Spectral problems associated with the matrix-valued AKNS system

Martin Klaus

Department of Mathematics Virginia Tech

VDM60

Nonlinear Evolution Equations and Linear Algebra Cagliari, Sardinia, Italy September 2-5, 2013

Outline

- The AKNS system
- Constant coefficients: Jordan structure, reduction to simpler form
- Piecewise constant one-step potentials
 - Essential spectrum
 - Bound on the number of eigenvalues: An interesting problem in complex analysis?
 - Spectral singularities and embedded eigenvalues, some new results
- Perturbed systems with nonvanishing asymptotics
 - Eigenvalues and spectral singularities lie in a bounded disk
 - Some new results about embedded eigenvalues and spectral singularities

The AKNS system

The AKNS (Ablowitz-Kaup-Newell-Segur) system is

$$\mathbf{v}' = \begin{pmatrix} -i\xi I_n & \mathbf{Q} \\ \mathbf{R} & i\xi I_m \end{pmatrix} \mathbf{v}, \qquad \mathbf{x} \in \mathbb{R},$$

where $m \ge n \ge 1$ and

• Q and R are $n \times m$ and $m \times n$ complex-valued matrix functions.

- I_n , I_m , are the $n \times n$ and $m \times m$ identity matrices, respectively.
- ξ is a complex-valued eigenvalue parameter.

n = m = 1: Introduced in 1970s by AKNS to solve certain nonlinear evolution equations by the inverse scattering transform technique.

The AKNS system (cont.)

• Nonlinear matrix PDE associated with AKNS:

$$iQ_x = Q_{tt} - 2QRQ$$
$$iR_x = -R_{tt} + 2RQR$$

•
$$R = \pm Q^*$$
: $iQ_x = Q_{tt} \mp 2QQ^*Q$

n = m = 1: Nonlinear Schrödinger equation (NLS), where the +
 (-) sign corresponds to the focusing (defocusing) case,
 respectively.

Motivation

The AKNS system has an interesting spectral theory. Some prior work on the subject:

- n = m = 1: N. Asano and Y. Kato, JMP, 22 (1981) and JMP, 25 (1984).
- *n* = 1, *m* = 2: B. Prinari, M. Ablowitz, G. Biondini, JMP, 47 (2006).
- n = 1, m ≥ 1: B. Prinari, G. Biondini, A. D. Trubatch, Studies in Appl. Math. 126 (2011).
- Any *n*, *m*: F. Demontis (thesis).
- *n* = 1, *m* ≥ 1: F. Demontis and C. van der Mee: Serdica Math. J. 36 (2010).

Goal: Study the inverse scattering theory of new, more general matrix evolution equations.

The AKNS with constant coefficients

Consider the system

$$\mathbf{v}' = \underbrace{\begin{pmatrix} -i\xi I_n & Q \\ R & i\xi I_m \end{pmatrix}}_{A(\xi)} \mathbf{v}, \qquad x \in \mathbb{R},$$

where Q and R are constant matrices.

Set

$$H_0(Q,R) = iJ \frac{d}{dx} + \begin{pmatrix} 0 & -iQ \\ iR & 0 \end{pmatrix}, \qquad J = \begin{pmatrix} I_n & 0 \\ 0 & -I_m \end{pmatrix}.$$

Then

$$v' = A(\xi)v \iff H_0(Q,R)v = \xi v$$

Constant potentials

A Fourier transform $v(x) \rightarrow \hat{v}(p)$, $d/dx \rightarrow -ip$, $H_0 \rightarrow \hat{H}_0(p)$ gives

$$\widehat{H}_0(p) = \begin{pmatrix} pI_n & -iQ \\ iR & -pI_m \end{pmatrix}$$

.

Suppose *QR* has

- κ distinct nonzero eigenvalues with algebraic multiplicities ν_k .
- (possibly) an eigenvalue zero with algebraic multiplicity ν_0 .

Note that dim ker[RQ] $\geq m - n$ and the algebraic multiplicity of the eigenvalue zero of RQ is $m - n + \nu_0$.

Constant potentials (cont.)

Spectrum of $\widehat{H}_0(p)$: Set

$$det(\widehat{H}_{0}(p) - \xi I_{n+m}) = (-1)^{m} (p + \xi)^{m-n} det[(p^{2} - \xi^{2})I_{n} + QR]$$

= $(-1)^{m} (p + \xi)^{m-n+\nu_{0}} (p - \xi)^{\nu_{0}} \prod_{k=1}^{\kappa} (p - \mu(\xi))^{\nu_{k}} (p + \mu(\xi))^{\nu_{k}} = 0,$

where

$$\mu(\xi) = \sqrt{\xi^2 - \omega_k}, \quad \text{with} \quad \text{Im}[\sqrt{\xi^2 - \omega_k}] \ge 0.$$

Define curves (branches of hyperbolas):

$$\Gamma^{(r)}_{\omega_k} = \{\sqrt{\omega_k + t}: t \ge 0\}, \qquad \Gamma^{(\ell)}_{\omega_k} = -\Gamma^{(r)}_{\omega_k}.$$

Constant potentials (cont.)

$$\sigma(H_0) = \bigcup_{j=1}^{\kappa} \left(\Gamma_{\omega_j}^{(r)} \cup \Gamma_{\omega_j}^{(\ell)} \right) \quad [\cup \mathbb{R}]$$
$$m = n \text{ and } \nu_0 = 0 \text{ [if } m > n \text{ or } \nu_0 > 0].$$

Branches for square roots:

$$\mathrm{Im} \ \sqrt{\xi^2 - \omega_k} > 0 \quad \mathrm{for} \ \xi \in \mathbb{C} \setminus (\Gamma^{(r)}_{\omega_k} \cup \Gamma^{(\ell)}_{\omega_k})$$

Constant potentials: Eigenvalues of $A(\xi)$

Eigenvalues of $A(\xi)$:

$$\det(\mathcal{A}(\xi) - \lambda I_{n+m}) = (-1)^{\nu_0} (i\xi - \lambda)^{m-n+\nu_0} (i\xi + \lambda)^{\nu_0} \prod_{k=1}^{\kappa} (\lambda - \lambda_k(\xi))^{\nu_k} (\lambda + \lambda_k(\xi))^{\nu_k}$$

where

$$\lambda_k(\xi) = i\sqrt{\xi^2 - \omega_k} \quad (\omega_k \neq 0).$$

Eigenvalues:

•
$$\pm \lambda_k(\xi), \ k = 1, \dots, \kappa, \text{ if } QR \neq 0.$$

•
$$i\xi$$
: If $m - n > 0$ or $\nu_0 > 0$.

•
$$-i\xi$$
: If $\nu_0 > 0$.

Constant potentials: Eigenvalues of $A(\xi)$ (cont.)

We are interested in the

 Jordan structure of A(ξ) at an eigenvalue λ: Number and sizes of Jordan blocks of A(ξ) at its eigenvalues, denoted by *J*[A(ξ), λ].

THEOREM 1

The Jordan structures of $A(\xi)$ and QR (resp., RQ) are related as follows:

- (i) $\mathcal{J}[A(\xi), \pm \lambda_k(\xi)] = \mathcal{J}[QR, \omega_k]$, provided $\xi^2 \neq \omega_k$ and $k = 1, \dots, \kappa$.
- (ii) $\mathcal{J}[A(\xi), -i\xi] = \mathcal{J}[QR, 0]$ and $\mathcal{J}[A(\xi), i\xi] = \mathcal{J}[RQ, 0]$ provided $\xi \neq 0$.
- (iii) $A(\pm\sqrt{\omega_k})$ at 0 and QR at ω_k have the same number of Jordan blocks but the block sizes for $A(\pm\sqrt{\omega_k})$ are twice the block sizes for QR.

Constant potentials: Jordan chains of $A(\xi)$

The case $\xi = 0$ and $\lambda = 0$ is special:

- The Jordan structure of A(0) at $\lambda = 0$ depends on the kernels of $(QR)^{s}$, $R(QR)^{s}$, $(RQ)^{s}$, and $Q(RQ)^{s}$ for s = 1, 2...
- Jordan chains correspond to paths on a certain graph associated with these kernels.

Example:

$$Q = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad R = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- QR: Eigenvalue $\omega_1 = 1$, $\nu_1 = 1$ and eigenvalue 0, $\nu_0 = 2$ (semi-simple: no Jordan blocks of size greater than 1).
- *RQ* eigenvalue ω₁ = 1, ν₁ = 1 and eigenvalue 0, algebraic mult.
 3, geometric mult. 2.

Constant potentials: Jordan chains of $A(\xi)$ (cont.)

$$(k, \alpha) \longleftrightarrow \alpha_{k} = \dim \mathcal{A}_{k}$$
$$(k, \beta) \longleftrightarrow \beta_{k} = \dim \mathcal{B}_{k}$$
$$\mathcal{A}_{2k} = \ker[(RQ)^{k}], \qquad \mathcal{A}_{2k-1} = \ker[Q(RQ)^{k-1}]$$
$$\mathcal{B}_{2k} = \ker[(QR)^{k}], \qquad \mathcal{B}_{2k-1} = \ker[R(QR)^{k-1}]$$

In the example: $\alpha_1 = 1, \alpha_2 = 2, \alpha_3 = 3$ and $\beta_1 = 1, \beta_2 = 2, \beta_3 = 2$

Constant potentials: Jordan chains of $A(\xi)$ (cont.)

Some more results:

- If m > n (m = n) then for any ξ ∈ C, the maximum length of a Jordan chain for A(ξ) at any eigenvalue is 2n + 1 (2n).
- $A(\xi)$ is diagonalizable for every $\xi \neq 0$ if and only if RQ = QR = 0.
- A(ξ) is diagonalizable for every ξ ∈ C if and only if Q = R = 0.
 Embedded in the graphical picture is a proof of H. Flander's theorem on elementary divisors of AB and BA: Proc. Amer. Math. Soc. (1951).

Constant potentials: Reduction of $A(\xi)$

Let U $(n \times n)$ and V $(m \times m)$ be unitary matrices so that $U^* Q V = \Sigma,$

where

$$\Sigma = \Sigma_{p} \oplus \mathbf{0}_{(n-p)\times(m-p)}, \qquad \Sigma_{p} = \operatorname{diag}(\sigma_{1}, \ldots, \sigma_{p}),$$

and $\sigma_1 \leq \cdots \leq \sigma_p$ are the singular values of Q. Then

$$\begin{pmatrix} U^* & 0 \\ 0 & V^* \end{pmatrix} \begin{pmatrix} -i\xi I_n & Q \\ R & i\xi I_m \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix} = \begin{pmatrix} -i\xi I_n & \Sigma \\ R^{\sharp} & i\xi I_m \end{pmatrix},$$

where $R^{\sharp} = V^* R U$. Introducing the partitions

$$\Sigma = \begin{pmatrix} \widehat{\Sigma} & 0_{n \times (m-p)} \end{pmatrix}, \quad \widehat{\Sigma} = \begin{pmatrix} \Sigma_p \\ 0_{(n-p) \times p} \end{pmatrix}, \quad R^{\sharp} = \begin{pmatrix} R_1^{\sharp} \\ R_2^{\sharp} \end{pmatrix},$$

page 15 of 52

Constant potentials: Reduction of $A(\xi)$ (cont.)

we obtain

$$\begin{pmatrix} -i\xi I_n & \Sigma\\ R^{\sharp} & i\xi I_m \end{pmatrix} = \begin{pmatrix} -i\xi I_n & \widehat{\Sigma} & 0\\ \frac{R_1^{\sharp} & i\xi I_p}{R_2^{\sharp} & 0} & 0 \end{pmatrix}$$

If $r_1 := \operatorname{rank}[R_1^{\sharp}] < \operatorname{rank}[R] = \operatorname{rank}[R^{\sharp}] =: r$, rearrange rows and columns n + p + 1 through n + m so that

$$R^{\sharp} \longrightarrow \widehat{R}^{\sharp} = \begin{pmatrix} \widehat{R}_{1}^{\sharp} \\ \widehat{R}_{2}^{\sharp} \end{pmatrix},$$

where \widehat{R}_1^{\sharp} has size $(p + r - r_1) \times n$ and is of rank r. This turns $A(\xi)$ into a similar matrix:

$$\begin{pmatrix} -i\xi I_n & \Sigma & \\ \hline \widehat{R}_1^{\sharp} & i\xi I_{p+r-r_1} & 0 \\ \hline \hline \widehat{R}_2^{\sharp} & 0 & i\xi I_{m-p-r+r_1} \end{pmatrix}$$

page 16 of 52

Constant potentials: Reduction of $A(\xi)$ (cont.)

Since \widehat{R}_{1}^{\sharp} and \widehat{R}^{\sharp} have the same rank, there exists an $(m - p - r + r_{1}) \times (p + r - r_{1})$ matrix W such that $W\widehat{R}_{1}^{\sharp} = \widehat{R}_{2}^{\sharp}$.

With the help of the similarity

$$S = \begin{bmatrix} I_{n+p+r-r_1} & 0\\ 0 & W & I_{m-p-r+r_1} \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} I_{n+p+r-r_1} & 0\\ 0 & -W & I_{m-p-r+r_1} \end{bmatrix}$$

we can finally transform $A(\xi)$ into block-diagonal form and state:

THEOREM 2

 $A(\xi)$ is similar (the similarity does not depend on ξ) to

$$\begin{pmatrix} -i\xi I_n & \Sigma & \\ \hline R_1^{\sharp} & i\xi I_{p+r-r_1} & 0 \\ \hline 0 & 0 & i\xi I_{m-p-r+r_1} \end{pmatrix}$$

page 17 of 52

Reduction of $A(\xi)$: Special cases

Special cases:

Corollary 3

Suppose n = 1 and $m \ge 2$. Let $\sigma = ||Q||$ and $\omega = QR$ ($\in \mathbb{C}$). Then $A(\xi)$ is similar to one of the following block-diagonal matrices:

$$\begin{pmatrix} -i\xi & \sigma & \\ \omega\sigma^{-1} & i\xi & 0 \\ \hline 0 & & i\xi I_{m-1} \end{pmatrix}, \qquad \omega \neq 0, \\ \begin{pmatrix} -i\xi & \sigma & 0 & \\ 0 & i\xi & 0 & 0 \\ \hline \|R\| & 0 & i\xi & \\ \hline 0 & & & i\xi I_{m-2} \end{pmatrix}, \qquad \omega = 0.$$

Reduction of $A(\xi)$: Special cases (cont.)

Corollary 4

Suppose that $R = \pm Q^*$. Then $A(\xi)$ is unitarily similar to the direct sum

$$\begin{pmatrix} -i\xi & \sigma_1 \\ \pm \sigma_1 & i\xi \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} -i\xi & \sigma_p \\ \pm \sigma_p & i\xi \end{pmatrix}$$
$$\oplus \underbrace{-i\xi I_1 \oplus \cdots \oplus -i\xi I_1}_{n-p} \oplus \underbrace{i\xi I_1 \oplus \cdots \oplus i\xi I_1}_{m-p}.$$

Potentials with different limits as $\pm\infty$

Suppose

$$Q(x) = Q_{\pm}$$
 $R(x) = R_{\pm}$ for $x \in \mathbb{R}^{\pm}$,

where

• Q_{\pm} and R_{\pm} are constant matrices on \mathbb{R}^{\pm} and such that $Q_{+} \neq Q_{-}$ and $R_{+} \neq R_{-}$ in general.

Define

$$\mathbf{V}(\mathbf{x}) = \begin{pmatrix} 0 & -iQ_+ \\ iR_+ & 0 \end{pmatrix}, \ \mathbf{x} > 0, \qquad \mathbf{V}(\mathbf{x}) = \begin{pmatrix} 0 & -iQ_- \\ iR_- & 0 \end{pmatrix}, \ \mathbf{x} < 0,$$
$$\mathbf{V}_{\pm}(\mathbf{x}) = \mathbf{V}_{\pm} = \begin{pmatrix} 0 & -iQ_{\pm} \\ iR_{\pm} & 0 \end{pmatrix}, \qquad -\infty < \mathbf{x} < \infty.$$

Let

$$W(x)=V(-x).$$

page 20 of 52

Different limits (cont.)

Define

$$H_V = iJD + V, \quad H_{V_{\pm}} = iJD + V_{\pm}, \quad H_W = iJD + W.$$

Theorem 5

•
$$\sigma_{\text{ess}}(H_V) = \sigma(H_+) \cup \sigma(H_-)$$

• $\sigma_{\text{ess}}(H_V) = -\sigma_{\text{ess}}(H_V)$ (only true for $\sigma_{\text{ess}}!$)

Proof with the help of the "twisting trick": E.B. Davies and B. Simon, Commun. Math. Phys. 63 (1978).

Sketch: Define a unitary $2(n + m) \times 2(n + m)$ matrix U(x) such that

$$oldsymbol{U}(x)=egin{pmatrix} I_{n+m}&0\0&I_{n+m}\end{pmatrix}\qquad x>1,\quad oldsymbol{U}(x)=egin{pmatrix}0&-I_{n+m}\I_{n+m}&0\end{pmatrix}\quad x<0,$$

so that U(x) is absolutely continuous on \mathbb{R} .

page 21 of 52

Different limits (cont.)

For example, choose

$$U(x) = \begin{pmatrix} u_1(x)I_{n+m} & -u_2(x)I_{n+m} \\ u_2(x)I_{n+m} & u_1(x)I_{n+m} \end{pmatrix}, \qquad 0 \le x \le 1,$$

where $u_1(x) = \sin(\pi x/2), u_2(x) = \cos(\pi x/2)$. Then

$$U^*(H_V\oplus H_W)U=egin{pmatrix} H_{V_+}&0\0&H_{V_-}\end{pmatrix}+Z(x),$$

where Z(x) has compact support in [0, 1] and thus is a relatively compact perturbation. Therefore

$$\sigma_{\mathrm{ess}}(H_V) \cup \sigma_{\mathrm{ess}}(H_W) = \sigma_{\mathrm{ess}}(H_{V_+}) \cup \sigma_{\mathrm{ess}}(H_{V_-}) = \sigma(H_{V_+}) \cup \sigma(H_{V_-}).$$

Difficulty: H_V and H_W are in general not unitarily equivalent! H_V and $-H_W$ are (via JP where $P: x \to -x$, $J = \text{diag}(I_n, -I_m)$)! Page 22 of 52

 H_V may have discrete or embedded eigenvalues, or spectral singularities (defined below).

To determine these points we need the Jost solutions:

Suppose $\xi \in \rho(H_V) \cap \mathbb{C}^+$ (other cases ar similar). Then there exist *m* (resp. *n*) linearly independent solutions of the AKNS system that are in $L^2(\mathbb{R}^+)^{n+m}$ (resp. $L^2(\mathbb{R}^-)^{n+m}$). Choose these vectors as the column of two matrices $F_{0,\pm}(x,\xi)$.

Let
$$W_0(\xi) = \det (F_{0,-}(0,\xi) \ F_{0,+}(0,\xi))$$
.

Definition

A point ξ is called a spectral singularity if $\xi \in \sigma_{ess}(H_V) \setminus \sigma_p(H_V)$ and $W_0(\xi) = 0$.

A special case:

- Suppose $Q_{\pm}R_{\pm}$ and $R_{\pm}Q_{\pm}$ are diagonalizable.
- Let n[±] denote the number of eigenvalues (counting multiplicities) of Q_±R_± different from 0.
- Let $\omega_1^{\pm}, \omega_2^{\pm}, \dots, \omega_{n^{\pm}}^{\pm}$ be the nonzero eigenvalues of $Q_{\pm}R_{\pm}$.
- If $Q_{\pm}R_{\pm}$ has eigenvalue zero, let ν_0^{\pm} denote its multiplicity.
- Let Φ_± be matrices whose columns are an eigenbasis for Q_±R_± so that Q_±R_±Φ_± = Φ_±diag(ω₁[±],...,ω_{n[±]}[±]).

• Set $\mu_k^{\pm}(\xi) = \sqrt{\xi^2 - \omega_k^{\pm}}, \qquad M_{\pm} = \operatorname{diag}(\mu_1^{\pm}, \dots, \mu_{n^{\pm}}^{\pm}).$ Hence $n^{\pm} = n - \nu_0^{\pm}$. Since $\sigma(Q_+R_+) \setminus \{0\} = \sigma(R_+Q_+) \setminus \{0\}$, we have that dim $\operatorname{ker}[R_+Q_+] = m - n^+ = m - n + \nu_0^+.$

Let N_+ be an $m \times (m - n^+)$ matrix whose columns form a basis for $\ker[R_+Q_+]$ and let \widehat{N}_- be an $n \times \nu_0^-$ matrix whose columns form a basis for $\ker[Q_-R_-]$.

Then, if $\operatorname{Im} \xi > 0$, we have

$$F_{0,+}(x,\xi) = \begin{pmatrix} 0 & i\Phi_+(M_+ - \xi I_{n^+}) \\ N_+ & R_+\Phi_+ \end{pmatrix} \begin{pmatrix} e^{i\xi x}I_{m-n^+} & 0 \\ 0 & e^{iM_+x} \end{pmatrix}, \ x > 0,$$

$$F_{0,-}(x,\xi) = \begin{pmatrix} \widehat{N}_{-} & -i\Phi_{-}(M_{-}+\xi I_{n-}) \\ 0 & R_{-}\Phi_{-} \end{pmatrix} \begin{pmatrix} e^{-i\xi x}I_{\nu_{0}^{-}} & 0 \\ 0 & e^{-iM_{-}x} \end{pmatrix}, \ x < 0.$$

Hence

$$W_{0}(\xi) = \left| \begin{array}{ccc} \widehat{N}_{-} & -i\Phi_{-}(M_{-} + \xi I_{n^{-}}) & 0 & i\Phi_{+}(M_{+} - \xi I_{n^{+}}) \\ 0 & R_{-}\Phi_{-} & N_{+} & R_{+}\Phi_{+} \end{array} \right|.$$

If $n=m=1,~Q_{\pm}=q_{\pm},~R_{\pm}=r_{\pm}~(q_{\pm}\neq0,r_{\pm}\neq0)$ the decaying solutions are

$$\mathcal{F}_{0,\pm}(x,\xi) = egin{pmatrix} \pm i(\mu_{\pm}\mp\xi) \ r_{\pm} \end{pmatrix} e^{\pm i\mu_{\pm}x}, \quad x\in\mathbb{R}^{\pm}.$$

Then

$$W_0(\xi) = -ir_+(\mu_-(\xi) + \xi) - ir_-(\mu_+(\xi) - \xi).$$

Zeros of
$$W_0(\xi)$$
: $\xi = \pm rac{(q_-r_+ - q_+r_-)}{2(q_- - q_+)^{1/2}(r_+ - r_-)^{1/2}}$

Only one root can be an eigenvalue but there may be two spectral singularities.

Question: How many zeros does $W_0(\xi)$ have? Can we find a bound for the number of zeros?

Theorem 6

Suppose m = n and $Q_{\pm}R_{\pm}$ are diagonalizable and have only nonzero eigenvalues. Then the number of eigenvalues (counted according to their multiplicities) is at most $n2^{2n} - 2n$. Moreover, the number of eigenvalues ξ such that $-\xi$ is not an eigenvalue is bounded by $n2^{2n-1} - n$.

- Exact for n = 1 and the nonzero eigenvalues. Not exact for $\xi = 0$, since 0 is always simple. For n = 2 the bound is 28.
- The number 2^{2n} is the sum of the binomial coefficients of the form $\binom{2n}{s}$, $s = 0, \ldots, 2n$, which represents the number of ways in which we can pick *s* factors $\mu_k^{\pm}(\xi)$ from a total of 2n such factors. If the ω_k^+ and ω_s^- are all distinct these products are also distinct, and no two factors can "annihilate" each other.
- The factor *n* is technical. The term -2*n* comes from exploiting certain symmetries.

Idea behind proof: Construct a function $h(\xi)$ that is analytic on $\rho(H_V)$ such that $W_0(\xi)h(\xi)$ is equal to a polynomial of degree N. Then the number of eigenvalues will be bounded above by N.

$$n = m = 1, q_{+} = 1, q_{-} = i, r_{+} = i, r_{-} = 1;$$

$$h(\xi) = -i\xi + \sqrt{\xi^{2} - i}.$$

$$W_{0}(\xi) = (1 + i)\xi + (1 - i)\sqrt{\xi^{2} - i}.$$

Thus

$$W_{0}(\xi) = (1 + i)\xi + (1 - i)\sqrt{\xi^{2} - i}.$$

$$W_0(\xi)h(\xi) = -1 - i + 2(1 - i)\xi^2.$$

 $W_0(\xi) = 0$ for $\xi = \pm \sqrt{i/2}, -\sqrt{i/2}$ is the eigenvalue. Then, in this case, $h(-\sqrt{i/2}) \neq 0$, but $h(\sqrt{i/2}) = 0$. In general we cannot rule out common zeros of $h(\xi)$ and $W_0(\xi)$.

Examples with eigenvalues/spectral singularities: n = m = 1.

(1)
$$q_+ = 1, r_+ = 1, q_- = 1 - \rho, r_- = 1 - \rho$$
, with $\rho \ge 0$.
We have

$$\sigma_{\mathrm{ess}}(\mathcal{H}_V) = egin{cases} \mathbb{R} \setminus (-|1-
ho|, |1-
ho|), &
ho \in [0,2) \setminus \{1\}, \ \mathbb{R}, &
ho = 1, \ \mathbb{R} \setminus (-1,1), &
ho \geq 2. \end{cases}$$

From the formula for ξ we get $\xi = 0$ for all $\rho > 0$. But $\xi = 0$ is an eigenvalue only when $\rho > 1$. For $\rho = 0$, $\xi = \pm 1$ are both spectral singularities.

(2)
$$q_{\pm} = q_0 e^{i\varphi_{\pm}}$$
, where $q_0 > 0$, $\varphi_{\pm} \in \mathbb{R}$, $\varphi_- - \varphi_+ := \widehat{\varphi}$. If $\widehat{\varphi} \in (2\pi m, 2\pi (m+1))$. Then $\xi_0 = (-1)^{m+1} q_0 \cos(\widehat{\varphi}/2)$ is an eigenvalue in the spectral gap $(-q_0, q_0)$.

Self-adjoint H_V

Suppose that $R_{\pm} = Q_{\pm}^*$. Suppose $Q_{\pm}R_{\pm} = Q_{\pm}Q_{\pm}^*$ have nonzero distinct eigenvalues $0 < \omega_1^{\pm} < \cdots < \omega_{\kappa^{\pm}}^{\pm}$ and possibly eigenvalue 0 with multiplicities ν_0^{\pm} . Let $S_{\pm} = \{|\omega_1^{\pm}|^{1/2}, \dots, |\omega_{\kappa^{\pm}}^{\pm}|^{1/2}\}$. Set

$$\alpha_0 = \min\left\{|\omega_1^-|^{1/2}, |\omega_1^+|^{1/2}\right\}, \qquad \beta_0 = \min\left\{|\omega_{\kappa^-}^-|^{1/2}, |\omega_{\kappa^+}^+|^{1/2}\right\}.$$

THEOREM 7

(i) If ν₀[±] are both zero, then all embedded zeros of W₀(ξ) (i.e., zeros in σ_{ess}(H_V)) satisfy α₀ ≤ |ξ| ≤ β₀. All spectral singularities are contained in ±(S₋ ∪ S₊). Every embedded zero of W₀(ξ) not in ±(S₋ ∪ S₊) corresponds to an embedded eigenvalue.
(ii) If one or both of ν₀[±] are nonzero, then all zeros of W₀(ξ) lie in |ξ| ≤ β₀. The other conclusions are as in (i). In particular, if W₀(0) = 0, then 0 is an eigenvalue of H_V.

Self-adjoint H_V (cont.)

In the self-adjoint case $(R_{\pm} = Q_{\pm}^{*})$ we have:

- n[±] = n − ν₀[±] = number of nonzero eigenvalues (counting multiplicities) of Q_±Q_±^{*}. This is the same as the number of nonzero eigenvalues (counting multiplicities) of Q_±^{*}Q_±. Then m − n⁺ = m − (n − ν₀⁺) = dim ker[Q₊].
- N₊ is an m × (m − n⁺) matrix whose columns form an orthonormal basis for ker[Q₊] = ker[Q₊^{*}Q₊].
- *N*_− is an *n* × ν₀[−] matrix whose columns form an orthonormal basis for ker[*Q*_−^{*}] = ker[*Q*_−*Q*_−^{*}].

Self-adjoint $H_V($ cont.)

The proof employs the identity

$$\mathcal{F}_{0,+}(x,\xi)^* J \mathcal{F}_{0,+}(x,\xi) = egin{pmatrix} -N_+^* N_+ & 0 \ 0 & C_+(\xi) \end{pmatrix}, \qquad \xi \in \mathbb{R},$$

for all $x \in \mathbb{R}$, where

$$C_{+}(\xi) = M_{+}(\xi)^{*}M_{+}(\xi) - \xi(M_{+}(\xi) + M_{+}(\xi)^{*}) + \xi^{2} - \Omega_{+}$$

and $Q_{\pm}Q_{\pm}^*\Phi_{\pm} = \Phi_{\pm}\Omega_{\pm}$. There are similar relations for $F_{0,-}(x,\xi)^*JF_{0,-}(x,\xi)$. Moreover, it uses the fact that there are vectors $\beta_- \in \mathbb{C}^n$, $\beta_+ \in \mathbb{C}^m$ such that

$$F_{0,+}(x,\xi)\beta_+ + F_{0,-}(x,\xi)\beta_- = 0.$$

Skew-selfadjoint potential V

Suppose $R_{\pm} = -Q_{\pm}^*$. Then the Wronskian is:

$$W_{0}(\xi) = \begin{vmatrix} \widehat{N}_{-} & -i\Phi_{-}(M_{-} + \xi I_{n^{-}}) & 0 & i\Phi_{+}(M_{+} - \xi I_{n^{+}}) \\ 0 & -Q_{-}^{*}\Phi_{-} & N_{+} & -Q_{+}^{*}\Phi_{+} \end{vmatrix}$$

Let

$$A = (\widehat{N}_{-} - i\Phi_{-}(M_{-} + \xi I_{n^{-}})) \qquad B = (0 \quad i\Phi_{+}(M_{+} - \xi I_{n^{+}}))$$
$$C = (0 \quad -Q_{-}^{*}\Phi_{-}) \qquad D = (N_{+} \quad -Q_{+}^{*}\Phi_{+})$$

Then

$$W_0(\xi) = (\det A)(\det D) \det(I_n - BD^{-1}CA^{-1}).$$

Define

$$\mathcal{V}(\xi) = -BD^{-1}CA^{-1} = \mathcal{V}_{+}(\xi)\mathcal{V}_{-}(\xi)$$
$$\mathcal{V}_{+}(\xi) = \Phi_{+}(M_{+}(\xi) + \xi I_{n^{+}})^{-1}\Phi_{+}^{*}Q_{+},$$
$$\mathcal{V}_{-}(\xi) = Q_{-}^{*}\Phi_{-}(M_{-}(\xi) + \xi I_{n^{-}})^{-1}\Phi_{-}^{*}.$$

page 33 of 52

.

Suppose Q_{\pm} are both nonzero. Let

$$\gamma_0 = \min\left\{|\omega_{\kappa^+}^+|^{1/2}, |\omega_{\kappa^-}^-|^{1/2}\right\}, \quad \gamma_1 = \max\left\{|\omega_{\kappa^+}^+|^{1/2}, |\omega_{\kappa^-}^-|^{1/2}\right\}.$$

Then $\sigma_{\text{ess}}(H_V) = i[-\gamma_1, \gamma_1] \cup \mathbb{R}$. For every $s \in (0, \gamma_1]$, let

$$\rho_{\pm}(s) = \#\{k : |\omega_k^{\pm}|^{1/2} < s\}.$$

We partition Φ_\pm in the form

$$\Phi_{\pm} = \operatorname{row}(\Phi_{\pm}^{(1)}, \dots, \Phi_{\pm}^{(s)}, \dots, \Phi_{\pm}^{(\kappa^{\pm})}),$$

where $\Phi_{\pm}^{(s)}$ is the $n \times \nu_s^{\pm}$ matrix whose columns are an orthonormal basis for the eigenspace associated with the eigenvalue ω_s^{\pm} of $-Q_{\pm}Q_{\pm}^*$.

Theorem 8

- (i) $\frac{\|\mathcal{V}(\xi)\|_{\mathbb{C}^{n\times n}} \leq 1}{\mathbb{C}^+} \leq 1$ for all $\xi \in \overline{\mathbb{C}^+}$ and $\|\mathcal{V}(\xi)\|_{\mathbb{C}^{n\times n}} < 1$ on $\overline{\mathbb{C}^+} \setminus [0, i\gamma_0]$.
- (ii) $W_0(\xi) = 0$ if and only if $\mathcal{V}(\xi)$ has eigenvalue -1 and this can happen only if $\xi = is_0$ for some $0 \le s_0 \le \gamma_0$. Moreover, $\dim(\ker[W_0(is_0)]) = \dim(\ker[I_n + \mathcal{V}(is_0)])$.
- (iii) If -1 is an eigenvalue of $\mathcal{V}(is_0)$ for some $0 \le s_0 \le \gamma_0$ with associated normalized eigenvector $f \in \mathbb{C}^n$, then
- $\text{(iii)}_1 \ \|\mathcal{V}_+(\textit{is}_0)^*f\|_{\mathbb{C}^m} = \|\mathcal{V}_-(\textit{is}_0)f\|_{\mathbb{C}^m} = 1 \text{ and } \mathcal{V}_+(\textit{is}_0)^*f = -\mathcal{V}_-(\textit{is}_0)f.$
- $\begin{array}{l} \text{(iii)}_2 \ \|\Phi_+^*f\|_{\mathbb{C}^{n^+}} = \|\Phi_-^*f\|_{\mathbb{C}^{n^-}} = 1 \text{ and } (\Phi_\pm^{(k)})^*f = 0 \quad \text{for} \\ k = 1, \dots, \rho_\pm(s_0). \end{array}$

(iv) If -1 is an eigenvalue of $\mathcal{V}(is_0)$, then it is semi-simple. Moreover, $\mathcal{V}(is_0)f = -f$ implies $\mathcal{V}(is_0)^*f = -f$.

Proof:

(i) The function $\xi \to \sqrt{\xi^2 + a^2} + \xi$ with a > 0 maps $\overline{\mathbb{C}^+} \setminus [0, ia]$ to the outside of the semi-disk of radius a centered at 0 in the closed upper half-plane.

(ii)
$$f \in \ker[I_n + \mathcal{V}(is_0)] \longleftrightarrow \begin{pmatrix} A^{-1}f \\ -D^{-1}CA^{-1}f \end{pmatrix} \in \ker[W_0(\xi)].$$

(iii)₁ Suppose that $\mathcal{V}(is_0)f = -f$ where $||f||_{\mathbb{C}^n} = 1$. Then ((,)_{\mathbb{C}^n} denotes the inner product)

$$(f,\mathcal{V}(is_0)f)_{\mathbb{C}^n}=(\mathcal{V}_+(is_0)^*f,\mathcal{V}_-(is_0)f)_{\mathbb{C}^n}=-1.$$

Since $\|\mathcal{V}_+(is_0)\|_{\mathbb{C}^{n\times m}} \leq 1$ and $\|\mathcal{V}_-(is_0)\|_{\mathbb{C}^{m\times n}} \leq 1$, an application of the Schwarz inequality, which here is an equality, proves (iii)₁.

- (iii)₂ This says that the eigenvalues of $Q_{\pm}Q_{\pm}^*$ below s_0^2 do not matter. (Details are omitted).
 - (iv) The first assertion in (iv) follows from the fact that -1 is a "peripheral" eigenvalue of the spectrum because the spectral radius of $\mathcal{V}(is_0)$ is 1. Also, $\mathcal{V}(is_0)$ is a contraction and this alone allows the conclusion that

$$(\operatorname{ran}(\mathcal{V}(is_0)+I_n))^{\perp}=\ker(\mathcal{V}(is_0)+I_n).$$

Then, if -1 were not semisimple, then there would exist nonzero vectors $f, g \in \mathbb{C}^n$ such that $(\mathcal{V}(is_0) + I_n)g = f$ and $(\mathcal{V}(is_0) + I_n)f = 0$. But then $||f||^2 = f^*(\mathcal{V}(is_0) + I_n)g = 0$, a contradiction.

Corollary 9

In the skew-adjoint case with constant one-step potentials, embedded eigenvalues cannot occur.

Proof: This follows from (iii)₂, which says that $(\Phi_{\pm}^{(k)})^* f = 0$ for $k = 1, \ldots, \rho_{\pm}(s_0)$. This eliminates the components of f that would be needed for an L^2 - eigenfunction.

Theorem 10

- (i) If Q_± are self-adjoint and positive semidefinite, then spectral singularities can occur only at the points *i*|ω_k⁺|^{1/2} and *i*|ω_s⁻|^{1/2} and this happens if and only if |ω_k⁺|^{1/2} = |ω_s⁻|^{1/2} for some *k* and s and ran[Φ₊^(k)] ∩ ran[Φ₋^(s)] ≠ {0}. In particular, if (σ(Q₊) \ {0}) ∩ (σ(Q₋) \ {0}) = Ø, then there are no nonzero spectral singularities.
- (ii) If one of Q_{\pm} is self-adjoint and positive semidefinite and the other, Q_{\mp} , is merely self-adjoint, then the conclusions of (i) hold true.
- (iii) If one of Q_{\pm} is self-adjoint and positive semidefinite and the other, Q_{\mp} , is negative semidefinite, then there are no nonzero spectral singularities.

Proof (sketch):

Since Q_{\pm} is self-adjoint (so m = n), we may choose Φ_{\pm} so that its columns are an orthonormal eigenbasis for the nonzero eigenvalues of Q_{\pm} , that is, $Q_{\pm}\Phi_{\pm} = \Phi_{\pm}\Lambda^{\pm}$, where Λ^{\pm} is a diagonal $n^{\pm} \times n^{\pm}$ matrix whose entries are the nonzero eigenvalues of Q_{\pm} .

The columns of Φ_{\pm} , from left to right, correspond to the eigenvalues in order of increasing absolute values, so $|\Lambda_1^{\pm}| < |\Lambda_2^{\pm}| < \cdots < |\Lambda_{\kappa^{\pm}}|$ and $(\Lambda_k^{\pm})^2 = |\omega_k^{\pm}|$. This allows us to write

$$\begin{aligned} \mathcal{V}_{-}(is_{0}) &= \Phi_{-}\Lambda^{-}(M_{-}(is_{0}) + is_{0}I_{n^{-}})^{-1}\Phi_{-}^{*}, \\ \mathcal{V}_{+}(is_{0}) &= \Phi_{+}\Lambda^{+}(M_{+}(is_{0}) + is_{0}I_{n^{+}})^{-1}\Phi_{+}^{*}, \end{aligned}$$

where is_0 is a spectral singularity.

We now exploit information about the numerical ranges of $\mathcal{V}_{-}(\xi)$ and $\mathcal{V}_{+}(\xi)$. The submatrices that are associated with the columns of $\Phi_{\pm}^{(k)}$ for $k > \rho_{\pm}(s_{0})$ are unitary, since

$$|\mu_k^{\pm}(is_0) + is_0| = \left| (|\omega_k^{\pm}| - s_0^2)^{1/2} + is_0 \right| = |\omega_k^{\pm}|^{1/2} = \Lambda_k^{\pm}.$$

We also know that

$$(f,\mathcal{V}_-(\mathit{is}_0)f)_{\mathbb{C}^n}=-(f,\mathcal{V}_+(\mathit{is}_0)^*f)_{\mathbb{C}^n}$$

where $\mathcal{V}(\xi)f = -f$ ($||f||_{\mathbb{C}^n} = 1$).

• The numerical range of $\mathcal{V}_{-}(is_{0})$ on the invariant subspace $\operatorname{ran}[\{\Phi_{-}^{(k)}\}_{k>\rho_{-}(s_{0})}]$ is the polygon having $\Lambda_{k}^{-}(\mu_{k}^{-}(is_{0})+is_{0})^{-1}$ as vertices.

- The numerical range of $-\mathcal{V}_+(is_0)^*$ on $\operatorname{ran}[\{\Phi_+^k\}_{k>\rho_+(s_0)}]$ is the polygon with vertices $-\Lambda_k^+(\mu_k^+(is_0)-is_0)^{-1}$.
- The two numerical ranges lie side by side on the unit circle in the third $(-\mathcal{V}_+(is_0)^*)$ and fourth quadrant $(\mathcal{V}_-(is_0))$, respectively.
- The only way they can make contact is at -i and this is possible only if s₀ = |\u03c6_k⁺|^{1/2} = |\u03c6_s⁻|^{1/2} for some indices k and s.
- $f \in \operatorname{ran}[\Phi^{(k)}_+] \cap \operatorname{ran}[\Phi^{(s)}_-]$ follows.
- If Λ⁺ > 0 but Λ⁻ has diagonal elements of arbitrary sign, then the numerical range of V₋(*is*₀) (the convex hull of the eigenvalues) lies inside the unit circle and above the line through (-1,0) and (0,-1). The numerical range of -V₊(*is*₀)* lies strictly below this line (except possibly for the point (0,-1)). The only possible point of contact is -*i*. Then there exist indices k and s such that |ω_k⁺| = |ω_s⁻| and s₀ = |ω_k⁺|^{1/2}.

page 42 of 52

 If Λ⁺ > 0 and Λ⁻ < 0, then the numerical range of V₋(is₀) is in the second quadrant while that of -V(is₀)* is in the third quadrant, and they are disjoint. No spectral singularities can occur.

Suppose the eigenvalue -1 of $\mathcal{V}(is_0)$ has (geometric) multiplicity $p \geq 1$. Let $f^{(1)}, \ldots, f^{(p)}$ be an associated orthonormal eigenbasis. Suppose that $s_0 = \sqrt{|\omega_k^+|} = \sqrt{|\omega_s^-|}$ for some k and s.

Theorem 11

 $\mathcal{V}(\xi)$ is similar to a matrix $\widehat{\mathcal{V}}(\xi)$ having the following block structure:

$$\widehat{\mathcal{V}}(\xi) = \left(egin{array}{c|c} \mathcal{A}(\xi) & \mathcal{B}(\xi) \ \hline \mathcal{C}(\xi) & \mathcal{D}(\xi) \end{array}
ight),$$

where

 $\mathcal{A}(\xi) = \widehat{\mathcal{A}}(is_0) \mathbf{z} + o(\mathbf{z}), \quad \mathbf{z} \to \mathbf{0},$ where $z = \sqrt{\xi^2 + |\omega_k^+|}$ and $[\widehat{\mathcal{A}}(is_0)]_{ii} = -is_0^{-1}(f^{(i)}, [P^{(k)}_{\perp} + P^{(s)}]f^{(j)})_{\mathbb{C}^n}.$ Here $P_{\pm}^{(k)} = (\Phi_{\pm}^{(k)})(\Phi_{\pm}^{(k)})^*$. $\mathcal{B}(\xi) = O(z)$ $\mathcal{C}(\xi) = O(z)$ $\mathcal{D}(\xi) = \mathcal{D}(is_0) + O(z),$ where $\mathcal{D}(is_0)$ is invertible.

The matrix $\widehat{\mathcal{A}}(is_0)$ may be zero. It is not zero if, for example, we are at the "highest" spectral singularity on the imaginary axis, that is, when $s_0 = |\omega_{\kappa^+}|^{1/2} = |\omega_{\kappa^-}|^{1/2}$.

Using the formula

$$\begin{pmatrix} I_p & -\mathcal{B}(\xi)\mathcal{D}(\xi)^{-1} \\ 0 & I_{n-p} \end{pmatrix} \widehat{V}(\xi) \begin{pmatrix} I_p & 0 \\ -\mathcal{D}(\xi)^{-1}\mathcal{C}(\xi) & I_{n-p} \end{pmatrix} = \operatorname{diag}[\mathcal{U}(\xi), \mathcal{D}(k)],$$

where

$$\mathcal{U}(k) = \mathcal{A}(\xi) - \mathcal{B}(\xi)\mathcal{D}(\xi)^{-1}\mathcal{C}(\xi).$$

we find that

$$\mathcal{V}(\xi)^{-1} = \\ \begin{pmatrix} \mathcal{U}(\xi)^{-1} & -\mathcal{U}(\xi)^{-1}\mathcal{B}(\xi)\mathcal{D}(\xi)^{-1} \\ -\mathcal{D}(\xi)^{-1}\mathcal{C}(\xi)\mathcal{U}(\xi)^{-1} & \mathcal{D}(\xi)^{-1}\mathcal{C}(\xi)\mathcal{U}(\xi)^{-1}\mathcal{B}(\xi)\mathcal{D}(\xi)^{-1} + \mathcal{D}(\xi)^{-1} \end{pmatrix}$$

The divergence of $\widehat{\mathcal{V}}(\xi)^{-1}$ as ξ approaches a spectral singularity is determined by the inverse $\mathcal{U}(\xi)^{-1}$, which diverges like $z^{-1}\widehat{\mathcal{A}}(is_0)^{-1}$ (provided the inverse exists). (If the inverse does not exist, it diverges like $\sim z^{-2}$).

Skew-selfadjoint potential V/transmission coefficient

The intended application of these small-z asymptotics concerns the singularities of the transmission coefficient, $T(\xi)$, and the reflection coefficients near spectral singularities.

Without going into detail we state the connection between $\mathcal{V}(\xi)$ and $\mathcal{T}(\xi)$:

$$T(\xi) = \begin{pmatrix} \widehat{N}_{+}^{*} \\ (-2iM_{+})^{-1}\Phi_{+}^{*} \end{pmatrix} \begin{pmatrix} \widehat{N}_{-} & -i\Phi_{-}(M_{-}+\xi I_{n-}) \end{pmatrix} \begin{pmatrix} I_{\nu_{0}^{-}} & -i\widehat{N}_{-}^{*}U_{1} \\ 0 & I_{n-}+U_{2} \end{pmatrix}$$

where

$$U_{1} = \mathcal{V}(\xi)\Phi_{-}(M_{-} + \xi I_{n^{-}}), \quad U_{2} = (M_{-} + \xi I_{n^{-}})^{-1}\Phi_{-}^{*}\mathcal{V}(\xi)\Phi_{-}(M_{-} + \xi I_{n^{-}})$$

Perturbed problem

Now we consider the perturbed problem.

Potentials:

$$Q_{\pm}(x) = Q_{\pm} + \widehat{Q}_{\pm}(x), \quad R_{\pm}(x) = R_{\pm} + \widehat{R}_{\pm}(x),$$

where \widehat{Q}_{\pm} and \widehat{R}_{\pm} have entries in $L^1(\mathbb{R}^{\pm})$.
Let

$$\mathcal{W}_0(x,\xi) = \begin{pmatrix} F_{0,-}(x,\xi) & F_{0,+}(x,\xi) \end{pmatrix}.$$

The matrix resolvent kernel of H_V (for Im $\xi > 0$) is given by

$$\begin{split} [(H_V - \xi I_{n+m})^{-1}](x,t) &= \\ i\mathcal{W}_0(x,\xi) \begin{bmatrix} \theta(t-x)I_n & 0\\ 0 & -\theta(x-t)I_m \end{bmatrix} \mathcal{W}_0(t,\xi)^{-1}J. \end{split}$$

where $\widehat{Q}(t)^{1/2} &= \widehat{Q}(t) \|\widehat{Q}(t)\|^{-1/2}. \end{split}$

page 47 of 52

Resolvent/Birman-Schwinger kernel (cont.)

If v is a solution of the AKNS system, define

$$w = \begin{bmatrix} \|\widehat{R}(x)\|^{1/2} & 0 \\ 0 & \|\widehat{Q}(x)\|^{1/2} \end{bmatrix} v.$$

Then *w* satisfies

$$w(x,\xi) = \int_{-\infty}^{\infty} \mathcal{K}(x,t;\xi) w(t,\xi) dt,$$

where $\mathcal{K}(x, t; \xi)$ is the Birman-Schwinger kernel:

$$\begin{split} \mathcal{K}(x,t;\xi) &= \begin{bmatrix} \|\widehat{R}(x)\|^{1/2} & 0\\ 0 & \|\widehat{Q}(x)\|^{1/2} \end{bmatrix} \mathcal{W}_0(x,\xi) \\ &\begin{bmatrix} \theta(t-x)I_n & 0\\ 0 & -\theta(x-t)I_m \end{bmatrix} \mathcal{W}_0(t,\xi)^{-1} \begin{bmatrix} 0 & -\widehat{Q}(t)^{1/2}\\ -\widehat{R}(t)^{1/2} & 0 \end{bmatrix}, \end{split}$$

page 48 of 52

Resolvent/Birman-Schwinger kernel (cont.)

Let $\widehat{\mathcal{K}}(\xi)$ denote the Birman-Schwinger integral operator for the problem with V = 0.

Theorem 12

There is a positive number r_0 such that the region $|\xi| > r_0$ does not contain any eigenvalues or spectral singularities.

Proof: $\mathcal{K}(x, t; \xi)$ does not have a pointwise limit if $\xi \to \infty$ along lines where $\operatorname{Im} \xi$ is constant because it oscillates. But the following can be proved:

- $\|\mathcal{K}(\xi) \widehat{\mathcal{K}}(\xi)\|_{H.S.} \to 0, \quad |\xi| \to \infty.$
- $\|\widehat{\mathcal{K}}(\xi)^2\|_{H.S.} \to 0 \quad |\xi| \to \infty.$
- Hence $\|\mathcal{K}(\xi)^2\|_{H.S.} \to 0$ follows, proving the assertion.

Theorem 8 generalized

Corollary 13

Suppose $\widehat{R}_{\pm}(x) = \widehat{Q}_{\pm}(x)^*$. Then Theorem 8 holds for the perturbed equation, provided we replace $W_0(\xi)$ by det $(F_-(0,\xi) \quad F_+(0,\xi))$, where $F_{\pm}(x,\xi)$ denote the Jost solutions for the perturbed problem.

The reason is that the identities

$$F_+(x,\xi)^*JF_+(x,\xi)=egin{pmatrix} -N_+^*N_+&0\0&C_+(\xi) \end{pmatrix},\qquad \xi\in\mathbb{R},$$

and that for $F_{-}(x,\xi)^* JF_{-}(x,\xi)$, also hold for the perturbed Jost solutions, since they only rely on asymptotic information as $x \to \pm \infty$.

Theorem 12 generalized

It is not clear to me at this point how far the results of Theorem 10 can be extended to the skew-selfadjoint perturbed problem. We have some "extensions" under different conditions and with narrower conclusions. For example:

Let n = 1, $m \ge 1$, and suppose that Q_{\pm} , \widehat{Q}_{\pm} have real components and that $R_{\pm} = -Q_{\pm}^{T}$, $\widehat{R}_{\pm} = -\widehat{Q}_{\pm}^{T}$ (here T denotes the transpose). Let $W(\xi)$ denote the Wronskian for the perturbed problem.

Set $\omega^{\pm} = Q_{\pm}Q_{\pm}^{T} > 0$. Then:

Theorem 14

Every zero of $W(\xi)$, where $\xi = is$ with $\sqrt{\omega^-} < s < \sqrt{\omega^+}$, corresponds to an embedded eigenvalue. In $0 \le s \le \sqrt{\omega^-}$ we can only have spectral singularities.

Thank you for your attention!