Multiple-pole solutions (MPS) of the Nonlinear Schrödinger equation

Cornelia Schiebold

DMA, Mid Sweden University

VDM60, Cagliari, 2 September 2013

・ロト・日本・日本・日本・日本

Contents

- 1. Topics on MPS
- 2. Operator formulas
- 3. MPS via ISM
- 4. Asymptotic description of MPS
- 5. Geometric assumptions and solutions of higher degeneracy

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. Topics on MPS

(1) Explicit formulas for MPS

[Schiebold, Habilitation Thesis 2004] [Aktosun/Demontis/van der Mee, Inv. Probl. 2007]

(2) Asymptotic description

[Zakharov/Shabat, Sov. Phys. JETP 1972]

coalescence of two simple poles

[Olmedilla, Physica D 1986]

- conjecture for one pole of order L
- proof for *L* = 2, 3

(3) Understand transition to higher order degeneracy phenomena

2. Operator formulas

Proposition

Let A, C be $n \times n$ -matrices, and denote by \overline{A} the matrix obtained from A by taking the complex conjugate entries. Then

$$Q = (I + L\overline{L})^{-1}(AL + L\overline{A})$$

where $L(x, t) = \exp(Ax - iA^2t)C$

is a solution of the matrix NLS equation

$$iQ_t = Q_{xx} + 2Q\overline{Q}Q$$

provided that $I + L\overline{L}$ is invertible.

For
$$n = 1$$
, $A = \alpha$, and $C = \exp(\varphi)$,
 $q(x, t) = 2\operatorname{Re}(\alpha) \frac{L(x, t)}{1 + |L(x, t)|^2}$
 $= \operatorname{Re}(\alpha) e^{i \operatorname{Im}(\alpha x - i\alpha^2 t + \varphi)} \cosh^{-1} \left(\operatorname{Re}(\alpha x - i\alpha^2 t + \varphi)\right)$,

the 1-soliton solution.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

• α characterizes the soliton amplitude: $\operatorname{Re}(\alpha)$ velocity: $-2\operatorname{Im}(\alpha)$

• φ gives its initial position shifts

Towards a solution formula

First ingredient:

Proposition

Let Q = Q(x, t) be a solution of the matrix NLS equation which, for some $a, c \in \mathbb{C}^n$, can be written in the form

$$Q(x,t)=Q_0(x,t)c\overline{a}^t.$$

Then $q(x, t) = a^t Q_0(x, t)c$ solves the NLS equation.

$$\begin{array}{rcl} Q\overline{Q}Q &=& Q_0 c \overline{a}^t \ \overline{Q}_0 \overline{c} a^t \ Q_0 c \overline{a}^t \\ &=& Q_0 c \ \overline{a}^t \overline{Q}_0 \overline{c} \ a^t Q_0 c \ \overline{a}^t = Q_0 c \ \overline{q} q \ \overline{a}^t \end{array}$$

Towards a solution formula

Second ingredient:

•
$$Q = (I + L\overline{L})^{-1}e^{Ax - iA^2t} (AC + C\overline{A})$$

• For any right-hand side Y, the Sylvester equation AX + XB = Y has a unique solution if and only if $0 \notin \operatorname{spec}(A) + \operatorname{spec}(B)$.

Third ingredient:

From traces to determinants

$$q = a^{t}(I + L\overline{L})^{-1}e^{Ax - iA^{2}t}c$$

= tr((I + L\overline{L})^{-1}e^{Ax - iA^{2}t}ca^{t})
= ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Let $A \in \mathcal{M}_{n,n}(\mathbb{C})$ with $0 \notin \operatorname{spec}(A) + \operatorname{spec}(\overline{A})$, and $a, c \in \mathbb{C}^n$.

Denote by *C* the unique solution of the Sylvester equation $AC + C\overline{A} = c\overline{a}^t$, and define

$$L(x,t) = e^{Ax - iA^2t}C, \qquad L_0(x,t) = e^{Ax - iA^2t}ca^t.$$

Then a solution of the NLS equation, which is smooth on \mathbb{R}^2 , is given by

$$q = 1 - rac{\det \left(egin{array}{cc} I - L_0 & -L \ \overline{L} & I \end{array}
ight)}{\det \left(egin{array}{cc} I & -L \ \overline{L} & I \end{array}
ight)}.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Further aspects:

- The theorem is a particular case of a more general result in [Schiebold, J. Phys. A 2010] where a solution formula is given
 - for the whole AKNS system
 - depending on operator parameters
- Advantage: access to wider solution classes
 - solutions to the initial value problem
 - matrix solitons
 - countable superpositions
- Systematic explanation of the choices via functional analysis

(日) (日) (日) (日) (日) (日) (日)

3. MPS via ISM

To principal parts

$$r_j(k) = \frac{r_{jn_j}}{(k-k_j)^{n_j}} + \frac{r_{jn_j-1}}{(k-k_j)^{n_j-1}} + \ldots + \frac{r_{j1}}{k-k_j}$$

given at *N* points k_1, \ldots, k_N in the upper half plane \mathbb{H} , we associate the GLM-kernel

$$\Omega(\boldsymbol{z};t) = -2\mathrm{i}\sum_{j=1}^{N} \mathrm{res}_{\boldsymbol{k}=\boldsymbol{k}_{j}}\Big(r_{j}(\boldsymbol{k})\boldsymbol{e}^{2\mathrm{i}\boldsymbol{k}\boldsymbol{z}-4\mathrm{i}\boldsymbol{k}^{2}t}\Big).$$

Lemma

There are vectors d, f such that

$$\Omega(z;t) = -2\mathrm{i}f^t \ e^{\Lambda x + \mathrm{i}\Lambda^2 t} \ d,$$

where $\Lambda = \text{diag}\{\Lambda_j \mid j = 1, ..., N\}$ and Λ_j is 2i times the $n_j \times n_j$ -Jordan block w.r.t. the eigenvalue k_j .

Lemma

$$K(x,y) := 2if^t \left(I + \overline{G(x,t)} \ G(x,t) \right)^{-1} e^{\overline{\Lambda}(x+y) - i\overline{\Lambda}^2 t} \ \overline{d}$$

solves the GLM-equation

$$\mathcal{K}(x,y) + \int_0^\infty \int_0^\infty \mathcal{K}(x,s) \Omega(x+s+z) \overline{\Omega(x+y+z)} \, ds \, dz \\ = \overline{\Omega(x+y)}.$$

The associated solution q(x) = -K(x, 0) of the NLS equation can be obtained via:

$$\begin{array}{rcl} A & = & \overline{\Lambda}, \\ a & = & -2\mathrm{i}f, \quad c & = & \overline{d}. \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

4. Asymptotic description of MPS

Definition

Two functions f = f(x, t), g = g(x, t) have the same asymptotic behavior for $t \to \infty$ ($t \to -\infty$),

$$f(x,t) \approx g(x,t)$$
 for $t \approx \infty$ $(t \approx -\infty)$.

if for every $\epsilon > 0$ there is a t_{ϵ} such that for $t > t_{\epsilon}$ ($t < t_{\epsilon}$) we have $|f(x, t) - g(x, t)| < \epsilon$ uniformly in x.

・ロト・日本・日本・日本・日本

The following technical assumptions can be made without loss of generality:

Assumption 1: The matrix $A \in \mathcal{M}_{n,n}(\mathbb{C})$ is in Jordan form with *N* Jordan blocks of sizes $n_j \times n_j$ and eigenvalues α_j .

Adapt notation to this Jordan form: For $v \in \mathbb{C}^n$, write $v = (v_j)_{j=1}^N$ with $v_j = (v_j^{(\mu)})_{\mu=1}^{n_j} \in \mathbb{C}^{n_j}$.

Assumption 2: The vectors $a, c \in \mathbb{C}^n$ satisfy $a_j^{(1)}c_j^{(n_j)} \neq 0$. Assumption 3: $\operatorname{Re}(\alpha_j) > 0$.

We also need:

Assumption 4: The $Im(\alpha_i)$ are pairwise different.

Theorem

For the associated solution it holds:

$$q(x,t) ~pprox ~\sum_{j=1}^N \sum_{j'=0}^{n_j-1} q_{jj'}^{\pm}(x,t) ext{ for } t pprox \pm \infty,$$

where

$$q_{jj'}^{\pm}(x,t) = (-1)^{j'+1} \operatorname{Re}(\alpha_j) e^{-i \operatorname{Im}\left(\Gamma_{jj'}^{\pm}(x,t)\right)} \cosh^{-1}\left(\operatorname{Re}\left(\Gamma_{jj'}^{\pm}(x,t)\right)\right)$$

and

$$\Gamma_{jj'}^{\pm}(\mathbf{x},t) = \alpha_j \mathbf{x} - \mathrm{i} \alpha_j^2 t \ \mp \ J' \log |t| \ + \varphi_j + \varphi_j^{\pm} + \varphi_{jj'}^{\pm},$$

where we have set $J' = -(n_j - 1) + 2j'$, and the quantities φ_j , φ_j^{\pm} , $\varphi_{jj'}^{\pm}$ are given by

$$\begin{aligned} \exp(\varphi_j) &= a_j^{(1)} c_j^{(n_j)} / (\alpha_j + \overline{\alpha}_j)^{n_j}, \\ \exp(\varphi_j^{\pm}) &= \prod_{k \in \Lambda_j^{\pm}} \left[\frac{\alpha_j - \alpha_k}{\alpha_j + \overline{\alpha}_k} \right]^{2n_k}, \\ \exp\left(\pm \varphi_{jj'}^{\pm} \right) &= \left(-i(\alpha_j + \overline{\alpha}_j)^2 \right)^{-J'} \frac{j'!}{(j' - J')!} \end{aligned}$$

for the index sets $\Lambda_i^{\pm} = \{k \mid \operatorname{Im}(\alpha_j) \leq \operatorname{Im}(\alpha_k)\}.$

е

Geometric interpretation and examples

One single $n \times n$ -Jordan block:

- wave packet with *n* solitons
- the packet itself moves with constant velocity v = -2Im(α)
- the solitons approach/drift away from its center on logarithmic curves.

 $n = 3, \alpha = 1 + 0.1i$

(日) (日) (日) (日) (日) (日) (日)

Note that the internal collisions of the solitons do not affect the path of the wave packets center.

N Jordan blocks:

- superposition of *N* wave packets as just described
- collisions between the wave packets are elastic and result only in a phase-shift

$$n_1 = n_2 = 2,$$

 $\alpha_1 = 1, \, \alpha_2 = \frac{1}{2} + \frac{1}{2}i,$

 $n_1 = 3, n_2 = 1,$ $\alpha_1 = 1 - \frac{1}{2}i, \alpha_2 = 1 + \frac{1}{2}i$

N-soliton solutions versus MPS

Asymptotic curves

$$\operatorname{Re}\left(\alpha_{j}\boldsymbol{x} - \mathrm{i}\alpha_{j}^{2}\boldsymbol{t} \mp \boldsymbol{J}' \log |\boldsymbol{t}| + \varphi_{j} + \varphi_{j}^{\pm} + \varphi_{jj'}^{\pm}\right) = \boldsymbol{0}$$

are no longer straight lines.

- Phase-shifts φ[±]_{jj'} due to collisions between solitons within the same wave packet,
- phase-shifts φ_i^{\pm} due to collisions between wave packets

$$\exp(\varphi_j^{\pm}) = \prod_{k \in \Lambda_j^{\pm}} \left[\frac{\alpha_j - \alpha_k}{\alpha_j + \overline{\alpha}_k} \right]^{2n_k}$$

Each soliton in the *j*th wave packet experiences shifts from all n_k solitons within a colliding *k*th packet.

Main ingredients of the proof:

- Regularity of MPS via factorization of solutions of the Sylveter equation over L₂(-∞, 0].
- MPS asymptotically behave as the superposition of N single wave packets

Contribution from cones C_k around the straight lines $x = -2 \text{Im}(\alpha_k) t$

・ コット (雪) (小田) (コット 日)

- Asymptotics for single wave packets in logarithmic sectors
- Evaluation of Cauchy-type determinants [Schiebold, LAA 2012]

5. Solutions of higher degeneracy

Wave packets having the same velocity cannot be distinguished by asymptotic analysis.

Example 1:

$$n_1 = n_2 = 1$$

 $\alpha_1 = 4, \, \alpha_2 = 2$

(two stationary solitons)

[Aktosun/Demontis/van der Mee, Inverse Problems 2007]

・ コット (雪) (小田) (コット 日)

Example 2:

$$n_1 = n_2 = n_3 = 1$$

 $\alpha_1 = 4, \alpha_2 = 2, \alpha_3 = 2 + \frac{1}{2}i$

(the solution from Example 1 meets a non-stationary soliton)

Asymptotic analysis confirms that each of the two stationary solitons experiences a different phase-shift from the collision.

Example 3: Three stationary solitons which only differ in their initial position shifts.

 $n_1 = n_2 = n_3 = 1$ $\alpha_1 = 4, \alpha_2 = 2, \alpha_1 = 1$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Example 4: On the left the solution from the last example. On the right one of the eigenvalues has been changed.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Example 5: Two stationary constellations of higher complexity.

$$n_1 = n_2 = 2$$

 $\alpha_1 = 4, \, \alpha_2 = 2$

$$n_1 = 2, n_2 = 1$$

 $\alpha_1 = 4, \alpha_2 = 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Selected references

- A non-abelian Nonlinear Schrödinger equation and countable superposition of solitons.
 J. Gen. Lie Theory Appl. 2008.
- [2] Noncommutative AKNS systems and multisoliton solutions to the matrix sine-Gordon equation. DCDS 2009.
- [3] *Cauchy-type determinants and integrable systems.* Linear Algebra Appl. 2010.
- [4] The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions.
 J. Phys. A 2010.
- [5] Asymptotics for the multiple pole solutions of the Nonlinear Schrödinger equation.
 In preparation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@