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Introduction

For integrable PDE describing geometric evolutions of curves, the
differential invariants (curvatures) play a fundamental role in
revealing integrability.

Example: Vortex Filament Flow

v(x,t) € R3 : position vector of an evolving space curve.
x: arclength parameter.
k, T: differential invariants (curvature and torsion).

binormal evolution  Hasimoto Map cubic focusing NLS
W= Y X Yoo = KB igs + qux + 2lgl’g = 0

q:%/{eif'rdx

This work: investigates the relation between a non-stretching curve
evolution in centro-affine space and the completely integrable PDE
system for the differential invariants, by seeking a natural
Hamiltonian formulation of the curve flow.



Inspiration: Hamiltonian setting for the Vortex Filament Flow

Pre-symplectic structure on the space of curves:

wy(X,Y) = / IX,~,Y|dx. (Marsden & Weinstein, 1983)
v

A geometric recursion operator X; | = —T X X]’ plus the
non-stretching condition generate an infinite hierarchy (Langer &
Perline, 1991):

Commuting flows: v, = X; Conserved integrals: f pjdx
po =T,
Xl =KkB prL=—-"T,
X, = K*T + K'N + KB, pr =12,
X3 =k*1T + (26'T + k7' )N 03 _%nzr,
2 3
+ (k7 =" =3B py =L((K)? + KPP — L,

where Xj is the Hamiltonian vector field for [ p; dx



Starlike curves in centroaffine R3

— The “isometry group” is SL(3,R) without translations.

— A smooth curve v : I C R — R is starlike if |y,~',~"| # 0.
This condition is invariant under the linear action of SL(3,R).
— Define centroaffine arclength / 17,7713 dx. A curve v is

arclength parametrized if

.7 =1 (D)
From now on, let y(x) be a starlike curve with arclength parameter x.

Differentiating (1) with respect to x gives |7y, ~',v"| = 0, implying

" = poy + p17.

po, p1 are the differential invariants (Wilczynski invariants) of -y, and
compare with Euclidean torsion and curvature (resp.):

— If po = 0 then ~y is planar.

— Ifpy = %p’l then ~ lies on a conic in RIP?,



Hamiltonian structure on starlike loops

Let M C Map(S', R?) be the space of starlike loops ~ : ' — R3
parametrized by centroaffine arclength.

The vector field X = 6xy = ay + by + ¢y” (a, b, ¢ smooth, periodic)
isin T,,M (i.e. is non-stretching) if ox|,~',~"| = O:

1
a+b + g(c” +2pic) = 0.

For v € M, the closed skew-symmetric 2-form
wy(X,Y) = f X,7/,Y|dx, X,YeT,M
¥
gives pre-symplectic structure on M with 2-dimensional kernel
spanned by

/ " 2
Zo=7, ZLi=v 3P



Hamiltonian vector fields: examples

Using the correspondence between Hamiltonians H € C*° (]\71 ) and
Hamiltonian vector fields Xg:

dH[X] = wy (X, Xn), VX € T,M )
find that:

1. Zy=+" - %plfy is the Hamiltonian vector field for

7{ 17,9, 9" 1/3dx (total arclength);
.

2. Zy = piy" + (po — PV + G — p}) — )y is the

Hamiltonian vector field for j{ (—p1)dx (minus the total

~
curvature).

Remark: Correspondence (2) is not an isomorphism. For those H’s
for which X exists, Xy is defined up to addition of elements in the
kernel of w-,.



General curvature evolutions

(

Switch to k; = p1, ko = po — p;. (Then Z, = kiy" + ko' +...).
1 Y Y

Let v, = roy + r1' + 27" be a general non-stretching flow (i.e. with
ro=—ry — %(r’z’ + 2kyr3).)

Then, the differential invariants evolve by
(), 7 ()
k), r
where P is a skew-adjoint 5th order matrix differential operator:

—2D3 + Dk; + k;D —D* + D%k + 2Dk, + kyD )

*— ki D* + 2koD + Dk,  %(D° + ky\Dky — k\D® — D’ky) + [ka, D?]

with D = D,.
Remark: P plays a key role in the integrability of v, = Z;.



Bi-hamiltonian formulation

The curvature evolution induced by v, = Z; = v" — %klfy can be
written in Hamiltonian form in two distinct ways:

k k
(é)t = PEpy, (é)t = QEps, €3]

p =k, = 1(K)? + kak] + (k2)* + 3K3
are conserved densities, E is the Euler operator

Ef = (Z(—W%Z(—DVW)T,

= ok oKy

and Q = (g g)

Since P, Q form a compatible pair of Hamiltonian operators (related
to the Adler-Gel’fand-Dikii bracket for s[(3) and its companion), (1)
is a bi-Hamiltonian system.

where



A double hierarchy: Recursion Operators

The curvature evolution induced by v, = Z, = ki7" + ko' + ... is
also bi-Hamiltonian for P and Q, with respect to the densities:

p2 =kika, ps= LKV K] (Ky—kD)—ki (K))*+(Ky)* — kK + S +2k1 3.

Define a sequence of evolution equations for &y, k»
0 (ki
— = Fjlk1, k

Fir =PQ'F},

via the recursion

with initial data given by

(K B K + 2k,
(@) m= G )

and a sequence of conserved densities given by

Epia = Q" 'PEp, with  po = ki, p1 = ka.



Connection with the Boussinesq hierarchy

The curvature evolution induced by v, = Z;:

9 (ki _ K + 2k,
ot \ka) — \G(kikh — k") =Ky )°

is equivalent to the Boussinesq equation

9 (a0 _ (bt~ 3adh
ot \q1 2q6

under the change of variables k| = —q, ky = %q’l — go. (See also
Chou & Qu, 2002.)
We show:

» The curvature evolution induced by ~, = Z, is equivalent to the
second nontrivial flow in the Boussinesq hierarchy;

» The recursion operator PQ~! is equivalent to the Boussinesq
recursion operator.



Relation with centroaffine curve flows

Theorem: Each flow of the Boussinesq hierarchy is the curvature
evolution induced by a geometric flow for centroaffine curves in R>.

Proof: Define
X* =7 = (Ep)1v' + (Epj)2v" + rov,

(ro given by the non-stretching condition), with p; the j-th Boussinesq
conserved density.

Then, +; = Z; induces the curvature evolution </;1) =F;.
2 t

Theorem: Let H(7y) = fv(—pj)dx and Epj12 = Q7 'PEp; (the next
density after p; in the Boussinesq hierarchy). Then

dH[X] = w,(X,Zy2) VX € T, M.

That is, 7; = Z;, j > 2 is a Hamiltonian evolution with Hamiltonian
f'y (_pj_z)dx



Summary

Non-stretching vector fields Conserved densities

Zy=+ po = ki

Z =" -3k m =k

Zy =k k' + .. p2 = kika

P e i e PP e (Vi R

Zy = (—K — 2K + 2kik) + dkiko)y” + R + K5 pa = LK) + K (Ky — kD) — k(K )2
“2hk — (K,)? - kK + 3+ 2Ky 4 ()2 — 3K, + b+ 2013

» The ' and 7" coefficients of Z; match the components of Ep;.

» Densities satisfy the recursion relation Ep; 1, = Q7 !'PEp;

» <, = Z; induces curvature evolution <:1> = PEp; = QEpj;s.
2

t
» Forj > 2, Z; is a Hamiltonian vector field for — [ p;_, dx.



An interesting sub-hierarchy
Example: The Vortex Filament Flow hierarchy has integrable
sub-hierarchies preserving geometric invariants, e.g.:
» Under the even flows X»;, planar curves remain planar.
» For each constant 7y, there is a sequence of linear combinations
of the X; that preserves the constant torsion condition 7 = 7.
(These flows induce the mKdV hierarchy for «.)

Fact: centroaffine curves with py = %p’l (i.e. kp = —k})lieona
quadric cone through the origin in R>.

Theorem: If 7y lies on a cone at time zero, and evolves under any of
the following curve flows, then it stays on the same cone

ZO, Z37 Z4.7 Z’7, Zg, Z]l7 le’ e (*)
Remark: v, = Z; restricted to a conical curve induces the
Kaup-Kuperschmidt (KK) equation for k; (Chou & Qu, 2002):

(ki) = K" — Skk{" — K k] + 5kik].

In fact, we show that the sequence (x) realizes the KK hierarchy,
when restricted to conical curves.
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