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1. Topics on MPS

(1) Explicit formulas for MPS

[Schiebold, Habilitation Thesis 2004]
[Aktosun/Demontis/van der Mee, Inv. Probl. 2007]

(2) Asymptotic description
[Zakharov/Shabat, Sov. Phys. JETP 1972]
@ coalescence of two simple poles
[Olmedilla, Physica D 1986]

@ conjecture for one pole of order L
@ proofforL=2,3

(3) Understand transition to higher order degeneracy
phenomena



2. Operator formulas

Proposition

Let A, C be n x n-matrices, and denote by A the matrix
obtained from A by taking the complex conjugate entries.
Then

Q = (I+LL) AL+ LA)
where L(x, t) = exp(Ax — iA®t)C,

is a solution of the matrix NLS equation
iQ = Qu +2QQQ

provided that | + LL is invertible.




Forn=1, A= «a, and C = exp(p),
L(x,t)
1+ |L(x,t)]2
= Re(a) € Im(ax—ia®t+¢) cogh (Re(ax —ia?t+ 90)),

q(x.t) = 2Re(a)

the 1-soliton solution.

@ « characterizes the soliton 7
amplitude: Re(a) a=05-—4i
velocity: —2Im(«)

@ ¢ gives its initial position shifts




Towards a solution formula

First ingredient:

Proposition

Let Q = Q(x, t) be a solution of the matrix NLS equation which,
for some a, ¢ € C", can be written in the form

Q(x, t) = Qo(x, t)ca'.

Then q(x,t) = a'Qy(x, t)c solves the NLS equation.

QQQ = Qyca Qpcal Qyca'
= Qyc a'Qyc dQyecd =Qycqgqad



Towards a solution formula

Second ingredient:

® Q= (/+LL)'e™#t (AC + CA)
@ For any right-hand side Y, the Sylvester equation

AX + XB = Y has a unique solution if and only if
0 ¢ spec(A) + spec(B).

Third ingredient:
@ From traces to determinants

q = (/+LL)1AX1AI‘C
= w((/+ LD ea)



Theorem

Let A€ Mpn(C) with0 ¢ spec(A) + spec(A), and a, ¢c € C".

Denote by C the unique solution of the Sylvester equation
AC + CA = c@, and define

L(x,t) = et Ly(x,t) = e #lcal,

Then a solution of the NLS equation, which is smooth on R?, is
given by
I—Ly —L
det < I / )
] .

—L
det<L / >

q=1-




Further aspects:

@ The theorem is a particular case of a more general result
in [Schiebold, J. Phys. A 2010] where a solution formula is
given

o for the whole AKNS system
e depending on operator parameters
@ Advantage: access to wider solution classes
e solutions to the initial value problem
@ matrix solitons
e countable superpositions

@ Systematic explanation of the choices via functional

analysis



3. MPS via ISM

To principal parts

: . lin; Fjnj—1 Ii1
ri(k) = (k— k) (k— k)T +"'+k—kj

given at N points kq, ..., ky in the upper half plane H, we
associate the GLM-kernel

N
Q(z;t) = -2i Zresk:kj (rj(k)e2ikz—4ikzt>.
j=1

Lemma

There are vectors d, f such that

Q(z; t) = —2ift Nt g

where N = diag{/\; | j =1,..., N} and A; is 2i times the
n; x n;-Jordan block w.r.t. the eigenvalue k;.




Lemma

1

K(x,y) = 2iff</ + Gx, 1) G(x, t)>‘ R
solves the GLM-equation
K(x,y)+/ / K(x,8)Q(x+s+2)Q(x+y+2) ds dz
0 0

= Qx+y).

The associated solution q(x) = —K(x, 0) of the NLS equation
can be obtained via:

A = A

a = -—2if, ¢ = d.



4. Asymptotic description of MPS

Definition
Two functions f = f(x, t), g = g(x, t) have the same asymptotic
behavior for t — oo (t — —0),

f(x,t) =~ g(x,t) for t = oo (t = —0).

if for every € > 0 there is a f. such that for t > t. (f < t.) we have
[f(x,t) — g(x, )| < euniformly in x.

o




The following technical assumptions can be made without
loss of generality:

Assumption 1: The matrix A € M, (C) is in Jordan form
with N Jordan blocks of sizes n; x n; and
eigenvalues a;.

Adapt notation to this Jordan form: For v € C”, write v = (v;)¥

j=1
with v; = (vj(”))g:1 e Cn.

Assumption 2: The vectors a, ¢ € C" satisfy aj(.”cj(”f) £0.
Assumption 3: Re(«;) > 0.

We also need:

Assumption 4: The Im(a;) are pairwise different.



Theorem
For the associated solution it holds:

N n—1

q(x,t) ~ Z Z gj (x, 1) for t & oo,

j=1 j/=0
where ) -
qjjii(x, t)=(-1)y " Re(oz,-)e_l Im( i (% 1) cosh™" (Re(rj.[,(x, 2‘)))

and [ (x, 1) = ax —iaft + Jloglt] + ¢+ ¢ + o5,

where we have setJ' = —(n; — 1) + 2/, and the quantities g;, @i, v;; are
given by

exp(e) = 3"g"/(oy+ )",
. Oél — ax 2ny
exp(e) = ]I wita|
kent ! 4
op(twy) = (—ilej+@)?)” G =

for the index sets A" = {k | Im(cj) S Im(ax)}.




Geometric interpretation and examples

One single n x n-Jordan block:

@ wave packet with n solitons

@ the packet itself moves
with constant velocity
v =—2Im(«)

@ the solitons approach/drift
away from its center
on logarithmic curves.

n=38,a=1+4+0.1i

Note that the internal collisions of the solitons do not affect the
path of the wave packets center.



N Jordan blocks:

@ superposition of N wave packets as just described

@ collisions between the wave packets are elastic and
result only in a phase-shift

n =n=

)

1. 1.
ar=1—3l, 0 =1+3i



N-soliton solutions versus MPS
@ Asymptotic curves
Re(ajx — ia}?tﬂF J'log|t| + ¢+ goji + ,9}) =0

are no longer straight lines.

@ Phase-shifts 90;5 due to collisions between solitons within
the same wave packet,

@ phase-shifts goji due to collisions between wave packets

oo — T [aj—akrnk.

o + O
keAjjE 4

Each soliton in the jth wave packet experiences shifts from
all n, solitons within a colliding kth packet.



Main ingredients of the proof:

@ Regularity of MPS via factorization of solutions of the
Sylveter equation over Ly(—o0, 0].

@ MPS asymptotically behave as the superposition of N

single wave packets
X

Contribution from cones C
around the straight lines

x = —2Im(ak)t Cr

t
© Asymptotics for single wave packets in logarithmic sectors

© Evaluation of Cauchy-type determinants
[Schiebold, LAA 2012]



5. Solutions of higher degeneracy

Wave packets having
the same velocity
cannot be distinguished
by asymptotic analysis.

Example 1:

n1:n2:1
a1 =4, a0 =2

(two stationary solitons)

[Aktosun/Demontis/van der Mee,
Inverse Problems 2007]




Example 2:

m=n=n= 1

oq :4,a2:2,a3:2—|—%i
(the solution from Example 1
meets a non-stationary soliton)

Asymptotic analysis confirms that each of the two stationary
solitons experiences a different phase-shift from the collision.



Example 3: Three stationary solitons which
only differ in their initial position shifts.

ti;!i.!o."T

n1:n2:n3:1

041:4,0t2=2,0é1=1



Example 4:  On the left the solution from the last example.
On the right one of the eigenvalues has been changed.

n=m=n=1

a1:4,a2:2,a3:1 a1:4,a2:3,a3:2



Example 5:  Two stationary constellations
of higher complexity.

n1:2,n2:1

a1:4,a2:2



Selected references

[11 A non-abelian Nonlinear Schrédinger equation and countable
superposition of solitons.
J. Gen. Lie Theory Appl. 2008.

[2] Noncommutative AKNS systems and multisoliton solutions to the matrix
sine-Gordon equation.
DCDS 2009.

[8] Cauchy-type determinants and integrable systems.
Linear Algebra Appl. 2010.

[4] The noncommutative AKNS system: projection to matrix systems,
countable superposition and soliton-like solutions.
J. Phys. A 2010.

[5] Asymptotics for the multiple pole solutions of the Nonlinear Schrédinger
equation.
In preparation.



