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@ The AKNS system

© Constant coefficients: Jordan structure, reduction to simpler
form

© Piecewise constant one-step potentials
o Essential spectrum

e Bound on the number of eigenvalues: An interesting problem in
complex analysis?

e Spectral singularities and embedded eigenvalues, some new
results

@ Perturbed systems with nonvanishing asymptotics

o Eigenvalues and spectral singularities lie in a bounded disk
e Some new results about embedded eigenvalues and spectral
singularities
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The AKNS system

The AKNS (Ablowitz-Kaup-Newell-Segur) system is

r_ (—i&l Q
v—( R i§/m> v, x e R,

where m > n > 1 and

@ @ and R are n x m and m x n complex-valued matrix functions.
e /,, I, are the n X n and m x m identity matrices, respectively.

@ ¢ is a complex-valued eigenvalue parameter.

n = m = 1: Introduced in 1970s by AKNS to solve certain nonlinear
evolution equations by the inverse scattering transform technique.
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The AKNS system (cont.)

@ Nonlinear matrix PDE associated with AKNS:

iQX :Qtt - 2QRQ
iRX - — Rtt + 2RQR

o R=2Q" Q= QuF200°Q
@ n=m = 1: Nonlinear Schrodinger equation (NLS), where the +

(—) sign corresponds to the focusing (defocusing) case,
respectively.
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The AKNS system has an interesting spectral theory. Some prior
work on the subject:

e n=m=1: N. Asano and Y. Kato, JMP, 22 (1981) and JMP,
25 (1984).

e n=1m=2: B. Prinari, M. Ablowitz, G. Biondini, JMP, 47
(2006).

e n=1,m>1: B. Prinari, G. Biondini, A. D. Trubatch, Studies
in Appl. Math. 126 (2011).

e Any n,m: F. Demontis (thesis).

e n=1,m>1: F. Demontis and C. van der Mee: Serdica Math.
J. 36 (2010).
Goal: Study the inverse scattering theory of new, more general

matrix evolution equations.
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The AKNS with constant coefficients

Consider the system

where @ and R are constant matrices.

_.d [0 -iQ (I, 0

Then

Set

vV =A()v <= Hi(Q,R)v =¢v
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Constant potentials

A Fourier transform v(x) — v(p), d/dx — —ip, Hy — Ho(p)

gives
~ pl, —iQ
H = )
o(p) (iR —plm)
Suppose QR has

@ x distinct nonzero eigenvalues with algebraic multiplicities v.

@ (possibly) an eigenvalue zero with algebraic multiplicity v4.

Note that dim ker[RQ] > m — n and the algebraic multiplicity
of the eigenvalue zero of RQ is m — n+ vj.
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Constant potentials (cont.)

Spectrum of Ho(p): Set

det(Ho(p) — &lnim) = (—1)"(p + &)™ " det[(p* — €)1 + QR]

K

= (-1)"(p+ ™ " (p — € [ [(0 — @) (0 + n(©))* =0,

k=1

where

(&) = /&% —wk, with Im[{/&2 —wi] > 0.

Define curves (branches of hyperbolas):

r) __ . 0) __ r
O ={Vo+t: t>0}, 1=-rl
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Constant potentials (cont.)

o(Ho) = CJ (rgy U rgf;)) [UR]

j=1
m=nand vy =0 [if m > nor vy >0].

Branches for square roots:

Im /&2 —w, >0 for &€ C\ (MY uUrY)

e
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Constant potentials: Eigenvalues of A(&)

Eigenvalues of A(&):

det(A(E) = Alpsm) =

K

(1) (i€ = )™+ A T O = Me(€)™ (A + Ael€))

k=1
where

M(€) =iV —wi (wk #0).
Eigenvalues:

o £M\ (&), k=1,... K, if QR #0.
@ & lfm—n>0o0ruy >0.
o —i& If 1y > 0.
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Constant potentials: Eigenvalues of A() (cont.)

We are interested in the

e Jordan structure of A(£) at an eigenvalue A\: Number and sizes
of Jordan blocks of A(£) at its eigenvalues, denoted by

TIAE), Al

The Jordan structures of A(¢) and QR (resp., RQ) are related as
follows:

(i) TIAE), =Ak(§)] = TIQR, wi], provided &2 # wy and

k=1,... k.
(ii) 57[,;4(5)’ —i] = J[QR,0] and J[A(§), i§] = J[RQ, 0] provided
0.

(i) A(+4+/wk) at 0 and QR at wy have the same number of Jordan
blocks but the block sizes for A(+,/wy) are twice the block sizes
for QR.
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Constant potentials: Jordan chains of A(¢)

The case £ = 0 and A = 0 is special:

@ The Jordan structure of A(0) at A = 0 depends on the kernels of
(QR)*, R(QR)*, (RQ)*, and Q(RQ)* for s =1,2....

@ Jordan chains correspond to paths on a certain graph associated
with these kernels.

Example:

0101
=100 01 R=
0011

= O O =
O O O O
O O O

o QR: Eigenvalue w; =1, v; =1 and eigenvalue 0, vy = 2
(semi-simple: no Jordan blocks of size greater than 1).
@ RQ eigenvalue w; =1, 14, = 1 and eigenvalue 0, algebraic mult.

3, geometric mult. 2.
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Constant potentials: Jordan chains of A(¢) (cont.)

Az =ker[(RQ)¥],  As_1 = ker[Q(RQ)*!]
Bax =ker[(QR)"], Bok_1 = ker[R(QR)* Y]
In the example: a3 =1, ap =2, a3 =3 and ;1 =1,6,=2,03 =2

(Lo)[]  (2a)2] (3 a)3

LA @A 3B)E
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Constant potentials: Jordan chains of A(¢) (cont.)

Some more results:

e If m > n (m = n) then for any ¢ € C, the maximum length of a
Jordan chain for A({) at any eigenvalue is 2n+ 1 (2n).

e A(¢) is diagonalizable for every £ # 0 if and only if
RQ = QR =0.

o A(¢) is diagonalizable for every £ € C if and only if @ = R = 0.

Embedded in the graphical picture is a proof of H. Flander's
theorem on elementary divisors of AB and BA: Proc. Amer.
Math. Soc. (1951).
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Constant potentials: Reduction of A(¢)

Let U (n x n) and V (m x m) be unitary matrices so that
U'QV =L,
where
Y =Y, D O0(n—p)x(m-p)> Y, = diag(oy,...,0p),

and oy < --- < 0, are the singular values of Q. Then

Ut 0\ [(—i¢l, Q\[U O\ [—i¢l, %
0 Vv R icl,)\o v) T\ R il )

where R* = V*RU. Introducing the partitions

Z e <Z 0n><(m—p)> ) Z = (O(H;))Xp) ) RtT — (RE) )
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Constant potentials: Reduction of A(§) (cont.)

we obtain
—i¢l, £

—i¢l, T\ "
( R ig/,,,) il P S
Ry 0 |i€lmyp

0

If r, := rank[R!] < rank[R] = rank[R?] =: r, rearrange rows and
columns n+ p + 1 through n+ m so that

i
R Ri— (I
Ri)’
where R! has size (p+ r — r1) x n and is of rank r. This turns A(¢)
into a similar matrix:
_iel, ¥
Ri i€l
Rg 0 ‘ iglm—p—r-i-rl

0

page 16 of 52



Constant potentials: Reduction of A(§) (cont.)

Since ,‘A?lﬁ and R! have the same rank, there exists an
(m—p—r+n)x(p+r—rn) matrix W such that

WR: = RS,
With the help of the similarity

0 } 5—1 — [ ln+p+r—r1

_ /n+p+r—r1
5 N |: Im—p—r+r1 0 —-Ww

V%

o]
/m—p—r+r1 '

we can finally transform A() into block-diagonal form and state:

A(&) is similar (the similarity does not depend on &) to

—i¢l, X 0
RE  itlpirr,
0 0 | iglm—p—r-i—n
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Reduction of A(&): Special cases

Special cases:

Suppose n =1 and m > 2. Let 0 = ||Q|| and w = QR (€ C). Then
A(€) is similar to one of the following block-diagonal matrices:

—i§ o 0
wo! i€ : w #0,
0 | i€l
—i§ o 0
0 i€ 0 0
) , =0
IRIl 0 ¢ N

0 (7€l s
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Reduction of A(&): Special cases (cont.)

Suppose that R = £Q*. Then A(&) is unitarily similar to the direct

sum
—i§ o —i§ o
<i01 /{1) e <j:ap ig)

S—ih® - ®—iEh@iEh & - @ ith.

TV
n—p m—p
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Potentials with different limits as +=0c0

Suppose

Qx) = Q« R(x) =Ry for xé&R*,
where

e Q. and R, are constant matrices on R* and such that
@+ # Q_ and R, # R_ in general.

Define
_ (0 —iQ4 (0 —iQ-
V(X)—(I.R+ 0 ),X>0, V(X)_<iR 0 ),X<O,
Vi(x)= Vi = (i:gi _IOQi) , —00 < X < 00.
Let
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Different limits (cont.)

Define
Hy=iJD+V, Hy =iJD+Vy, Hw=iJD+W.

e o.(Hy) =0(Hy)Uo(H-)
@ 0.s(Hy) = —0ess(Hy)  (only true for o.4!)

Proof with the help of the "twisting trick”: E.B. Davies and B.
Simon, Commun. Math. Phys. 63 (1978).

Sketch: Define a unitary 2(n + m) x 2(n + m) matrix U(x) such that

U(x) = </n6m 0 ) x>1, U(x)= (Ino —/6+m) x <0,

In+m +m

so that U(x) is absolutely continuous on R. page 21 of 52



Different limits (cont.)

For example, choose

U(x) = (Ul(X)/n+m _U2(X)ln+m>  0<x<1,

(X)) hem () tem
where uy(x) = sin(mx/2), ux(x) = cos(mx/2).

Then

Hy_

HV+ 0
U*(Hy ® Hw)U = < 0 ) + Z(x),

where Z(x) has compact support in [0, 1] and thus is a relatively
compact perturbation. Therefore

Tess(Hv) U Oess(Hw) = Oess(Hv, ) U 0ess(Hy_ ) = o(Hy, ) Uo(Hy_).

Difficulty: Hy and Hy, are in general not unitarily equivalent! Hy
and —Hyy are (via JP where P : x — —x, J = diag(ly, —Im))!
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Eigenvalues/spectral singularities of Hy

Hy may have discrete or embedded eigenvalues, or spectral
singularities (defined below).

To determine these points we need the Jost solutions:

Suppose £ € p(Hy) N C* (other cases ar similar). Then there exist m
(resp. n) linearly independent solutions of the AKNS system that are
in L2(RT)™™ (resp. L2(R™)™ ™). Choose these vectors as the
column of two matrices Fo 1 (x,¢&).

Let WO(f) = det (FO,—((-)? 6) F0,+(07 5)) .
Definition

A point ¢ is called a spectral singularity if £ € oes(Hv) \ 0,(Hy) and
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Eigenvalues/spectral singularities of Hy (cont.)

A special case:

@ Suppose Q- R. and R. @, are diagonalizable.

e Let n* denote the number of eigenvalues (counting
multiplicities) of Q. R different from 0.

o Let wf,wf, e ,cufi be the nonzero eigenvalues of QL R..

o If QLR: has eigenvalue zero, let Vét denote its multiplicity.

o Let ®, be matrices whose columns are an eigenbasis for @, R
so that QiRiq)i = d)idiag(wfc, . ,wrjfi).

@ Set :uit(é-) = \/fz_wk? M. :dlag(/jllianufi)
Hence n* = n — vy Since o(Q, R,) \ {0} = o(R. Q.)\ {0}, we
have that dim ker[R, Q. ] =m—nT=m—n+ ;.

Let N, be an m x (m — n™) matrix whose columns form a basis for

ker[R, Q. ] and let N_ be an n x v, matrix whose columns form a
basis for ker[Q_ R _].
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Eigenvalues/spectral singularities of Hy (cont.)

Then, if Im& > 0, we have

0 id (ML =&, el _n 0
F0,+(X7£) = (N+ +(R:¢+§ +)) ( 0 : eiM+x) y X > 07

N_ —id_(M_+&l,-)\ (e, 0
FO,—(Xag) - ( 0 I (R_q)_ 5 )) ( 0 0 e—iMx) y X < 0.

No —id_ (M_+¢&h-) 0 id (M, — &)
0 R.&_ N, R.®, ‘
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Eigenvalues/spectral singularities of Hy (cont.)

lfn=m=1, Qr = q+, Ry = ry (q+ # 0, rL # 0) the decaying
solutions are

il
Fo,i(x,£)=< (1s F€)

eii“+x, x € RT.
r+
Then

Wo(§) = —iry (n—(€) + &) — ir-(p+(§) =€)

(g-rv —qsr)
2q- — g P (r — )17
Only one root can be an eigenvalue but there may be two spectral
singularities.

Zeros of Wo(€): E=+

Question: How many zeros does Wo(&) have? Can we find a bound
for the number of zeros?

page 26 of 52



Eigenvalues/spectral singularities of Hy (cont.)

Suppose m = n and QR are diagonalizable and have only nonzero
eigenvalues. Then the number of eigenvalues (counted according to
their multiplicities) is at most n22" — 2n. Moreover, the number of
eigenvalues ¢ such that —¢ is not an eigenvalue is bounded by
n22n-1 _ p,

@ Exact for n = 1 and the nonzero eigenvalues. Not exact for
& =0, since 0 is always simple. For n = 2 the bound is 28.

@ The number 22" is the sum of the binomial coefficients of the
form (25”), s =0,...,2n, which represents the number of ways
in which we can pick s factors ui(€) from a total of 2n such
factors. If the w/” and w; are all distinct these products are also
distinct, and no two factors can “annihilate” each other.

@ The factor n is technical. The term —2n comes from exploiting
certain symmetries. page 27 of 52



Eigenvalues/spectral singularities of Hy (cont.)

Idea behind proof: Construct a function h(§) that is analytic on
p(Hy) such that Wo(&)h(€) is equal to a polynomial of degree N.
Then the number of eigenvalues will be bounded above by N.

n=m=1q,=1q_=ir.=ir_=1
h(§) = —i& + /&2 —i.
Wo(§) = (1 + )6+ (1 —i)v/E —i.
Thus
Wo(€)h(€) = —1 — i +2(1 - /)¢

Wo(€) =0 for &= +£4/i/2, —\/i/2 is the eigenvalue. Then, in this
case, h(—+/i/2) # 0, but h(1/i/2) = 0. In general we cannot rule
out common zeros of h(&) and W(§).
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Eigenvalues/spectral singularities of Hy (cont.)

Examples with eigenvalues/spectral singularities: n = m = 1.

(1) g =1,rp.=1,g-=1—p,r- =1—p, with p > 0.
We have

R\ (=1 =pl,[1=pl), pe[0,2)\ {1},
Oess(Hv) = ¢ R, p=1,

R\ (~1,1), p>2.

From the formula for £ we get ¢ =0 forall p> 0. But{ =0s
an eigenvalue only when p > 1. For p =0, £ = £1 are both
spectral singularities.

(2) g+ = qoe™#*, where go >0, o+ €ER, o — ¢, :=¢. If
@ € (2rm,27(m +1)). Then & = (—1)""* gy cos($/2) is an
eigenvalue in the spectral gap (—qo, qo)-
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Self-adjoint Hy

Suppose that Ry = Q7. Suppose QLRy = Q4 Q} have nonzero
distinct eigenvalues 0 < wf < < W,fi and possibly eigenvalue 0
with multiplicities 15" Let S = {|wi |2, ..., |wE [V/2}. Set

ag = min {|wy V2, [wf Y2}, Bo = min {|w_ V2, Wt Y2}

(i) If v are both zero, then all embedded zeros of Wy(€) (ie.,
zeros in oegs(Hy)) satisfy ag < |€] < Bo. All spectral singularities
are contained in £(S_ U S;). Every embedded zero of W;(&)
not in £(S_ U S;) corresponds to an embedded eigenvalue.

(ii) If one or both of v are nonzero, then all zeros of Wy(€) lie in
|€] < Bo. The other conclusions are as in (i). In particular, if
Wo(0) = 0, then 0 is an eigenvalue of Hy,.

v
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Self-adjoint H\/ (cont.)

In the self-adjoint case (R. = Q1) we have:

e nt=n-— u(:)t = number of nonzero eigenvalues (counting

multiplicities) of QL Q7. This is the same as the number of
nonzero eigenvalues (counting multiplicities) of QL Q.. Then
m—nt=m—(n—y)=dim ker[Q,].

e N isan m x (m — n™) matrix whose columns form an
orthonormal basis for ker[Q,] = ker[QF Q4].

e N_is an n x v, matrix whose columns form an orthonormal
basis for ker[Q*] = ker[Q_Q*].
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Self-adjoint Hy/( cont.)

The proof employs the identity

e R0 = (M ) gem
for all x € R, where
Ci(&) = My (€)' My (&) — E(M4 (&) + My (8)") + & — Q4

and QL Qi ®, = &,.Q, . There are similar relations for
Fo.—(x,&)*JFo —(x,&). Moreover, it uses the fact that there are
vectors _ € C", 5, € C™ such that

Fo+(x,€)B4 + Fo—(x,£)p- = 0.
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Skew-selfadjoint potential V

Suppose R = —Q7%. Then the Wronskian is:

Wo(f):’ A(l) ,q>_(/\(g*q:rg/n) /\(/)+ I¢+(_A/<’g+;¢fln+) '
Let

A= (N —io_(M_+¢l,))  B=(0 i® (M —El))

C=(0 —Q*o_) D= (N, —Qio,)
Then

Wo (&) = (det A)(det D) det(l, — BD"*CA™1).
Define
V() =—BD'CAT =V (V_(&)
Vi(€) = ¢+(M+(€) + &l )T L Qy
V_(€) = QUO_(M_(&) +&lp-) 07
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Skew-selfadjoint potential V' (cont.)

Suppose @+ are both nonzero. Let
Yo = min {|wh V2 w2}, = max {Jwl [V w2
Then oess(Hy) = i[—71,71] UR. For every s € (0,71], let
pa(s) = K [wE 2 < s},
We partition ®, in the form
o, =row(@V, ..., 0% . .. o)),

where CDSES) is the n X vX matrix whose columns are an orthonormal
basis for the eigenspace associated with the eigenvalue wZ of

- QL Q1.
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Skew-selfadjoint potential V' (cont.)

(1) H_V(g)chxn < 1 for all 6 S @ and ||V(§)“(cn><n <1lon
C+ \ [0, I’)/o]

(il) Wo(&) =0 if and only if V(&) has eigenvalue —1 and this can
happen only if £ = isy for some 0 < s5 < 7. Moreover,
dim(ker[Ws(isp)]) = dim(ker[/, + V(isp)])-

(iii) If —1 is an eigenvalue of V(isy) for some 0 < sy < 7 with
associated normalized eigenvector f € C”, then

(i), [[V+(iso)*fllcm = ||V-(iso)f|lcm = 1 and V. (isp)*f = —V_(iso)f .
(i), [|®% Fllgn = || Fllgr- = 1 and (@) F =0 for
k= 1,. 5 7p:|:(50)-

(iv) If =1 is an eigenvalue of V(isy), then it is semi-simple.

Moreover, V(isp)f = —f implies V(isp)*f = —f.

v
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Skew-selfadjoint potential V' (cont.)
Proof:

(i) The function £ — /€2 + a2 + £ with a > 0 maps CT \ [0, ia] to
the outside of the semi-disk of radius a centered at 0 in the
closed upper half-plane.

A~Lf
—D‘lCA_1f> € ker [Wy(&)].

Ccn = ]. Then (( y )(Cn

(i) f € ker[l, + V(isp)] «— (

(iii), Suppose that V(isp)f = —f where ||f
denotes the inner product)

(f, V(iSo)f)cn = (V+(i50)*f, V_(iSO)f)Cn =—1.

Since ||V (iso)||crxm < 1 and ||V_(iso)||cmxn < 1, an application
of the Schwarz inequality, which here is an equality, proves (iii), .
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Skew-selfadjoint potential V' (cont.)

(iii)o This says that the eigenvalues of QL Q% below sg do not matter.
(Details are omitted).

(iv) The first assertion in (iv) follows from the fact that —1 is a
“peripheral” eigenvalue of the spectrum because the spectral
radius of V(isp) is 1. Also, V(isp) is a contraction and this alone
allows the conclusion that

(ran(V(iso) + 1)) = ker(V(iso) + 1)

Then, if —1 were not semisimple, then there would exist nonzero
vectors f, g € C” such that (V(isg) + I,)g = f and

(V(isp) + I,)f = 0. But then ||f]|*> = F*(V(iso) + I,)g =0, a
contradiction.
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Skew-selfadjoint potential V' (cont.)

In the skew-adjoint case with constant one-step potentials, embedded
eigenvalues cannot occur.

Proof: This follows from (iii),, which says that (<D§f))*f =0 for
k=1, ... pi(s). This eliminates the components of f that would
be needed for an L2- eigenfunction.
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Skew-selfadjoint potential V' (cont.)

(i) If Q+ are self-adjoint and positive semidefinite, then spectral
singularities can occur only at the points i|w |2 and i|w] [*/2
and this happens if and only if |w, [*/? = |w_ |*/? for some k and
s and ran[cbgf)] Nran[®®)] # {0}. In particular, if
(0(Q:)\ {0}) N (a(Q-)\ {0}) = 0, then there are no nonzero
spectral singularities.

(ii) If one of Q4 is self-adjoint and positive semidefinite and the
other, Q+, is merely self-adjoint, then the conclusions of (i) hold
true.

(iii) If one of Q. is self-adjoint and positive semidefinite and the
other, @+, is negative semidefinite, then there are no nonzero
spectral singularities.

v
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Skew-selfadjoint potential V' (cont.)

Proof (sketch):

Since Q4 is self-adjoint (so m = n), we may choose ® so that its
columns are an orthonormal eigenbasis for the nonzero eigenvalues of
Q., that is, Q. &, = ® A*, where A* is a diagonal n® x n® matrix
whose entries are the nonzero eigenvalues of Q...

The columns of &, from left to right, correspond to the eigenvalues
in order of increasing absolute values, so |AT| < [AS| < -+ < |A.x]
and (A)? = | .

This allows us to write

V_(isy) = P_A"(M_(iso) + isop- )" ,

V. (isp) = DA (My(iso) + isohy+) 1%,
where isy is a spectral singularity.
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Skew-selfadjoint potential V' (cont.)

We now exploit information about the numerical ranges of V_(¢) and
V. (&). The submatrices that are associated with the columns of Cb(ik)

for k > py(so) are unitary, since

|ic (iso) + iso| = | (|lwic| — $3)'2 + iso| = [wic|"* = A
We also know that
(F,V_(iso)f)cr = —(f, V4 (iso)*f)cn

where V(&)f = —f (||f|lcr = 1).

@ The numerical range of V_(isy) on the invariant subspace
ran[{dD(f)}bp_(sO)] is the polygon having A, (11, (isp) + isp) * as
vertices.
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Skew-selfadjoint potential V' (cont.)

@ The numerical range of —V. (isy)* on ran[{®* },~,. ()] is the
polygon with vertices —A[ (1 (iso) — isp) "

@ The two numerical ranges lie side by side on the unit circle in the
third (—=V,(isp)*) and fourth quadrant (V_(isp)), respectively.

@ The only way they can make contact is at —/ and this is possible
only if s = |w/|*/? = |w_|*/? for some indices k and s.

o fe ran[CDSL ] N ran[®®)] follows.

@ If AT > 0 but A~ has diagonal elements of arbitrary sign, then
the numerical range of V_(isp) (the convex hull of the
eigenvalues) lies inside the unit circle and above the line through
(—=1,0) and (0, —1). The numerical range of —V, (isp)* lies
strictly below this line (except possibly for the point (0, —1)).
The only possible point of contact is —i. Then there exist

indices k and s such that |w; | = |w; | and 55 = |w |2, .
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Skew-selfadjoint potential V' (cont.)

e If At > 0and A~ < 0, then the numerical range of V_(isp) is in
the second quadrant while that of —V(isp)* is in the third
quadrant, and they are disjoint. No spectral singularities can
occeur.

Suppose the eigenvalue —1 of V(isy) has (geometric) multiplicity
p>1. Let fU .. f(P) be an associated orthonormal eigenbasis.

Suppose that s, = \/|w, | = /|w: | for some k and s.

V(&) is similar to a matrix 17(5) having the following block structure:

A BE)
V“)‘<C(5) D(g))’

where

v
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Skew-selfadjoint potential V' (cont.)

A(€) = A(iso) z + o(z), z—0,
where z = /&2 + |w;"| and
(Al = —isg (70, [P + PO D)

Here P = (0{) (o))",

B(¢)=0(z) C(§)=0(2) D(&)=D(iso) + O(2),
where D(isp) is invertible.

4

The matrix le\(iso) may be zero. It is not zero if, for example, we are
at the “highest” spectral singularity on the imaginary axis, that is,
when sy = [w, [V? = |w,. V2.
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Skew-selfadjoint potential V' (cont.)

Using the formula

b —BODO b0y
(0 - )V(g) (—D(é)‘IC(ﬁ) /n,,> - dslie). PO

where
U(k) = A(&) — B(E)D(§)C(&)
we find that
V()=
( U —UE)BE)DE) )
=D(E)IC(OUE) ™ D) C(OUE) ' BE)D(E) +D(€) !

The divergence of )7(5)_1 as & approaches a spectral singularity is
determined by the inverse U/(£)~1, which diverges like z 1 A(isy)~?
(provided the inverse exists). (If the inverse does not exist, it diverges

- -2
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Skew-selfadjoint potential V' /transmission

coefficient

The intended application of these small-z asymptotics concerns the
singularities of the transmission coefficient, T(&), and the reflection
coefficients near spectral singularities.

Without going into detail we state the connection between V() and

T(6)

N N ~ he —iN* Uy
7€) = ((-2/M++)—1¢1> (N* —ie-(M- +f’"*)> (0 I + U2> |

where

Ur = V()P (M_+Ely-), Uz = (M_+&h-) T OZV() S (M_+El,-)
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Perturbed problem

Now we consider the perturbed problem.
Potentials:

Qu(x) = Qe+ Qu(x).  Refx) = Re + Ru(x),
where Q. and R. have entries in L1(R*).

Let

WO(Xag) = (FO,*(Xv 6) F0,+(X7 5)) .
The matrix resolvent kernel of Hy (for Im & > 0) is given by
[(Hy = &lnim) '(x, 1) =

o(t — x)l, 0
0 —0(x — t)In

where Q(t)/2 = Q(t)[| Q(¢)|| /2. sege 47 o152
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Resolvent/Birman-Schwinger kernel (cont.)

If v is a solution of the AKNS system, define

W:[nmx)um 0 ]
0 QM2

Then w satisfies
w9 = [ Kletu(td

where IC(x, t; £) is the Birman-Schwinger kernel:

oy [IRGIM 0
K(x, t;€) = [ 0 ||©(x)||1/2] Wi(x,€)
a(t — x)I, 0 B 0 —@t1/2
[ ( 0 ) —H(X— t)/m:| Wo(t,f) [—ﬁ(t)lﬁ (0) ] ’
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Resolvent/Birman-Schwinger kernel (cont.)

Let 16(5) denote the Birman-Schwinger integral operator for the
problem with V = 0.

There is a positive number ry such that the region || > ry does not
contain any eigenvalues or spectral singularities.

Proof: KC(x, t;£) does not have a pointwise limit if £ — oo along

lines where Im £ is constant because it oscillates. But the following
can be proved:

o [IK(€) = K(E)llns. — 0, €] = oo.
o ||K(&)?*|ns — 0 ¢ — oo
e Hence ||K(€)?||1s.s. — O follows, proving the assertion.
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Theorem 8 generalized

Suppose ﬁi(x) = (AQi(x)*. Then Theorem 8 holds for the perturbed
equation, provided we replace Wy(€) by det (F_(0,€) F(0,€)),
where F.(x, &) denote the Jost solutions for the perturbed problem.

The reason is that the identities

S (i Sl N RS

and that for F_(x,&)*JF_(x,£), also hold for the perturbed Jost
solutions, since they only rely on asymptotic information as x — +oc.
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Theorem 12 generalized

It is not clear to me at this point how far the results of Theorem 10
can be extended to the skew-selfadjoint perturbed problem.

We have some “extensions” under different conditions and with
narrower conclusions. For example:

Let n=1, m > 1, and suppose that Qx, @i have real components
and that Ry = —Q[, Ry = — Q[ (here T denotes the transpose).
Let W(&) denote the Wronskian for the perturbed problem.

Set w® = Q. QJ > 0. Then:

Every zero of W(&), where £ = is with Vw~— < s < VwT,
corresponds to an embedded eigenvalue. In 0 < s < v/w~ we can
only have spectral singularities.
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Thank you for your attention!
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