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Discrete ill-posed problems

Consider the computation of an approximate solution of the minimization
problem

min
x∈Rn

‖Ax− b‖2, (1)

where A ∈ Rm×n is a matrix with many singular values of different size
close to the origin.
Minimization problems with a matrix of this kind arise, for example, from
the discretization of linear ill-posed problems, such as Fredholm integral
equations of the first kind with a smooth kernel.

The vector b ∈ Rm represents error-contaminated data.
Let e ∈ Rm denote the (unknown) error in b, and let b̂ ∈ Rm be the

(unknown) error-free vector associated with b: b = b̂+ e.



Regularization

We are interested in computing an approximation of the solution x̂ of
minimal Euclidean norm of the error-free least-squares problem

min
x∈Rn

‖Ax− b̂‖2.

Let A† denote the Moore-Penrose pseudoinverse of A. Because A has
many positive singular values close to the origin, A† is of very large norm
and the solution of the minimization problem (1),

x̆ = A†b = A†(b̂+ e) = x̂+A†e,

typically is dominated by the propagated error A†e and then is
meaningless.
This difficulty can be mitigated by replacing the matrix A by a less
ill-conditioned nearby matrix.
This replacement commonly is referred to as regularization.



Truncated Singular Value Decomposition

The TSVD is a popular regularization method for solving linear discrete
ill-posed problems with a small to moderately sized matrix A.
Consider a singular value decomposition of A, i.e. A = UΣV ∗, where
U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and the entries of
Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n are ordered according to

σ1 ≥ σ2 ≥ . . . ≥ σ` > σ`+1 = . . . = σn = 0.

• The σj are the singular values of A, and ` is the rank of A. For
k ≤ `, define the matrix Σk = diag[σ1, σ2, . . . , σk, 0, . . . , 0] ∈ Rm×n
by setting the singular values σk+1, σk+2, . . . , σn to zero.

• Regularization is achieved by replacing the matrix A by its rank-k
approximant Ak = UΣkV

∗ and determining the least-square
solution of minimal Euclidean norm xk = A†kb, where A†k = V Σ†kU

∗.



Singular values and unitarily invariant norms

• It is clear from the SVD that if ‖ · ‖ is a unitarily invariant norm,
then ‖A‖ = ‖UΣV ∗‖ = ‖Σ(A)‖ is a function only of the singular
values of A.

• The Ky Fan p− k norms Nk;p = [σ1(A)p + · · ·+ σk(A)p]1/p, where
p ≥ 1 and 1 ≤ k ≤ n, are unitarily invariant norms on Rm×n (when
k = n, Nn;p is often called the Schatten p-norm); N1;1 is the
spectral norm and Nn;2 is the Frobenius norm, i.e. the Schatten
2-norm.

• Let A,B ∈ Rm×n be given. For every unitarily invariant norm ‖ · ‖
on Rm×n it can be proved that (see, e.g., Horn and Johnson, Topics
in Matrix Analysis)

‖A−B‖ ≥ ‖Σ(A)− Σ(B)‖. (2)

If rank(B) = k, ‖A−B‖ ≥ ‖diag(0, . . . , 0, σk+1(A), . . . , σn(A))‖.
Thus, for k ≤ `, Ak = UΣkV

∗ is the best rank-k approximation to
A with respect to every unitarily invariant matrix norm.



Distances and condition number of Ak

• For the spectral and Frobenius norms,

‖Ak −A‖2 = σk+1, ‖Ak −A‖F =

√√√√ n∑
i=k+1

σ2
i ,

where we define σn+1 = 0.

• The condition number of Ak with respect to the spectral norm is

κ2(Ak) =
σ1
σk
.

The larger the condition number, the more sensitive can xk = A†kb
be to the error e in b.



The truncation index

• The truncation index k is a regularization parameter. It determines
how close Ak is to A and how sensitive the computed solution xk is
to the error in b. The condition number κ2(Ak) increases and the
distance between Ak and A decreases as k increases.

• It is important to choose a suitable value of k; a too large value
gives a computed solution xk that is severely contaminated by
propagated error stemming from the error e in b, and a too small
value gives an approximate solution that is an unnecessarily poor
approximation of the desired solution x̂ because Ak is far from A.

• There are many approaches described in the literature to
determining the truncation index k, including the quasi-optimality
criterion, the L-curve, generalized cross validation, extrapolation,
and the discrepancy principle; see, e.g., Numer. Algorithms papers
by Brezinski, Rodriguez, and Seatzu, and by Reichel and Rodriguez.



A modified TSVD method

• We suggest a modification of the TSVD method in which the
matrix Ak is replaced by a matrix Ã that is closer to A and has the
same spectral condition number.

• We show that x̃ = Ã†b may be a more accurate approximation of x̂
than xk = A†kb furnished by standard TSVD.

• Computed examples illustrate this often to be the case.

• We use the discrepancy principle to determine a suitable value of
the regularization parameter k; however, our regularization method
also can be applied in conjunction with other techniques for
determining the regularization parameter.



A first result

Consider the matrix A = UΣV ∗, and let Σ̃ be of the form

Σ̃ = diag[σ̃1, σ̃2, . . . , σ̃n] ∈ Rm×n, σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃n ≥ 0.

Then
min
Ũ,Ṽ
‖A− Ũ Σ̃Ṽ ∗‖ = ‖Σ− Σ̃‖ (3)

for any unitarily invariant matrix norm ‖ · ‖, where the minimization is

over all orthogonal matrices Ũ ∈ Rm×m and Ṽ ∈ Rn×n.

Proof.
Let U and V be the orthogonal matrices in the SVD of A. Then

min
Ũ,Ṽ
‖A− Ũ Σ̃Ṽ ∗‖ ≤ ‖A− U Σ̃V ∗‖ = ‖Σ− Σ̃‖.

The result follows from ‖A−B‖ ≥ ‖Σ(A)− Σ(B)‖ (inequality in
(2)).



The main result

A closest matrix to A in the spectral or Frobenius norms with smallest
singular value σk is given by

Ã = U Σ̃V ∗

where Σ̃ has the entries

σ̃j = σj , 1 ≤ j ≤ k,
σ̃j = σk, k < j ≤ k̃,
σ̃j = 0, k̃ < j ≤ n,

where k̃ is determined by the inequalities σk̃ ≥ σk/2 and σk̃+1 < σk/2.



Proof

• We first consider the matrix Σ̃.

- If σk = 0, then k̃ = n and Σ̃ = Σ;
- if σk > 0, then a closest matrix Σ̃ to Σ in the spectral or

Frobenius norms with smallest singular value σk is obtained by
modifying each singular value of Σ that is smaller than σk as
little as possible to be either σk or zero. Thus, singular values
of Σ that are larger than σk/2 are set to σk, while singular
values that are smaller than σk/2 are set to zero. Singular
values that are σk/2 can be set to either σk or zero.

• For Ã = U Σ̃V ∗ one has the equal sign in ‖A− Ã‖ ≥ ‖Σ− Σ̃‖
(inequality in (2)), i.e. Ã is a minimizer in the minimization
problem (3).

�



Replacing A with Ã

‖A− Ã‖2 ≤
σk
2
, ‖A−Ak‖2 = σk+1,

‖A− Ã‖F ≤
σk
2

√
n− k, ‖A−Ak‖F =

√√√√ n∑
i=k+1

σ2
i .

• ‖A−Ak‖2 > ‖A− Ã‖2, ‖A−Ak‖F > ‖A− Ã‖F when
σk+1 > σk/2. The singular values for linear discrete ill-posed
problems typically decay slowly to zero for increasing values of k.
Therefore, the latter inequality holds for many problems. Thus, for
many discrete ill-posed problems Ã is a better approximation of A
than Ak.

• Moreover, κ2(Ã) = κ2(Ak). The propagated error in the

approximation x̃ = Ã†b of x̂ = A†kb is not expected to be larger
than the propagated error in the TSVD solution xk.



Numerical tests

• The regularization parameter k is determined by the discrepancy
principle. Its application requires a bound ε for ‖e‖2 to be known.
To compute an approximation of x̂ we first choose the value of k as
small as possible so that

‖Axk − b‖2 ≤ ε,

where xk is defined by TSVD. Then we determine x̃ with Ã given
by modified TSVD.

• The examples are obtained by discretizing Fredholm integral
equations of the first kind∫ b

a

κ(s, t)x(t) dt = g(s), c ≤ s ≤ d,

with a smooth kernel κ. The discretizations are carried out by
Galerkin or Nyström methods and yield linear discrete ill-posed
problems.



Numerical tests

• In the MATLAB package Regularization Tools by Hansen [Numer.
Algorithms, 2007] discretizations A ∈ Rn×n of the integral
operators and scaled discrete approximations x̂ ∈ Rn of the solution
x are determined.

• We add an error vector e ∈ Rn with normally distributed random
entries with zero mean to b̂ = Ax̂ to obtain the vector b. The vector
e is scaled to yield a specified noise level ‖e‖/‖b̂‖. In particular, ‖e‖
is available and we can apply the discrepancy principle with ε = ‖e‖
to determine the truncation index k in TSVD.

• We report in every example the average of the relative errors in the
computed solution determined by the TSVD and the modified
TSVD methods over 1000 runs for each noise level. We let n = 200
in all examples.



phillips test problem
Fredholm integral equation of the first kind with a = c = −6, b = d = 6,

φ(t) =

{
1 + cos(πt3 ), |t| < 3,
0, |t| ≥ 3,

with kernel, right-hand side function, and solution given by

κ(s, t) = φ(s− t), x(t) = φ(t),

g(s) = (6− |s|)
(

1 +
1

2
cos
(πs

3

))
+

9

2π
sin

(
π|s|

3

)
.

Noise level TSVD kavg modified TSVD k̃avg
10.0% 7.857 · 10−2 6.201 · 100 7.582 · 10−2 6.634 · 100

5.0% 3.717 · 10−2 6.944 · 100 3.695 · 10−2 6.975 · 100

1.0% 2.585 · 10−2 7.046 · 100 2.620 · 10−2 7.082 · 100

0.1% 1.214 · 10−2 9.805 · 100 1.025 · 10−2 1.100 · 101

Table: Average relative errors and average truncation indices.



ilaplace test problem

Fredholm integral equation of the first kind with

κ(s, t) = exp(−st), x(t) = exp(−t/2), g(s) =
2

2s+ 1
,

and a = c = 0, b = d =∞.

Noise level TSVD kavg modified TSVD k̃avg
10.0% 2.455 · 10−1 4.498 · 100 2.404 · 10−1 4.950 · 100

5.0% 2.222 · 10−1 5.317 · 100 2.215 · 10−1 5.373 · 100

1.0% 1.881 · 10−1 6.830 · 100 1.881 · 10−1 6.830 · 100

0.1% 1.545 · 10−1 9.237 · 100 1.545 · 10−1 9.237 · 100

Table: Average relative errors and average truncation indices.



deriv2 test problem
Fredholm integral equation of the first kind with a = c = 0, b = d = 1,
with kernel, solution, and right-hand side given by

κ(s, t) =

{
s(t− 1), s < t,
t(s− 1), s ≥ t,

x(t) = t,

g(s) =
s3 − s

6
.

Noise level TSVD kavg modified TSVD k̃avg
10.0% 3.959 · 10−1 4.222 · 100 3.912 · 10−1 5.558 · 100

5.0% 3.526 · 10−1 5.270 · 100 3.448 · 10−1 7.045 · 100

1.0% 2.680 · 10−1 8.841 · 100 2.544 · 10−1 1.198 · 101

0.1% 1.832 · 10−1 1.865 · 101 1.696 · 10−1 2.571 · 101

Table: Average relative errors and average truncation indices.


