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1. Topics on MPS

(1) Explicit formulas for MPS
[Schiebold, Habilitation Thesis 2004]
[Aktosun/Demontis/van der Mee, Inv. Probl. 2007]

(2) Asymptotic description
[Zakharov/Shabat, Sov. Phys. JETP 1972]

coalescence of two simple poles
[Olmedilla, Physica D 1986]

conjecture for one pole of order L
proof for L = 2, 3

(3) Understand transition to higher order degeneracy
phenomena



2. Operator formulas

Proposition

Let A, C be n × n-matrices, and denote by A the matrix
obtained from A by taking the complex conjugate entries.
Then

Q = (I + LL)−1(AL + LA)

where L(x , t) = exp(Ax − iA2t)C,

is a solution of the matrix NLS equation

iQt = Qxx + 2QQQ

provided that I + LL is invertible.



For n = 1, A = α, and C = exp(ϕ),

q(x , t) = 2Re(α)
L(x , t)

1 + |L(x , t)|2

= Re(α) ei Im(αx−iα2t+ϕ) cosh−1
(

Re(αx − iα2t + ϕ)
)
,

the 1-soliton solution.

α characterizes the soliton
amplitude: Re(α) α = 0.5−4i
velocity: −2Im(α)

ϕ gives its initial position shifts



Towards a solution formula

First ingredient:

Proposition

Let Q = Q(x , t) be a solution of the matrix NLS equation which,
for some a, c ∈ Cn, can be written in the form

Q(x , t) = Q0(x , t)cat .

Then q(x , t) = atQ0(x , t)c solves the NLS equation.

QQQ = Q0cat Q0cat Q0cat

= Q0c atQ0c atQ0c at = Q0c qq at



Towards a solution formula

Second ingredient:

Q = (I + LL)−1eAx−iA2t (AC + CA)

For any right-hand side Y , the Sylvester equation
AX + XB = Y has a unique solution if and only if
0 6∈ spec(A) + spec(B).

Third ingredient:

From traces to determinants

q = at(I + LL)−1eAx−iA2tc

= tr
(
(I + LL)−1eAx−iA2tcat

)
= . . .



Theorem

Let A ∈Mn,n(C) with 0 6∈ spec(A) + spec(A), and a, c ∈ Cn.

Denote by C the unique solution of the Sylvester equation
AC + CA = cat , and define

L(x , t) = eAx−iA2tC, L0(x , t) = eAx−iA2tcat .

Then a solution of the NLS equation, which is smooth on R2, is
given by

q = 1−
det

(
I − L0 −L

L I

)
det

(
I −L
L I

) .



Further aspects:

The theorem is a particular case of a more general result
in [Schiebold, J. Phys. A 2010] where a solution formula is
given

for the whole AKNS system
depending on operator parameters

Advantage: access to wider solution classes
solutions to the initial value problem
matrix solitons
countable superpositions

Systematic explanation of the choices via functional
analysis



3. MPS via ISM

To principal parts

rj(k) =
rjnj

(k − kj)
nj

+
rjnj−1

(k − kj)
nj−1 + . . . +

rj1

k − kj

given at N points k1, . . . , kN in the upper half plane H, we
associate the GLM-kernel

Ω(z; t) = −2i
N∑

j=1

resk=kj

(
rj(k)e2ikz−4ik2t

)
.

Lemma
There are vectors d, f such that

Ω(z; t) = −2if t eΛx+iΛ2t d ,

where Λ = diag{Λj | j = 1, . . . , N} and Λj is 2i times the
nj × nj -Jordan block w.r.t. the eigenvalue kj .



Lemma

K (x , y) := 2if t
(

I + G(x , t) G(x , t)
)−1

eΛ(x+y)−iΛ
2t d

solves the GLM-equation

K (x , y) +

∫ ∞

0

∫ ∞

0
K (x , s)Ω(x+s+z)Ω(x+y +z) ds dz

= Ω(x + y).

The associated solution q(x) = −K (x , 0) of the NLS equation
can be obtained via:

A = Λ,

a = −2if , c = d .



4. Asymptotic description of MPS

Definition
Two functions f = f (x , t), g = g(x , t) have the same asymptotic
behavior for t →∞ (t → −∞),

f (x , t) ≈ g(x , t) for t ≈ ∞ (t ≈ −∞).

if for every ε > 0 there is a tε such that for t > tε (t < tε) we have
|f (x , t)− g(x , t)| < ε uniformly in x .



The following technical assumptions can be made without
loss of generality:

Assumption 1: The matrix A ∈Mn,n(C) is in Jordan form
with N Jordan blocks of sizes nj × nj and
eigenvalues αj .

Adapt notation to this Jordan form: For v ∈ Cn, write v = (vj)
N
j=1

with vj = (v (µ)
j )

nj
µ=1 ∈ Cnj .

Assumption 2: The vectors a, c ∈ Cn satisfy a(1)
j c(nj )

j 6= 0.
Assumption 3: Re(αj) > 0.

We also need:

Assumption 4: The Im(αj) are pairwise different.



Theorem
For the associated solution it holds:

q(x , t) ≈
N∑

j=1

nj−1∑
j′=0

q±jj′ (x , t) for t ≈ ±∞,

where
q±jj′ (x , t) = (−1)j′+1 Re(αj)e

−i Im
(
Γ±jj′(x , t)

)
cosh−1

(
Re

(
Γ±jj′(x , t)

))
and Γ±jj′(x , t) = αjx − iα2

j t ∓ J ′ log |t | + ϕj + ϕ±j + ϕ±jj′ ,

where we have set J ′ = −(nj − 1) + 2j ′, and the quantities ϕj , ϕ±j , ϕ±jj′ are
given by

exp(ϕj) = a(1)
j c

(nj )

j

/
(αj + αj)

nj ,

exp(ϕ±j ) =
∏

k∈Λ±j

[
αj − αk

αj + αk

]2nk

,

exp
(
± ϕ±jj′

)
=

(
−i(αj + αj)

2 )−J′ j ′!
(j ′ − J ′)!

,

for the index sets Λ±j = {k | Im(αj) ≶ Im(αk )}.



Geometric interpretation and examples

One single n × n-Jordan block:

wave packet with n solitons
the packet itself moves
with constant velocity
v = −2Im(α)

the solitons approach/drift
away from its center
on logarithmic curves.

n = 3, α = 1 + 0.1i

Note that the internal collisions of the solitons do not affect the
path of the wave packets center.



N Jordan blocks:

superposition of N wave packets as just described
collisions between the wave packets are elastic and
result only in a phase-shift

n1 = n2 = 2, n1 = 3, n2 = 1,
α1 = 1, α2 = 1

2 + 1
2 i, α1 = 1− 1

2 i, α2 = 1 + 1
2 i



N-soliton solutions versus MPS

Asymptotic curves

Re
(
αjx − iα2

j t ∓ J ′ log |t | + ϕj + ϕ±j + ϕ±jj ′
)

= 0

are no longer straight lines.
Phase-shifts ϕ±jj ′ due to collisions between solitons within
the same wave packet,
phase-shifts ϕ±j due to collisions between wave packets

exp(ϕ±j ) =
∏

k∈Λ±j

[
αj − αk

αj + αk

]2nk

.

Each soliton in the j th wave packet experiences shifts from
all nk solitons within a colliding k th packet.



Main ingredients of the proof:

1 Regularity of MPS via factorization of solutions of the
Sylveter equation over L2(−∞, 0].

2 MPS asymptotically behave as the superposition of N
single wave packets

-
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Contribution from cones Ck
around the straight lines

x = −2Im(αk )t

3 Asymptotics for single wave packets in logarithmic sectors
4 Evaluation of Cauchy-type determinants

[Schiebold, LAA 2012]



5. Solutions of higher degeneracy

Wave packets having
the same velocity
cannot be distinguished
by asymptotic analysis.

Example 1:

n1 = n2 = 1
α1 = 4, α2 = 2

(two stationary solitons)

[Aktosun/Demontis/van der Mee,
Inverse Problems 2007]



Example 2:

n1 = n2 = n3 = 1
α1 = 4, α2 = 2, α3 = 2 + 1

2 i

(the solution from Example 1
meets a non-stationary soliton)

Asymptotic analysis confirms that each of the two stationary
solitons experiences a different phase-shift from the collision.



Example 3: Three stationary solitons which
only differ in their initial position shifts.

n1 = n2 = n3 = 1
α1 = 4, α2 = 2, α1 = 1



Example 4: On the left the solution from the last example.
On the right one of the eigenvalues has been changed.

n1 = n2 = n3 = 1
α1 = 4, α2 = 2, α3 = 1 α1 = 4, α2 = 3, α3 = 2



Example 5: Two stationary constellations
of higher complexity.

n1 = n2 = 2 n1 = 2, n2 = 1
α1 = 4, α2 = 2 α1 = 4, α2 = 2



Selected references

[1] A non-abelian Nonlinear Schrödinger equation and countable
superposition of solitons.
J. Gen. Lie Theory Appl. 2008.

[2] Noncommutative AKNS systems and multisoliton solutions to the matrix
sine-Gordon equation.
DCDS 2009.

[3] Cauchy-type determinants and integrable systems.
Linear Algebra Appl. 2010.

[4] The noncommutative AKNS system: projection to matrix systems,
countable superposition and soliton-like solutions.
J. Phys. A 2010.

[5] Asymptotics for the multiple pole solutions of the Nonlinear Schrödinger
equation.
In preparation.


