prove

Theorem (Local convergence)

If the three sequences converge then they converge to the same limit G
and convergence is cubic

Theorem

The matrix G satisfies the ALM properties P1,P2,P3, P7, P8, P9

Remark

We have a counterexample where monotonicity P4 is not satisfied if the
matrices are very far from each other

Properties P5, P7 and P10 are usually proved relying on monotonicity. It
is not clear if they are satisfied

For simplicity, we refer to G as the cheap mean
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Numerical experiments

cnd= 1.e2 cnd= 1.e4 cnd= 1.e8

k Cheap NBMP Dist. Cheap NBMP Dist. Cheap NBMP Dist.
3 1.e-2 1.e-2 5.e-3 1.e-2 1.e-2 3.e-2 1.e-2 1.e-2 3.e-2

4 2.e-2 2.e-1 6.e-3 2.e-2 2.e-1 2.e-2 2.e-2 2.e-2 8.e-2

5 2.e-2 1.e0 7.e-3 3.e-2 2.e0 4.e-2 3.e-1 2.e0 5.e-2

6 3.e-2 1.e+1 5.e-2 4.e-2 3.e+1 2.e-2 4.e-2 3.e+1 5.e-2

7 3.e-2 2.e+2 8.e-3 5.e-3 4.e+2 2.e-2 5.e-2 4.e+2 1.e-2

8 4.e-2 2.e+3 1.e-2 6.e-2 5.e+3 2.e-2 7.e-2 5.e+3 3.e-2

9 4.e-2 * – 7.e-2 * – 7.e-2 * –
10 5.e-2 * – 9.e-2 * – 1.e-1 * –

Table: CPU times in seconds, rounded to one digit, required to compute the
NBMP mean G1 and the Cheap mean G2, together with the distances
||G1 − G2||2/||G1||2. A “∗” denotes a CPU time larger than 104 seconds.
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Numerical experiments: plotting the means

Three means Original matrices
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Numerical experiments: distances of the means

Riemannian distances of the three matrices A,B,C

A B C

A 0.084 0.57

B 0.65

Distances between the means

ALM NBMP Cheap

ALM 3.1e-4 5.2e-4

NBMP 8.1e-4
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The Karcher mean

Definition: The Karcher mean G = G (A1, . . . ,Ak) is the matrix G where
the following function takes its minimum.

f (X ) =
k∑

i=1

d(X ,Ai )
2

d(A,B) = ‖ log(A−1/2BA−1/2)‖F
A1 A2

A3

G

Property: The Karcher mean is unique and satisfies the 10 ALM axioms.

It is also called least squares mean, or Riemannian mean [Moakher],

[Bhatia], [Holbrook], [Jeuris, Vandebril, Vandereycken].
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The Karcher mean: a simple algorithm

Inductive mean (Spiral descent) [Holbrook 2012]

1

2
3

4
5

1/2

1/3

1/41/5

1/6

A2

A3

A 4

A1

Sν = Sν−1# 1
ν

A1+(ν mod k),

S1 = A1

Theorem (good and bad news)

limν Sν = G , convergence is sublinear
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The Karcher mean: a more efficient algorithm

The gradient of f (X ) is

∇X f = 2X−1
k∑

i=1

log(XA−1i ) = 2
k∑

i=1

log(A−1i X )X−1

This way, the Karcher mean can be viewed as the unique positive solution
of the matrix equation ∇X f = 0, that is

k∑
i=1

log(A−1i X ) = 0

There exist algorithms for computing G ,
[Matrix means toolbox: bezout.dm.unipi.it/software/mmtoolbox ]

[B., Iannazzo, LAA 2012]
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The Karcher mean: a more efficient algorithm

Fixed-point iteration

Xν+1 = Xν − θXν

k∑
i=1

log(A−1i Xi ), θ > 0

Remarks

In the case of scalars, choosing θ = 1/k provides a quadratically
convergent iteration

If Ai commute with each other, i.e., AiAj = AjAi , then the
convergence is quadratic if θ = 1/k as well
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Convergence analysis

Theorem

Let G be the positive definite solution of the matrix equation. Define the
relative error Eν = G−1/2(Xν − G )G−1/2, eν = vec(Eν). Then

eν+1 = (I − θH)eν + O(‖eν‖2) H =
∑k

i=1 Hi

Hi = β(Wi ), β(x) = x/(ex − 1)

Wi = log(Mi )⊗ I − I ⊗ log(Mi )

Mi = G 1/2A−1i G 1/2

Remark

Mi are positive definite as well as Hi and H. Therefore, for θ > 0 small
enough, ρ(I − θH) < 1 and local convergence occurs.
The Courant-Fischer theorem enables to find the optimal value for θ in
function of the condition numbers ci of Mi
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Convergence analysis

Corollary

Let ci be the spectral condition number of Mi . Then for the spectral
radius ρ(I − θH) one has

ρ(I − θH) ≤
∑k

i=1 log ci∑k
i=1

ci+1
ci−1 log ci

< 1, θ =
2∑k

i=1
ci+1
ci−1 log ci

Remarks

If matrices Ai , i = 1, . . . , k , are “close” to each other and to G , then
Mi ≈ I so that ci ≈ 1 and ρ(I − θH) ≈ 0 independently of cond(G ).
In practice, the convergence is fast;

If matrices Ai , i = 1, . . . , k , commute then ρ(I − θH) = 0 with
θ = 1/k

If matrices Ai , i = 1, . . . , k , almost commute but are “far” from each
other, the choice θ = 1/k leads to convergence failure
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Some numerical experiments

Number of iterations for k random matrices with condition number 102

and 104, respectively

k 3 4 5 6 7 8 9 10

cond=102 17 17 16 16 15 15 14 14
cond=104 41 37 35 31 29 29 29 28

Number of iterations for 10 random matrices with condition number 20
and 105, respectively, lying in a neighborhood of radius ε.

ε 0.5 10−1 10−2 10−3 10−4

cond= 20 5 4 2 1 1
cond= 105 22 19 14 12 6
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Structured mean: definition and algorithms
Fact: Unfortunately, the Riemannian mean does not preserve structure.
A1, . . . ,Ak ∈ A ⊂ Pn 6⇒ G (A1, . . . ,Ak) ∈ A

Example: A =

[
2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

]
, B = I , G =

[
1.3590 0.3860 −0.0611 0.0173
0.3860 1.2978 0.4034 −0.0611
−0.0611 0.4034 1.2978 0.3860
0.0173 −0.0611 0.3860 1.3590

]

A different definition is needed [B., Iannazzo, Jeuris, Vandebril 2013]:

Let σ(t) : Rq → Rn×n be a differentiable map and define A = σ(Rq) ∩ Pn, where
Pn is the set of positive definite matrices.

Definition (Structured mean)

The structured mean with respect to A of the matrices

Ai = σ(ai ) ∈ A, ai ∈ Rq, i = 1, . . . , k

is the set
GA = {X = σ(t) ∈ A : f (X ) = inf

Y∈A
f (Y )}
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Properties that we can prove

GA is not empty if A is a linear space

If A is geodesically convex, then the structured mean coincides with
the Riemannian mean.

If σ(Rq) is a matrix algebra then it is geodesically convex

the structured mean is not generally unique

Example of non uniqueness
Let A = I , B = diag(α, α−1), σ(t) = A + t(B − A), 0 ≤ t ≤ 1.

the function f (t) = δ2(σ(t),A) + δ2(σ(t),B)

is symmetric w.r.t. t = 1/2 and for α = 100 is such that
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Properties that we can prove

[P8] Self duality G (A1, . . . ,Ak)−1 = G (A−11 , . . . ,A−1k ) is satisfied in the
following form

GA(A1, . . . ,Ak)−1 = GA−1(A−11 , . . . ,A−1k ), A−1 = {A−1 : A ∈ A}

The inverse of the structured mean w.r.t. A coincides with the structured
mean of the inverses w.r.t. A−1

[P7] congruence invariance G (STA1S , . . . ,STAkS) = STG (A1, . . . ,Ak)S
is satisfied in the following form

GSTAS(STA1S , . . . ,STAkS) = GA(A1, . . . ,Ak)
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Properties that we can prove

[P2] joint homogeneity GA(α1A1, . . . , αkAk) = (
∏

i αi )
1/kG (A1, . . . ,Ak)

holds if A is a linear space

[P3] permutation invariance

[P11] repetition invariance: G (A1, . . . ,Ak ,A1, . . . ,Ak) = G (A1, . . . ,Ak)
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Computing the structured mean: A vector equation

The set of structured means G = σ(g) is a subset of the set of stationary
points for f (σ(t)), i.e., ∇t f (σ(t)) = 0

The vectors g are the solutions of the vector equation
∇t f (t; a1, . . . , ak) = 0 such that σ(g) is positive definite

From the chain rule of derivatives, this leads to a vector equation which,
for A linear space, takes the form

UT vec(σ(t)−1
k∑

i=1

log(σ(t)A−1i )) = 0

where σ(t) : Rq → Rn×n is linear and vec(σ(t)) = Ut for U ∈ Rq×n2
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Algorithms for solving the matrix/vector equation

In the structured case we consider iterations of the kind

t(ν+1) = ϕ(t(ν)), ϕ(t) = t − θV (t)−1∇t f (t)

where V (t) is a suitable invertible matrix.

Remark:
If V (t) is the Jacobian matrix of ∇t f (t) then the algorithm is Newton’s
iteration

Newton’s iteration is very expensive: the Jacobian depends on all the
matrices A1, . . . ,Ak

Cheaper iterations can be obtained by looking for a matrix V which
depends only on the current approximation.
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Here are some possibilities:

1 V (t) = D, D = UTU

2 V (t) =
[
UT (σ(t)−1 ⊗ σ(t)−1)U

]
3 V−1(t) = D−1UT (σ(t)⊗ σ(t))UD−1

Motivation:

1 projected gradient descent method w.r.t. the Euclidean inner product
〈A,B〉 = trace(AB)

2 projected gradient descent method w.r.t. the “natural” scalar product
〈A,B〉X = trace(AX−1BX−1)

3 “projected version” of the transformation performed in the
unstructured case: ∇X f → X (∇X f )X
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Convergence analysis

Convergence analysis can be performed by computing the Jacobian of
ϕ(σ(t)) through the Fréchet derivative

By performing a convergence analysis similar to that of the unstructured
case one finds that the Jacobian of ϕ(t) in G is

J = I − θV−1U(I ⊗ G )H(I ⊗ G−1)U

where H is the same as in the unstructured case, that is

H =
k∑

i=1

Hi Hi = β(log(Mi )⊗ I − I ⊗ log(Mi ))

β(t) = t/(et − 1) Mi = G 1/2A−1i G 1/2

D.A. Bini (Pisa) Geometric means of matrices Cagliari Sept. 2013 44 / 53



In the case of the second algorithm we find exactly the same bounds of the
unstructured case:

ρ(J) ≤
∑k

i=1 log ci∑k
i=1

ci+1
ci−1 log ci

, for θ =
2∑k

i=1
ci+1
ci−1 log ci

where

ci =
λmax(Mi )

λmin(Mi )
, Mi = G

1
2 A−1i G

1
2
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Some experiments
Case 1: n = 10, k = 5, ε = 10−3

Ai = H + εToep(rand(n, 1)), i = 1, . . . , p, H = Toep([5 1 ... 1])

cond(H) = 2.5

Case 2: n = 10, k = 5, ε = 10−3

Ai = H + εToep(rand(n, 1)), i = 1, . . . , p, H = Toep([n : −1 : 1])

cond(H) = 132.36

Case 3: n = 10, k = 5, ε = 10−3 Ai = Toep(t),

t= rand(n,1); t(1)=t(1)-min(eig(Toep(t)))+1.e-3;

Number of iterations

Case Iter. 1 Iter 2. Iter. 3

1 33 3 11

2 > 1000 3 47

3 > 1000 32 183
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Conclusion

Matrix geometric means (MGM) are needed in the applications

For two postive definite matrices there is a unique definition of MGM

For k > 2 matrices there are many MGMs

The NBMP can be computed faster than the ALM mean, however,
the cost grows exponentially with k

The cheap mean has a polynomial cost but does not satisfy the
monotonicity property

The Karcher mean has the good properties: it requires the solution of
a matrix equation.

Effective algorithms exist for solving this matrix equation

A structured mean has been introduced with the property of
preserving structures

An effective algorithm for its computation has been provided
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Open problems and things to do

Global convergence of the Cheap mean

Monotonicity of the Cheap mean for close input matrices

Global convergence of the Richardson iteration for the Karcher mean

Analysis of the distances of the different geometric means

Conditions for the uniqueness of the structured mean

Structured means through positive parametrizations
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Thank you for your attention
and

Happy birthday to Cor!
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Matrix Function

Given A = SDS−1, D = diag(d1, . . . , dn), and a function F defined on
{d1, . . . , dn}, define

F (A) = SF (D)S−1, F (D) = diag(F (d1), . . . ,F (dn))

back
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