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The AKNS system

The AKNS (Ablowitz-Kaup-Newell-Segur) system is

v ′ =

(
−iξIn Q
R iξIm

)
v , x ∈ R,

where m ≥ n ≥ 1 and

Q and R are n×m and m× n complex-valued matrix functions.

In, Im, are the n × n and m ×m identity matrices, respectively.

ξ is a complex-valued eigenvalue parameter.

n = m = 1: Introduced in 1970s by AKNS to solve certain nonlinear
evolution equations by the inverse scattering transform technique.
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The AKNS system (cont.)

Nonlinear matrix PDE associated with AKNS:

iQx =Qtt − 2QRQ

iRx =− Rtt + 2RQR

R = ±Q∗: iQx = Qtt ∓ 2QQ∗Q

n = m = 1: Nonlinear Schrödinger equation (NLS), where the +
(−) sign corresponds to the focusing (defocusing) case,
respectively.
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Motivation

The AKNS system has an interesting spectral theory. Some prior
work on the subject:

• n = m = 1: N. Asano and Y. Kato, JMP, 22 (1981) and JMP,
25 (1984).

• n = 1,m = 2: B. Prinari, M. Ablowitz, G. Biondini, JMP, 47
(2006).

• n = 1,m ≥ 1: B. Prinari, G. Biondini, A. D. Trubatch, Studies
in Appl. Math. 126 (2011).

• Any n,m: F. Demontis (thesis).

• n = 1,m ≥ 1: F. Demontis and C. van der Mee: Serdica Math.
J. 36 (2010).

Goal: Study the inverse scattering theory of new, more general
matrix evolution equations.
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The AKNS with constant coefficients

Consider the system

v ′ =

(
−iξIn Q
R iξIm

)
︸ ︷︷ ︸

A(ξ)

v , x ∈ R,

where Q and R are constant matrices.

Set

H0(Q,R) = iJ
d

dx
+

(
0 −iQ
iR 0

)
, J =

(
In 0
0 −Im

)
.

Then

v ′ = A(ξ)v ⇐⇒ H0(Q,R)v = ξv
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Constant potentials

A Fourier transform v(x)→ v̂(p), d/dx → −ip, H0 → Ĥ0(p)
gives

Ĥ0(p) =

(
pIn −iQ

iR −pIm

)
.

Suppose QR has

κ distinct nonzero eigenvalues with algebraic multiplicities νk .

(possibly) an eigenvalue zero with algebraic multiplicity ν0.

Note that dim ker[RQ] ≥ m − n and the algebraic multiplicity
of the eigenvalue zero of RQ is m − n + ν0.
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Constant potentials (cont.)

Spectrum of Ĥ0(p): Set

det(Ĥ0(p)− ξIn+m) = (−1)m(p + ξ)m−n det[(p2 − ξ2)In + QR]

= (−1)m(p + ξ)m−n+ν0(p − ξ)ν0
κ∏

k=1

(p − µ(ξ))νk (p + µ(ξ))νk = 0,

where
µ(ξ) =

√
ξ2 − ωk , with Im[

√
ξ2 − ωk ] ≥ 0.

Define curves (branches of hyperbolas):

Γ(r)
ωk

= {
√
ωk + t : t ≥ 0}, Γ(`)

ωk
= −Γ(r)

ωk
.
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Constant potentials (cont.)

σ(H0) =
κ⋃

j=1

(
Γ(r)
ωj
∪ Γ(`)

ωj

)
[∪R]

m = n and ν0 = 0 [if m > n or ν0 > 0].

Branches for square roots:

Im
√
ξ2 − ωk > 0 for ξ ∈ C \ (Γ(r)

ωk
∪ Γ(`)

ωk
)

!3 !2 !1 1 2 3

!2

!1

1

2
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Constant potentials: Eigenvalues of A(ξ)

Eigenvalues of A(ξ):

det(A(ξ)− λIn+m) =

(−1)ν0(iξ − λ)m−n+ν0(iξ + λ)ν0
κ∏

k=1

(λ− λk(ξ))νk (λ + λk(ξ))νk

where

λk(ξ) = i
√
ξ2 − ωk (ωk 6= 0).

Eigenvalues:

±λk(ξ), k = 1, . . . , κ, if QR 6= 0.

iξ: If m − n > 0 or ν0 > 0.

−iξ: If ν0 > 0.
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Constant potentials: Eigenvalues of A(ξ) (cont.)
We are interested in the

Jordan structure of A(ξ) at an eigenvalue λ: Number and sizes
of Jordan blocks of A(ξ) at its eigenvalues, denoted by
J [A(ξ), λ].

THEOREM 1
The Jordan structures of A(ξ) and QR (resp.,RQ) are related as
follows:

(i) J [A(ξ),±λk(ξ)] = J [QR , ωk ], provided ξ2 6= ωk and
k = 1, . . . , κ.

(ii) J [A(ξ),−iξ] = J [QR , 0] and J [A(ξ), iξ] = J [RQ, 0] provided
ξ 6= 0.

(iii) A(±√ωk) at 0 and QR at ωk have the same number of Jordan
blocks but the block sizes for A(±√ωk) are twice the block sizes
for QR .
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Constant potentials: Jordan chains of A(ξ)

The case ξ = 0 and λ = 0 is special:

The Jordan structure of A(0) at λ = 0 depends on the kernels of
(QR)s , R(QR)s , (RQ)s , and Q(RQ)s for s = 1, 2....

Jordan chains correspond to paths on a certain graph associated
with these kernels.

Example:

Q =

0 1 0 1
0 0 0 1
0 0 1 1

 R =


1 0 1
0 0 0
0 0 0
1 0 0

 .

QR : Eigenvalue ω1 = 1, ν1 = 1 and eigenvalue 0, ν0 = 2
(semi-simple: no Jordan blocks of size greater than 1).

RQ eigenvalue ω1 = 1, ν1 = 1 and eigenvalue 0, algebraic mult.
3, geometric mult. 2.
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Constant potentials: Jordan chains of A(ξ) (cont.)

(k , α)←→ αk =dim Ak

(k , β)←→ βk =dim Bk

A2k =ker[(RQ)k ], A2k−1 = ker[Q(RQ)k−1]

B2k =ker[(QR)k ], B2k−1 = ker[R(QR)k−1]

In the example: α1 = 1, α2 = 2, α3 = 3 and β1 = 1, β2 = 2, β3 = 2

s s s
s s s(1, α)[1] (2, α)[2] (3, α)[3]

(1, β)[1] (2, β)[2] (3, β)[2]

���
����� HH
H

HH
HHY ���

�����
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Constant potentials: Jordan chains of A(ξ) (cont.)

Some more results:

If m > n (m = n) then for any ξ ∈ C, the maximum length of a
Jordan chain for A(ξ) at any eigenvalue is 2n + 1 (2n).

A(ξ) is diagonalizable for every ξ 6= 0 if and only if
RQ = QR = 0.

A(ξ) is diagonalizable for every ξ ∈ C if and only if Q = R = 0.

Embedded in the graphical picture is a proof of H. Flander’s
theorem on elementary divisors of AB and BA: Proc. Amer.
Math. Soc. (1951).
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Constant potentials: Reduction of A(ξ)

Let U (n × n) and V (m ×m) be unitary matrices so that

U∗QV = Σ,

where

Σ = Σp ⊕ 0(n−p)×(m−p), Σp = diag(σ1, . . . , σp),

and σ1 ≤ · · · ≤ σp are the singular values of Q. Then(
U∗ 0
0 V ∗

)(
−iξIn Q
R iξIm

)(
U 0
0 V

)
=

(
−iξIn Σ
R ] iξIm

)
,

where R ] = V ∗RU . Introducing the partitions

Σ =
(

Σ̂ 0n×(m−p)

)
, Σ̂ =

(
Σp

0(n−p)×p

)
, R ] =

(
R ]
1

R ]
2

)
,
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Constant potentials: Reduction of A(ξ) (cont.)

we obtain (
−iξIn Σ
R ] iξIm

)
=

 −iξIn Σ̂

R ]
1 iξIp

0

R ]
2 0 iξIm−p

 .

If r1 := rank[R ]
1] < rank[R] = rank[R ]] =: r , rearrange rows and

columns n + p + 1 through n + m so that

R ] −→ R̂ ] =

(
R̂ ]
1

R̂ ]
2

)
,

where R̂ ]
1 has size (p + r − r1)× n and is of rank r . This turns A(ξ)

into a similar matrix: −iξIn Σ

R̂ ]
1 iξIp+r−r1

0

R̂ ]
2 0 iξIm−p−r+r1

 .
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Constant potentials: Reduction of A(ξ) (cont.)

Since R̂ ]
1 and R̂ ] have the same rank, there exists an

(m − p − r + r1)× (p + r − r1) matrix W such that

WR̂ ]
1 = R̂ ]

2.

With the help of the similarity

S =

[
In+p+r−r1 0

0 W Im−p−r+r1

]
, S−1 =

[
In+p+r−r1 0
0 −W Im−p−r+r1

]
.

we can finally transform A(ξ) into block-diagonal form and state:

THEOREM 2
A(ξ) is similar (the similarity does not depend on ξ) to −iξIn Σ

R̂ ]
1 iξIp+r−r1

0

0 0 iξIm−p−r+r1

 .
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Reduction of A(ξ): Special cases

Special cases:

Corollary 3

Suppose n = 1 and m ≥ 2. Let σ = ‖Q‖ and ω = QR (∈ C). Then
A(ξ) is similar to one of the following block-diagonal matrices: −iξ σ

ωσ−1 iξ
0

0 iξIm−1

 , ω 6= 0,


−iξ σ 0

0 iξ 0
‖R‖ 0 iξ

0

0 iξIm−2

 , ω = 0.
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Reduction of A(ξ): Special cases (cont.)

Corollary 4

Suppose that R = ±Q∗. Then A(ξ) is unitarily similar to the direct
sum (

−iξ σ1
±σ1 iξ

)
⊕ · · · ⊕

(
−iξ σp
±σp iξ

)
⊕−iξI1 ⊕ · · · ⊕ −iξI1︸ ︷︷ ︸

n−p

⊕ iξI1 ⊕ · · · ⊕ iξI1︸ ︷︷ ︸
m−p

.
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Potentials with different limits as ±∞
Suppose

Q(x) = Q± R(x) = R± for x ∈ R±,
where

Q± and R± are constant matrices on R± and such that
Q+ 6= Q− and R+ 6= R− in general.

Define

V (x) =

(
0 −iQ+

iR+ 0

)
, x > 0, V (x) =

(
0 −iQ−
iR− 0

)
, x < 0,

V±(x) = V± =

(
0 −iQ±

iR± 0

)
, −∞ < x <∞.

Let
W (x) = V (−x).
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Different limits (cont.)

Define

HV = iJD + V , HV± = iJD + V±, HW = iJD + W .

Theorem 5
σess(HV ) = σ(H+) ∪ σ(H−)

σess(HV ) = −σess(HV ) (only true for σess!)

Proof with the help of the ”twisting trick”: E.B. Davies and B.
Simon, Commun. Math. Phys. 63 (1978).

Sketch: Define a unitary 2(n + m)× 2(n + m) matrix U(x) such that

U(x) =

(
In+m 0

0 In+m

)
x > 1, U(x) =

(
0 −In+m

In+m 0

)
x < 0,

so that U(x) is absolutely continuous on R. page 21 of 52



Different limits (cont.)

For example, choose

U(x) =

(
u1(x)In+m −u2(x)In+m

u2(x)In+m u1(x)In+m

)
, 0 ≤ x ≤ 1,

where u1(x) = sin(πx/2), u2(x) = cos(πx/2).
Then

U∗(HV ⊕ HW )U =

(
HV+ 0

0 HV−

)
+ Z (x),

where Z (x) has compact support in [0, 1] and thus is a relatively
compact perturbation. Therefore

σess(HV ) ∪ σess(HW ) = σess(HV+) ∪ σess(HV−) = σ(HV+) ∪ σ(HV−).

Difficulty: HV and HW are in general not unitarily equivalent! HV

and −HW are (via JP where P : x → −x , J = diag(In,−Im))! page 22 of 52



Eigenvalues/spectral singularities of HV

HV may have discrete or embedded eigenvalues, or spectral
singularities (defined below).

To determine these points we need the Jost solutions:

Suppose ξ ∈ ρ(HV ) ∩ C+ (other cases ar similar).Then there exist m
(resp. n) linearly independent solutions of the AKNS system that are
in L2(R+)n+m (resp. L2(R−)n+m). Choose these vectors as the
column of two matrices F0,±(x , ξ).

Let W0(ξ) = det
(
F0,−(0, ξ) F0,+(0, ξ)

)
.

Definition
A point ξ is called a spectral singularity if ξ ∈ σess(HV ) \ σp(HV ) and
W0(ξ) = 0.
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Eigenvalues/spectral singularities of HV (cont.)

A special case:

Suppose Q±R± and R±Q± are diagonalizable.

Let n± denote the number of eigenvalues (counting
multiplicities) of Q±R± different from 0.

Let ω±1 , ω
±
2 , . . . , ω

±
n± be the nonzero eigenvalues of Q±R±.

If Q±R± has eigenvalue zero, let ν±0 denote its multiplicity.

Let Φ± be matrices whose columns are an eigenbasis for Q±R±
so that Q±R±Φ± = Φ±diag(ω±1 , . . . , ω

±
n±).

Set µ±k (ξ) =
√
ξ2 − ω±k , M± = diag(µ±1 , . . . , µ

±
n±).

Hence n± = n − ν±0 . Since σ(Q+R+) \ {0} = σ(R+Q+) \ {0}, we
have that dim ker[R+Q+] = m − n+ = m − n + ν+0 .

Let N+ be an m × (m − n+) matrix whose columns form a basis for

ker[R+Q+] and let N̂− be an n × ν−0 matrix whose columns form a
basis for ker[Q−R−]. page 24 of 52



Eigenvalues/spectral singularities of HV (cont.)

Then, if Im ξ > 0, we have

F0,+(x , ξ) =

(
0 iΦ+(M+ − ξIn+)
N+ R+Φ+

)(
e iξx Im−n+ 0

0 e iM+x

)
, x > 0,

F0,−(x , ξ) =

(
N̂− −iΦ−(M− + ξIn−)
0 R−Φ−

)(
e−iξx Iν−0 0

0 e−iM−x

)
, x < 0.

Hence

W0(ξ) =

∣∣∣∣ N̂− −iΦ−(M− + ξIn−) 0 iΦ+(M+ − ξIn+)
0 R−Φ− N+ R+Φ+

∣∣∣∣ .
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Eigenvalues/spectral singularities of HV (cont.)

If n = m = 1, Q± = q±, R± = r± (q± 6= 0, r± 6= 0) the decaying
solutions are

F0,±(x , ξ) =

(
±i(µ± ∓ ξ)

r±

)
e±iµ+x , x ∈ R±.

Then
W0(ξ) = −ir+(µ−(ξ) + ξ)− ir−(µ+(ξ)− ξ).

Zeros of W0(ξ): ξ = ± (q−r+ − q+r−)

2(q− − q+)1/2(r+ − r−)1/2

Only one root can be an eigenvalue but there may be two spectral
singularities.

Question: How many zeros does W0(ξ) have? Can we find a bound
for the number of zeros?
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Eigenvalues/spectral singularities of HV (cont.)

Theorem 6
Suppose m = n and Q±R± are diagonalizable and have only nonzero
eigenvalues. Then the number of eigenvalues (counted according to
their multiplicities) is at most n22n − 2n. Moreover, the number of
eigenvalues ξ such that −ξ is not an eigenvalue is bounded by
n22n−1 − n.

Exact for n = 1 and the nonzero eigenvalues. Not exact for
ξ = 0, since 0 is always simple. For n = 2 the bound is 28.
The number 22n is the sum of the binomial coefficients of the
form

(
2n
s

)
, s = 0, . . . , 2n, which represents the number of ways

in which we can pick s factors µ±k (ξ) from a total of 2n such
factors. If the ω+

k and ω−s are all distinct these products are also
distinct, and no two factors can “annihilate” each other.
The factor n is technical. The term −2n comes from exploiting
certain symmetries.
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Eigenvalues/spectral singularities of HV (cont.)

Idea behind proof: Construct a function h(ξ) that is analytic on
ρ(HV ) such that W0(ξ)h(ξ) is equal to a polynomial of degree N .
Then the number of eigenvalues will be bounded above by N .

n = m = 1, q+ = 1, q− = i , r+ = i , r− = 1:
h(ξ) = −iξ +

√
ξ2 − i .

W0(ξ) = (1 + i)ξ + (1− i)
√
ξ2 − i .

Thus
W0(ξ)h(ξ) = −1− i + 2(1− i)ξ2.

W0(ξ) = 0 for ξ = ±
√

i/2, −
√

i/2 is the eigenvalue. Then, in this

case, h(−
√
i/2) 6= 0, but h(

√
i/2) = 0. In general we cannot rule

out common zeros of h(ξ) and W0(ξ).
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Eigenvalues/spectral singularities of HV (cont.)

Examples with eigenvalues/spectral singularities: n = m = 1.

(1) q+ = 1, r+ = 1, q− = 1− ρ, r− = 1− ρ, with ρ ≥ 0.
We have

σess(HV ) =


R \ (−|1− ρ|, |1− ρ|), ρ ∈ [0, 2) \ {1},
R, ρ = 1,

R \ (−1, 1), ρ ≥ 2.

From the formula for ξ we get ξ = 0 for all ρ > 0. But ξ = 0 is
an eigenvalue only when ρ > 1. For ρ = 0, ξ = ±1 are both
spectral singularities.

(2) q± = q0e
iϕ± , where q0 > 0, ϕ± ∈ R, ϕ− − ϕ+ := ϕ̂. If

ϕ̂ ∈ (2πm, 2π(m + 1)). Then ξ0 = (−1)m+1q0 cos(ϕ̂/2) is an
eigenvalue in the spectral gap (−q0, q0).
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Self-adjoint HV

Suppose that R± = Q∗±. Suppose Q±R± = Q±Q
∗
± have nonzero

distinct eigenvalues 0 < ω±1 < · · · < ω±κ± and possibly eigenvalue 0
with multiplicities ν±0 . Let S± = {|ω±1 |1/2, . . . , |ω±κ±|

1/2}. Set

α0 = min
{
|ω−1 |1/2, |ω+

1 |1/2
}
, β0 = min

{
|ω−κ−|

1/2, |ω+
κ+|

1/2
}
.

THEOREM 7
(i) If ν±0 are both zero, then all embedded zeros of W0(ξ) (i.e.,

zeros in σess(HV )) satisfy α0 ≤ |ξ| ≤ β0. All spectral singularities
are contained in ±(S− ∪ S+). Every embedded zero of W0(ξ)
not in ±(S− ∪ S+) corresponds to an embedded eigenvalue.

(ii) If one or both of ν±0 are nonzero, then all zeros of W0(ξ) lie in
|ξ| ≤ β0. The other conclusions are as in (i). In particular, if
W0(0) = 0, then 0 is an eigenvalue of HV .
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Self-adjoint HV (cont.)

In the self-adjoint case (R± = Q∗±) we have:

n± = n − ν±0 = number of nonzero eigenvalues (counting
multiplicities) of Q±Q

∗
±. This is the same as the number of

nonzero eigenvalues (counting multiplicities) of Q∗±Q±. Then
m − n+ = m − (n − ν+0 ) = dim ker[Q+].

N+ is an m × (m − n+) matrix whose columns form an
orthonormal basis for ker[Q+] = ker[Q∗+Q+].

N̂− is an n × ν−0 matrix whose columns form an orthonormal
basis for ker[Q∗−] = ker[Q−Q

∗
−].
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Self-adjoint HV ( cont.)

The proof employs the identity

F0,+(x , ξ)∗JF0,+(x , ξ) =

(
−N∗+N+ 0

0 C+(ξ)

)
, ξ ∈ R,

for all x ∈ R, where

C+(ξ) = M+(ξ)∗M+(ξ)− ξ(M+(ξ) + M+(ξ)∗) + ξ2 − Ω+

and Q±Q
∗
±Φ± = Φ±Ω±. There are similar relations for

F0,−(x , ξ)∗JF0,−(x , ξ). Moreover, it uses the fact that there are
vectors β− ∈ Cn, β+ ∈ Cm such that

F0,+(x , ξ)β+ + F0,−(x , ξ)β− = 0.
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Skew-selfadjoint potential V
Suppose R± = −Q∗±. Then the Wronskian is:

W0(ξ) =

∣∣∣∣ N̂− −iΦ−(M− + ξIn−) 0 iΦ+(M+ − ξIn+)
0 −Q∗−Φ− N+ −Q∗+Φ+

∣∣∣∣ .
Let

A =
(
N̂− −iΦ−(M− + ξIn−)

)
B =

(
0 iΦ+(M+ − ξIn+)

)
C =

(
0 −Q∗−Φ−

)
D =

(
N+ −Q∗+Φ+

)
Then

W0(ξ) = (detA)(detD) det(In − BD−1CA−1).

Define
V(ξ) = −BD−1CA−1 = V+(ξ)V−(ξ)

V+(ξ) = Φ+(M+(ξ) + ξIn+)−1Φ∗+Q+,

V−(ξ) = Q∗−Φ−(M−(ξ) + ξIn−)−1Φ∗−.
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Skew-selfadjoint potential V (cont.)

Suppose Q± are both nonzero. Let

γ0 = min
{
|ω+
κ+|

1/2, |ω−κ−|
1/2
}
, γ1 = max

{
|ω+
κ+|

1/2, |ω−κ−|
1/2
}
.

Then σess(HV ) = i [−γ1, γ1] ∪ R. For every s ∈ (0, γ1], let

ρ±(s) = #{k : |ω±k |
1/2 < s}.

We partition Φ± in the form

Φ± = row(Φ
(1)
± , . . . ,Φ

(s)
± , . . . ,Φ

(κ±)
± ),

where Φ
(s)
± is the n × ν±s matrix whose columns are an orthonormal

basis for the eigenspace associated with the eigenvalue ω±s of
−Q±Q∗±.
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Skew-selfadjoint potential V (cont.)

Theorem 8

(i) ‖V(ξ)‖Cn×n ≤ 1 for all ξ ∈ C+ and ‖V(ξ)‖Cn×n < 1 on
C+ \ [0, iγ0].

(ii) W0(ξ) = 0 if and only if V(ξ) has eigenvalue −1 and this can
happen only if ξ = is0 for some 0 ≤ s0 ≤ γ0. Moreover,
dim(ker[W0(is0)]) = dim(ker[In + V(is0)]).

(iii) If −1 is an eigenvalue of V(is0) for some 0 ≤ s0 ≤ γ0 with
associated normalized eigenvector f ∈ Cn, then

(iii)1 ‖V+(is0)∗f ‖Cm = ‖V−(is0)f ‖Cm = 1 and V+(is0)∗f = −V−(is0)f .

(iii)2 ‖Φ∗+f ‖Cn+ = ‖Φ∗−f ‖Cn− = 1 and (Φ
(k)
± )∗f = 0 for

k = 1, . . . , ρ±(s0).

(iv) If −1 is an eigenvalue of V(is0), then it is semi-simple.
Moreover, V(is0)f = −f implies V(is0)∗f = −f .
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Skew-selfadjoint potential V (cont.)
Proof:

(i) The function ξ →
√
ξ2 + a2 + ξ with a > 0 maps C+ \ [0, ia] to

the outside of the semi-disk of radius a centered at 0 in the
closed upper half-plane.

(ii) f ∈ ker[In + V(is0)]←→

(
A−1f

−D−1CA−1f

)
∈ ker [W0(ξ)].

(iii)1 Suppose that V(is0)f = −f where ‖f ‖Cn = 1. Then (( , )Cn

denotes the inner product)

(f ,V(is0)f )Cn = (V+(is0)∗f ,V−(is0)f )Cn = −1.

Since ‖V+(is0)‖Cn×m ≤ 1 and ‖V−(is0)‖Cm×n ≤ 1, an application
of the Schwarz inequality, which here is an equality, proves (iii)1.
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Skew-selfadjoint potential V (cont.)

(iii)2 This says that the eigenvalues of Q±Q
∗
± below s20 do not matter.

(Details are omitted).

(iv) The first assertion in (iv) follows from the fact that −1 is a
“peripheral” eigenvalue of the spectrum because the spectral
radius of V(is0) is 1. Also, V(is0) is a contraction and this alone
allows the conclusion that

(ran(V(is0) + In))⊥ = ker(V(is0) + In).

Then, if −1 were not semisimple, then there would exist nonzero
vectors f , g ∈ Cn such that (V(is0) + In)g = f and
(V(is0) + In)f = 0. But then ‖f ‖2 = f ∗(V(is0) + In)g = 0, a
contradiction.
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Skew-selfadjoint potential V (cont.)

Corollary 9
In the skew-adjoint case with constant one-step potentials, embedded
eigenvalues cannot occur.

Proof: This follows from (iii)2, which says that (Φ
(k)
± )∗f = 0 for

k = 1, . . . , ρ±(s0). This eliminates the components of f that would
be needed for an L2- eigenfunction.
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Skew-selfadjoint potential V (cont.)

Theorem 10
(i) If Q± are self-adjoint and positive semidefinite, then spectral

singularities can occur only at the points i |ω+
k |1/2 and i |ω−s |1/2

and this happens if and only if |ω+
k |1/2 = |ω−s |1/2 for some k and

s and ran[Φ
(k)
+ ] ∩ ran[Φ

(s)
− ] 6= {0}. In particular, if

(σ(Q+) \ {0}) ∩ (σ(Q−) \ {0}) = ∅, then there are no nonzero
spectral singularities.

(ii) If one of Q± is self-adjoint and positive semidefinite and the
other, Q∓, is merely self-adjoint, then the conclusions of (i) hold
true.

(iii) If one of Q± is self-adjoint and positive semidefinite and the
other, Q∓, is negative semidefinite, then there are no nonzero
spectral singularities.
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Skew-selfadjoint potential V (cont.)

Proof (sketch):
Since Q± is self-adjoint (so m = n), we may choose Φ± so that its
columns are an orthonormal eigenbasis for the nonzero eigenvalues of
Q±, that is, Q±Φ± = Φ±Λ±, where Λ± is a diagonal n± × n± matrix
whose entries are the nonzero eigenvalues of Q±.
The columns of Φ±, from left to right, correspond to the eigenvalues
in order of increasing absolute values, so |Λ±1 | < |Λ±2 | < · · · < |Λκ±|
and (Λ±k )2 = |ω±k |.
This allows us to write

V−(is0) = Φ−Λ−(M−(is0) + is0In−)−1Φ∗−,

V+(is0) = Φ+Λ+(M+(is0) + is0In+)−1Φ∗+,

where is0 is a spectral singularity.
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Skew-selfadjoint potential V (cont.)

We now exploit information about the numerical ranges of V−(ξ) and

V+(ξ). The submatrices that are associated with the columns of Φ
(k)
±

for k > ρ±(s0) are unitary, since

|µ±k (is0) + is0| =
∣∣(|ω±k | − s20 )1/2 + is0

∣∣ = |ω±k |
1/2 = Λ±k .

We also know that

(f ,V−(is0)f )Cn = −(f ,V+(is0)∗f )Cn

where V(ξ)f = −f (‖f ‖Cn = 1).

The numerical range of V−(is0) on the invariant subspace

ran[{Φ(k)
− }k>ρ−(s0)] is the polygon having Λ−k (µ−k (is0) + is0)−1 as

vertices.
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Skew-selfadjoint potential V (cont.)

The numerical range of −V+(is0)∗ on ran[{Φk
+}k>ρ+(s0)] is the

polygon with vertices −Λ+
k (µ+

k (is0)− is0)−1.

The two numerical ranges lie side by side on the unit circle in the
third (−V+(is0)∗) and fourth quadrant (V−(is0)), respectively.

The only way they can make contact is at −i and this is possible
only if s0 = |ω+

k |1/2 = |ω−s |1/2 for some indices k and s.

f ∈ ran[Φ
(k)
+ ] ∩ ran[Φ

(s)
− ] follows.

If Λ+ > 0 but Λ− has diagonal elements of arbitrary sign, then
the numerical range of V−(is0) (the convex hull of the
eigenvalues) lies inside the unit circle and above the line through
(−1, 0) and (0,−1). The numerical range of −V+(is0)∗ lies
strictly below this line (except possibly for the point (0,−1)).
The only possible point of contact is −i . Then there exist
indices k and s such that |ω+

k | = |ω−s | and s0 = |ω+
k |1/2.
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Skew-selfadjoint potential V (cont.)

If Λ+ > 0 and Λ− < 0, then the numerical range of V−(is0) is in
the second quadrant while that of −V(is0)∗ is in the third
quadrant, and they are disjoint. No spectral singularities can
occur.

Suppose the eigenvalue −1 of V(is0) has (geometric) multiplicity
p ≥ 1. Let f (1), . . . , f (p) be an associated orthonormal eigenbasis.
Suppose that s0 =

√
|ω+

k | =
√
|ω−s | for some k and s.

Theorem 11

V(ξ) is similar to a matrix V̂(ξ) having the following block structure:

V̂(ξ) =

(
A(ξ) B(ξ)
C(ξ) D(ξ)

)
,

where

page 43 of 52



Skew-selfadjoint potential V (cont.)

A(ξ) = Â(is0) z + o(z), z → 0,

where z =
√
ξ2 + |ω+

k | and

[Â(is0)]ij = −is−10 (f (i), [P
(k)
+ + P

(s)
− ]f (j))Cn .

Here P
(k)
± = (Φ

(k)
± )(Φ

(k)
± )∗.

B(ξ) = O(z) C(ξ) = O(z) D(ξ) = D(is0) + O(z),

where D(is0) is invertible.

The matrix Â(is0) may be zero. It is not zero if, for example, we are
at the “highest” spectral singularity on the imaginary axis, that is,
when s0 = |ωκ+|1/2 = |ωκ− |1/2.
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Skew-selfadjoint potential V (cont.)

Using the formula(
Ip −B(ξ)D(ξ)−1

0 In−p

)
V̂ (ξ)

(
Ip 0

−D(ξ)−1C(ξ) In−p

)
= diag[U(ξ),D(k)],

where
U(k) = A(ξ)− B(ξ)D(ξ)−1C(ξ).

we find that
V̂(ξ)−1 =(

U(ξ)−1 −U(ξ)−1B(ξ)D(ξ)−1

−D(ξ)−1C(ξ)U(ξ)−1 D(ξ)−1C(ξ)U(ξ)−1B(ξ)D(ξ)−1 +D(ξ)−1

)
The divergence of V̂(ξ)−1 as ξ approaches a spectral singularity is

determined by the inverse U(ξ)−1, which diverges like z−1Â(is0)−1

(provided the inverse exists). (If the inverse does not exist, it diverges
like ∼ z−2). page 45 of 52



Skew-selfadjoint potential V /transmission

coefficient

The intended application of these small-z asymptotics concerns the
singularities of the transmission coefficient, T (ξ), and the reflection
coefficients near spectral singularities.

Without going into detail we state the connection between V(ξ) and
T (ξ) :

T (ξ) =

(
N̂∗+

(−2iM+)−1Φ∗+

)(
N̂− −iΦ−(M− + ξIn−)

)(
Iν−0 −i N̂∗−U1

0 In− + U2

)
,

where

U1 = V(ξ)Φ−(M−+ξIn−), U2 = (M−+ξIn−)−1Φ∗−V(ξ)Φ−(M−+ξIn−)
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Perturbed problem

Now we consider the perturbed problem.

Potentials:

Q±(x) = Q± + Q̂±(x), R±(x) = R± + R̂±(x),

where Q̂± and R̂± have entries in L1(R±).
Let

W0(x , ξ) =
(
F0,−(x , ξ) F0,+(x , ξ)

)
.

The matrix resolvent kernel of HV (for Im ξ > 0) is given by

[(HV − ξIn+m)−1](x , t) =

iW0(x , ξ)

[
θ(t − x)In 0

0 −θ(x − t)Im

]
W0(t, ξ)−1J .

where Q̂(t)1/2 = Q̂(t)‖Q̂(t)‖−1/2. page 47 of 52



Resolvent/Birman-Schwinger kernel (cont.)

If v is a solution of the AKNS system, define

w =

[
‖R̂(x)‖1/2 0

0 ‖Q̂(x)‖1/2

]
v .

Then w satisfies

w(x , ξ) =

∫ ∞
−∞
K(x , t; ξ)w(t, ξ) dt,

where K(x , t; ξ) is the Birman-Schwinger kernel:

K(x , t; ξ) =

[
‖R̂(x)‖1/2 0

0 ‖Q̂(x)‖1/2

]
W0(x , ξ)

[
θ(t − x)In 0

0 −θ(x − t)Im

]
W0(t, ξ)−1

[
0 −Q̂(t)1/2

−R̂(t)1/2 0

]
,
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Resolvent/Birman-Schwinger kernel (cont.)

Let K̂(ξ) denote the Birman-Schwinger integral operator for the
problem with V = 0.

Theorem 12
There is a positive number r0 such that the region |ξ| > r0 does not
contain any eigenvalues or spectral singularities.

Proof: K(x , t; ξ) does not have a pointwise limit if ξ →∞ along
lines where Im ξ is constant because it oscillates. But the following
can be proved:

‖K(ξ)− K̂(ξ)‖H.S. → 0, |ξ| → ∞.
‖K̂(ξ)2‖H.S . → 0 |ξ| → ∞.
Hence ‖K(ξ)2‖H.S. → 0 follows, proving the assertion.
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Theorem 8 generalized

Corollary 13

Suppose R̂±(x) = Q̂±(x)∗. Then Theorem 8 holds for the perturbed
equation, provided we replace W0(ξ) by det

(
F−(0, ξ) F+(0, ξ)

)
,

where F±(x , ξ) denote the Jost solutions for the perturbed problem.

The reason is that the identities

F+(x , ξ)∗JF+(x , ξ) =

(
−N∗+N+ 0

0 C+(ξ)

)
, ξ ∈ R,

and that for F−(x , ξ)∗JF−(x , ξ), also hold for the perturbed Jost
solutions, since they only rely on asymptotic information as x → ±∞.
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Theorem 12 generalized

It is not clear to me at this point how far the results of Theorem 10
can be extended to the skew-selfadjoint perturbed problem.
We have some “extensions” under different conditions and with
narrower conclusions. For example:

Let n = 1, m ≥ 1, and suppose that Q±, Q̂± have real components
and that R± = −QT

± , R̂± = −Q̂T
± (here T denotes the transpose).

Let W (ξ) denote the Wronskian for the perturbed problem.

Set ω± = Q±Q
T
± > 0. Then:

Theorem 14

Every zero of W (ξ), where ξ = is with
√
ω− < s <

√
ω+,

corresponds to an embedded eigenvalue. In 0 ≤ s ≤
√
ω− we can

only have spectral singularities.
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Thank you for your attention!
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