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Introduction

We study the Inverse Scattering Transform (IST) for the defocusing
nonlinear Schrédinger (NLS) equation

iq: = G — 2|q/%q
with non-zero boundary conditions (NZBCs)
a(x,t) = qu(t) = goe%tHit= x — oo
go > 0 and 0 < 04 < 27 are arbitrary constants.

Defocusing NLS is important in describing many nonlinear phenomena:
o surface waves in deep water
@ plasma physics
@ nonlinear fiber optics

@ Bose-Einstein condensation
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Introdu

Interest in NLS as a prototypical integrable system: most dispersive
energy preserving systems give rise, in appropriate limits, to the scalar

NLS equation.

The class of nonvanishing potentials g as |x| — oo for defocusing NLS
includes soliton solutions with NZBCs, called dark/gray solitons

q(x,t) = q0e2iq3t [cos a + i(sin ) tanh [go(sin &) (x — 2qo tcosa — xo)] |,

go, « and xg arbitrary real parameters. Dark soliton solutions appear as
localized dips of intensity g3 sin® o on the background field go:
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m for the Defocusing Nonlinear Schrédinger Equati

The IST for defocusing NLS equation with NZBCs was studied by:
@ 1973: Zakharov and Shabat

1977-1978: Kawata and Inoue

1978-1985: Gerdjikov and Kulish

1980-1984: Leon, Boiti and Pempinelli; Asano and Kato

1987: Faddeev and Takhtajan
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but many open issues remain to be addressed, such as:

o ldentify the most suitable functional class of non-decaying potentials
where the direct and inverse scattering problems are well-posed

o Rigorously establish analyticity properties of eigenfunctions and
scattering data
o Investigate the well-posedness of the Riemann-Hilbert problem

We address these problems and indicate some improvements.



Inverse Scattering Transform

IST is a nonlinear version of the Fourier transform to solve the
initial-value problem for certain nonlinear integrable PDEs.

Direct scattering problem
Given with potential q(x,0) p(k,0), kn, C(0)
q(x, 0) n=1,.., N

\ 4

Time evolution of
scattering data

qixt) | < o), k,, C,(t)
Inverse scattering problem
with time-evolved scattering data

o Direct Problem: The initial data g(x,0) are transformed into
scattering data (reflection coefficient, discrete eigenvalues, and
norming constants).

o Time Evolution: The time dependence of the scattering data is
determined.

o Inverse Problem: The solution g(x, t) is recovered from the
evolved scattering data.



The scattering problem

Defocusing NLS can be associated to the following scattering problem

Z—f(x, k) = (—ikosz + Q(x)) X(x, k), x €R (1)

(Ablowitz-Kaup-Newell-Segur scattering problem) where

oot 5) e (5, %)

q(x) is the potential, g are the NZBCs, g(x) — g+ € L}(R¥), k is the
complex spectral parameter.
The scattering problem (1) can be written in the equivalent form:

%()ﬂ k) = Alx, k)X (x, k) + (Q(x) — Qe (x))X(x, k) ,

where we have defined
Ax, k) = 0(X)AL(K) + 0(—)A_ (), Qr(x) = 0(x) Qs + 6(—x)Q-,

— — —ik q+ _ 0 q+
As(k) = IkO’3+Qj:—(qu ik)’ Qjc—(qi 0).



Our contributions

We will indicate some steps forward with respect to the results in the
existing literature. In particular:

o We show that the direct problem is well defined when
q—qs € LI2(RE), e, (1+ |x|)2[q(x) — qe] € LI(RE)

o We derive integral representations for the scattering coefficients

o We establish rigorously the analyticity properties of eigenfunctions
and scattering data for potentials in this functional class

e We prove that, if ¢ — g € LY*(R™), the discrete eigenvalues are
finite in number and belong to the spectral gap k € (—qo, qo)

o We formulate and solve the inverse problem as a Riemann-Hilbert
problem and via Marchenko integral equations



Two-sheeted Riemann surface

Asymptotic eigenvalues and eigenvectors of the scattering problem

depend on the spectral variable A\ = \/k? — q3.
The variable k is then thought of as belonging to a Riemann surface K

consisting of a sheet K* and a sheet K~ which both coincide with the
complex plane cut along the semilines

Y= (7007 *qO] U [qu OO)

with edges glued such that (k) is continuous through the cut:
Sheet K*: Im 150

[

-G q,
1m k<0 Sheet K™ : Im A<0
/ Im k>0 /

[ P— 6

% %
Im k<0




Direct problem: Fundamental eigenfunctions

Consider the scattering problem

OX (k) = Ax, )X (. K) + (@) — QG)X (k). (2)

ox

Alx, k) = ()AL (K) + 0(—x)A_(K),  Qe(x) = 0(x)Qs + O(—x)Q_,

. _ [~k g+ (0 g+
As(k) = /kU3—|—Qﬂ:_(qi ik)’ Qi_(‘ﬁ 0).
We define, for k € X, the fundamental eigenfunctions as solutions to (2)
satisfying
WU(x, k) = XA+(k)[l +o(1)], X — 400,
(x, k) = A=Wl +0(1)],  x — —o0,

I, being the 2 x 2 identity matrix.



Fundamental matrix

We define the fundamental matrix G(x, y; k) for the scattering problem
with generator A(x, k) = 0(x)AL (k) + 0(—x)A_(k) by:

e(X7Y)A+(k), X,y Z 0’
e(x_y)A*(k), X,y S 07

Q(X,y; k) = eXA+(k)e_yA*(k)’ X,—y > 0,

exA_(k)e—yA-#(k)7 X,—y < 0.

G(x,y; k) solves the scattering problem with potential Q(x) = Q¢(x), i.e.

0
ag(x,y, k) = A(x, k)G(x,y; k),

G(x,x; k) =1h.
G(x,y; k) depends continuously on (x,y, k) € R? x ¥, and it satisfies:
C, k < —qg or k > qo,
190x,y: k)| < S e
C(L+[x[)(L+1y]), k==%qo,

where C > 1 is independent of (x,y) € R2.



Theorem 1
If g(x) — g+ € L*(R™), then the Volterra integral equations

¥, k) = G010 - [ " dy Gy KIQLY) — QB (y. k).

$(x.k) = 60,00 + [ "y G0,y DIQY) — Q1B k).

have the fundamental eigenfunctions U, & as their unique solutions and
they are continuous for any k € X \ {£qo}.
If g(x) — g+ € LY2(R*), the result also holds for k = +qp.

Moreover, for k € X:
W(x, k) = G(x,0; k)[As(k) + o(1)
®(x, k) = G(x,0; k)[A (k) + o(1)
with transition coefficient matrices A;(k) and A, (k) given by

mk =t [ " dy (0. KIQLY) — Q)] F(y. k).

— 00

]

, X — —00,
I, X — +00,

h() = b+ [ " dy 60,y KIQWY) — QB k).
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Fundamental eigenfunctions

The fundamental eigenfunctions can also be derived as perturbations of
eA+(k) as x — +00, via the integral equations

W(x, k) = ek - / T dy e ARQ(y) — Q.1 (y, k),

X

(x, k) = (0 4 /X dy e -WQ(y) — Q-18(y. k).

The integral equations for VU coincide for x > 0, whereas the ones for ®

coincide for x < 0.

The latter, however, are not suitable for investigating the behavior of the
eigenfunctions as x — Foo, since their iterates are continuous functions

of x € R which converge uniformly to W(x, k) (resp., ®(x, k)) for

X > xg > —o0 (resp., x < xp < +00), but nothing can be said about the
limit as x — —oo (resp. x — +00).



Jost solutions

The Jost solutions from the right and the left, respectively, are defined as

\T}(X’ k)W+(k) = (E(Xv k) 1/)()(’ k)) s
&)(Xa k)W—(k) = (¢(X7 k) a(xv k)) )

where

Ak A—k
iqy  —iqL

wek) = ( )+ ALOWL6) = Walk)ding(-in, ).

We then obtain for the Jost solutions the usual asymptotic behavior:

T, k) ~ e (** k), (k) € (A‘k>, x = +o00,

iqy —iqy

d&@wfm<ﬁf) (WM%&MC@S,X%—W



Since W(x, k) and ®(x, k) are square matrix solutions of the scattering
problem (a homogeneous first order system), we have

d(x, k) = U(x, k)Ar(k),  W(x, k) = B(x,k)A(k),
where A;(k) and A,(k) are the transition coefficient matrices. Then
(6(x. k) o(x. k) = (V(x. k) ¥(x. k)) S(k),
where B
—w! _ (k) b(k)
() =W 0, Gow- 0 = (701 2.

Using the integral equations for the fundamental eigenfunctions, we get
integral representations for the scattering coefficients:

a(k) b(k)\ _ [ iayesyy-t s
(58 2 = [T arervewiwiow) - @16tk d0k)

WS (KW (K) [/2+ [ grermwawien) - 1600 dy.k)



Analiticity properties

If g(x) — g+ € LY2(RT), then
o the Jost solutions e~"**)(x, k) and e'**¢(x, k) are continuous for
k € Kt and analytic for k € Kt;

o e™*(x, k) and e ¢(x, k) are continuous for k € K- and
analytic for k € K—.

o The scattering coefficient a(k) (resp a(k)) is continuous in
ke Kt \ {£qo} (resp k € K=\ {xqo}) and analytic in k € Kt
(resp k € K—).

o The functions b(k), b(k) are continuous in k € ¥\ {£qo}, but in
general cannot be continued off ¥




Uniformization variable

Following (FT) we introduce a uniformization variable z defined by:
z=k+ \k).
o The two sheets K*, K~ of the R. surface are mapped respectively
onto the upper and lower half-planes of the complex z-plane
o The cut X on the Riemann surface is mapped onto the real z axis
o The segments —qp < k < go on Kt and K~ are mapped onto the
upper and lower semicircles of radius gg and center at the origin of
the z-plane.
Taking into account the symmetries in the eigenfunctions and scattering
coefficients, the scattering data consist of:
o Reflection coefficient p(z) = b(z)/a(z)

o Discrete eigenvalues [zeros of a(z)] ¢, = ky, + ivy, with |k, < qo
and v, = \/q3 — k2. It is known that they are simple and belong to
the spectral gap k € (—qo, qo). If ¢ — g+ € L1*(R*), we proved
that the discrete eigenvalues are finite in number.

o Norming constants C, associated with the discrete eigenvalues (,,.



em
ilbert problem

Inverse problem: Riemann-Hilbert problem

We formulate the inverse problem as a matrix Riemann-Hilbert problem
on the real z-axis, with poles at the zeros of a(z) in the upper half-plane
of z and of 3(z) in the lower half-plane:

¢g’(‘;)z) e U(x, 2)e™ = p(z)e2ap(x, z)e M
¢;’(‘;)Z) e~ ap(x, 2)e” M = p(2)e 2N (x, z)e M,

where p(z) and p(z) are the reflection coefficients.

@ We solve the Riemann-Hilbert problem by reducing it to a linear
system of algebraic-integral equations.

o We study the asymptotic behavior of p(z) and p(z) (z € R) as
z — oo and as z — 0. It ensures that the algebraic-integral system

of equations providing the solution of the inverse problem is well
defined.



chenko equa o t method

Inverse problem: Marchenko integral equations

We can also formulate the inverse problem in terms of the following
Marchenko integral equations:

K(x,y)+G(x+y) +/OO ds K(x,s)G(s+y)=0
where :
<= (560 Katem) - oo = (6T FET)
Fu) = Fue(x) + iF3,e(0) — 2 Fia(x), Falx) = ~ig3 [Fo.e(x) + 3Fua(x)].
Fro() = / d¢ e PLVC £ 8,Q) +p (V@ +a5.0)

F2 X) / dC lep(VC2+q07C) p( \/<2+q0 C
“ 2/C+ @
Fia(x) = —/ZC e .



ons and triplet method

Triplet method

We have developed the triplet method as a tool to obtain explicit
multisoliton solutions by solving the Marchenko integral equations via
separation of variables.

In the reflectionless case (p(z) = 0 for all z € R), we represent
Marchenko kernel G as:

G(z) = Ce™**B,

where
e (A,B,C) is a minimal triplet
The triplet yielding a minimal realization is unique up to a similarity

transformation (A, B,C) — (SAS ' SB,CS ') for some unique
invertible matrix S

@ Ais a p x p matrix having only eigenvalues with positive real parts
@ Bis a p x 2 matrix, C is a 2 X p matrix



the Defocusing Nonli

archenko equations and triplet method

Taking into account the time evolution of the scattering data and
)]
o C= <g(2)> with C® and € rows of length p

o B=(BY B®) with BY and B® columns of length p
@ P the unique solution of the Sylvester equation AP + PA = BC,
we recover the solution of defocusing NLS as

q(x, 1) = g+ (t) + 2CD()[P(t) + e BA)(1).
In order to have solutions of defocusing NLS with NZBCs, we have
to assume
@ the minimality of the triplet (A, B, C)

o the positivity of the real parts of the eigenvalues of the matrix A
o the invertibility of the matrices P + ¢># and P

If P is an invertible matrix, then (A, B, C) is a minimal triplet.

Unlike what happens with other NLEEs for which the triplet method has
been applied, here the converse to Theorem 3 is not generally true.



Summary and overview

A rigorous theory of the IST for the defocusing NLS equation with
(symmetric) NZBCs g1 = goe’’* as x — 0o has been presented.

@ The direct problem is shown to be well-posed for potentials g such
that ¢ — g € LY?(R*), for which analyticity properties of
eigenfunctions and scattering data are established.

@ The inverse problem is formulated and solved both as a
Riemann-Hilbert problem and via Marchenko integral equations in
terms of a suitable uniform variable.

@ The triplet method is developed as a tool to obtain explicit
multisoliton solutions by solving the Marchenko integral equations.

We plan to extend the investigation to defocusing NLS with fully
asymmetric NZBCs (different amplitudes as x — +00) in order to study
the long-time asymptotic behavior for the solutions of defocusing NLS.
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Thank you very much for your attention!
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