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Introduction

We study the Inverse Scattering Transform (IST) for the defocusing
nonlinear Schrödinger (NLS) equation

iqt = qxx − 2 |q|2q

with non-zero boundary conditions (NZBCs)

q(x , t)→ q±(t) = q0e
2iq2

0
t+iθ± x → ±∞

q0 > 0 and 0 ≤ θ± < 2π are arbitrary constants.

Defocusing NLS is important in describing many nonlinear phenomena:

surface waves in deep water

plasma physics

nonlinear �ber optics

Bose-Einstein condensation
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Interest in NLS as a prototypical integrable system: most dispersive
energy preserving systems give rise, in appropriate limits, to the scalar
NLS equation.

The class of nonvanishing potentials q as |x | → ∞ for defocusing NLS
includes soliton solutions with NZBCs, called dark/gray solitons

q(x , t) = q0e
2iq2

0
t [ cosα+ i(sinα) tanh [q0(sinα) (x − 2q0 t cosα− x0)] ] ,

q0, α and x0 arbitrary real parameters. Dark soliton solutions appear as
localized dips of intensity q2

0
sin2 α on the background �eld q0:
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The IST for defocusing NLS equation with NZBCs was studied by:

1973: Zakharov and Shabat

1977-1978: Kawata and Inoue

1978-1985: Gerdjikov and Kulish

1980-1984: Leon, Boiti and Pempinelli; Asano and Kato

1987: Faddeev and Takhtajan

but many open issues remain to be addressed, such as:

Identify the most suitable functional class of non-decaying potentials
where the direct and inverse scattering problems are well-posed

Rigorously establish analyticity properties of eigenfunctions and
scattering data

Investigate the well-posedness of the Riemann-Hilbert problem

We address these problems and indicate some improvements.
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Inverse Scattering Transform

IST is a nonlinear version of the Fourier transform to solve the
initial-value problem for certain nonlinear integrable PDEs.

Given
q(x, 0)

(k,0), k  , C  (0)n n
n=1, ..., N

(k,t), k  , C  (t)n nq(x,t)

Direct scattering problem
with potential q(x,0)

Time evolution of
scattering data

Inverse scattering problem
with time-evolved scattering data

Direct Problem: The initial data q(x , 0) are transformed into
scattering data (re�ection coe�cient, discrete eigenvalues, and
norming constants).

Time Evolution: The time dependence of the scattering data is
determined.

Inverse Problem: The solution q(x , t) is recovered from the
evolved scattering data.
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The scattering problem

Defocusing NLS can be associated to the following scattering problem

∂X

∂x
(x , k) = (−ikσ3 + Q(x))X (x , k) , x ∈ R (1)

(Ablowitz-Kaup-Newell-Segur scattering problem) where

σ3 =

(
1 0
0 −1

)
, Q(x) =

(
0 q(x)

q∗(x) 0

)
,

q(x) is the potential, q± are the NZBCs, q(x)− q± ∈ L1(R±), k is the
complex spectral parameter.
The scattering problem (1) can be written in the equivalent form:

∂X

∂x
(x , k) = A(x , k)X (x , k) + (Q(x)− Qf (x))X (x , k) ,

where we have de�ned

A(x , k) = θ(x)A+(k) + θ(−x)A−(k) , Qf (x) = θ(x)Q+ + θ(−x)Q− ,

A±(k) = −ikσ3 + Q± ≡
(
−ik q±
q∗± ik

)
, Q± =

(
0 q±
q∗± 0

)
.
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Our contributions

We will indicate some steps forward with respect to the results in the
existing literature. In particular:

We show that the direct problem is well de�ned when
q − q± ∈ L1,2(R±), i.e., (1 + |x |)2[q(x)− q±] ∈ L1(R±)

We derive integral representations for the scattering coe�cients

We establish rigorously the analyticity properties of eigenfunctions
and scattering data for potentials in this functional class

We prove that, if q − q± ∈ L1,4(R±), the discrete eigenvalues are
�nite in number and belong to the spectral gap k ∈ (−q0, q0)

We formulate and solve the inverse problem as a Riemann-Hilbert
problem and via Marchenko integral equations
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Two-sheeted Riemann surface

Asymptotic eigenvalues and eigenvectors of the scattering problem
depend on the spectral variable λ =

√
k2 − q2

0
.

The variable k is then thought of as belonging to a Riemann surface K
consisting of a sheet K+ and a sheet K− which both coincide with the
complex plane cut along the semilines

Σ = (−∞,−q0] ∪ [q0,∞)

with edges glued such that λ(k) is continuous through the cut:

q0-q  0

Sheet Im >0

Im k>0

Im k<0

q0-q  0

Sheet Im <0

Im k>0

Im k<0

K++

K+

:

:
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Direct problem: Fundamental eigenfunctions

Consider the scattering problem

∂X

∂x
(x , k) = A(x , k)X (x , k) + (Q(x)− Qf (x))X (x , k) , (2)

A(x , k) = θ(x)A+(k) + θ(−x)A−(k) , Qf (x) = θ(x)Q+ + θ(−x)Q− ,

A±(k) = −ikσ3 + Q± ≡
(
−ik q±
q∗± ik

)
, Q± =

(
0 q±
q∗± 0

)
.

We de�ne, for k ∈ Σ, the fundamental eigenfunctions as solutions to (2)
satisfying

Ψ̃(x , k) = exA+(k)[I2 + o(1)], x → +∞,
Φ̃(x , k) = exA−(k)[I2 + o(1)], x → −∞,

I2 being the 2× 2 identity matrix.
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Fundamental matrix

We de�ne the fundamental matrix G(x , y ; k) for the scattering problem
with generator A(x , k) = θ(x)A+(k) + θ(−x)A−(k) by:

G(x , y ; k) =


e(x−y)A+(k), x , y ≥ 0,

e(x−y)A−(k), x , y ≤ 0,

exA+(k)e−yA−(k), x ,−y ≥ 0,

exA−(k)e−yA+(k), x ,−y ≤ 0.

G(x , y ; k) solves the scattering problem with potential Q(x) = Qf (x), i.e.

∂

∂x
G(x , y ; k) = A(x , k)G(x , y ; k) ,

G(x , x ; k) = I2 .

G(x , y ; k) depends continuously on (x , y , k) ∈ R2 × Σ, and it satis�es:

‖G(x , y ; k)‖ ≤

{
C , k < −q0 or k > q0,

C (1 + |x |)(1 + |y |), k = ±q0,

where C ≥ 1 is independent of (x , y) ∈ R2.
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Theorem 1

If q(x)− q± ∈ L1(R±), then the Volterra integral equations

Ψ̃(x , k) = G(x , 0; k)−
∫ ∞
x

dy G(x , y ; k)[Q(y)− Qf (y)]Ψ̃(y , k) ,

Φ̃(x , k) = G(x , 0; k) +

∫ x

−∞
dy G(x , y ; k)[Q(y)− Qf (y)]Φ̃(y , k) ,

have the fundamental eigenfunctions Ψ̃, Φ̃ as their unique solutions and
they are continuous for any k ∈ Σ \ {±q0}.
If q(x)− q± ∈ L1,2(R±), the result also holds for k = ±q0.

Moreover, for k ∈ Σ:

Ψ̃(x , k) = G(x , 0; k)[Al(k) + o(1)], x → −∞,
Φ̃(x , k) = G(x , 0; k)[Ar (k) + o(1)], x → +∞,

with transition coe�cient matrices Al(k) and Ar (k) given by

Al(k) = I2 −
∫ ∞
−∞

dy G(0, y ; k)[Q(y)− Qf (y)]Ψ̃(y , k),

Ar (k) = I2 +

∫ ∞
−∞

dy G(0, y ; k)[Q(y)− Qf (y)]Φ̃(y , k).
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Fundamental eigenfunctions

The fundamental eigenfunctions can also be derived as perturbations of
exA±(k) as x → ±∞, via the integral equations

Ψ̃(x , k) = exA+(k) −
∫ ∞
x

dy e(x−y)A+(k)[Q(y)− Q+]Ψ̃(y , k) ,

Φ̃(x , k) = exA−(k) +

∫ x

−∞
dy e(x−y)A−(k)[Q(y)− Q−]Φ̃(y , k) .

The integral equations for Ψ̃ coincide for x ≥ 0, whereas the ones for Φ̃
coincide for x ≤ 0.
The latter, however, are not suitable for investigating the behavior of the
eigenfunctions as x → ∓∞, since their iterates are continuous functions
of x ∈ R which converge uniformly to Ψ̃(x , k) (resp., Φ̃(x , k)) for
x ≥ x0 > −∞ (resp., x ≤ x0 < +∞), but nothing can be said about the
limit as x → −∞ (resp. x → +∞).
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Jost solutions

The Jost solutions from the right and the left, respectively, are de�ned as

Ψ̃(x , k)W+(k) =
(
ψ(x , k) ψ(x , k)

)
,

Φ̃(x , k)W−(k) =
(
φ(x , k) φ(x , k)

)
,

where

W±(k) =

(
λ+ k λ− k
iq∗± −iq∗±

)
, A±(k)W±(k) = W±(k)diag(−iλ, iλ).

We then obtain for the Jost solutions the usual asymptotic behavior:

ψ(x , k) ∼ e−iλx

(
λ+ k
iq∗+

)
, ψ(x , k)∼ e iλx

(
λ− k
−iq∗+

)
, x → +∞,

φ(x , k) ∼ e−iλx

(
λ+ k
iq∗−

)
, φ(x , k)∼ e iλx

(
λ− k
−iq∗−

)
, x → −∞.
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Since Ψ̃(x , k) and Φ̃(x , k) are square matrix solutions of the scattering
problem (a homogeneous �rst order system), we have

Φ̃(x , k) = Ψ̃(x , k)Ar (k), Ψ̃(x , k) = Φ̃(x , k)Al(k),

where Al(k) and Ar (k) are the transition coe�cient matrices. Then(
φ(x , k) φ(x , k)

)
=
(
ψ(x , k) ψ(x , k)

)
S(k) ,

where

S(k) =W−1+ (k)Ar (k)W−(k) =

(
a(k) b(k)
b(k) a(k)

)
.

Using the integral equations for the fundamental eigenfunctions, we get
integral representations for the scattering coe�cients:(
a(k) b(k)
b(k) a(k)

)
=

∫ ∞
0

dy e iλyσ3W−1+ (k)[Q(y)− Q+]
(
φ(y , k) φ(y , k)

)
+ W−1+ (k)W−(k)

[
I2 +

∫
0

−∞
dy e iλyσ3W−1− (k)[Q(y)− Q−]

(
φ(y , k) φ(y , k)

)]
.
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Analiticity properties

Theorem 2

If q(x)− q± ∈ L1,2(R±), then

the Jost solutions e−iλxψ(x , k) and e iλxφ(x , k) are continuous for
k ∈ K+ and analytic for k ∈ K+;

e iλxψ(x , k) and e−iλxφ(x , k) are continuous for k ∈ K− and
analytic for k ∈ K−.

The scattering coe�cient a(k) (resp a(k)) is continuous in
k ∈ K+ \ {±q0} (resp k ∈ K− \ {±q0}) and analytic in k ∈ K+

(resp k ∈ K−).
The functions b(k), b(k) are continuous in k ∈ Σ \ {±q0}, but in
general cannot be continued o� Σ.
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Uniformization variable

Following (FT) we introduce a uniformization variable z de�ned by:

z = k + λ(k) .

The two sheets K+, K− of the R. surface are mapped respectively
onto the upper and lower half-planes of the complex z-plane

The cut Σ on the Riemann surface is mapped onto the real z axis

The segments −q0 ≤ k ≤ q0 on K+ and K− are mapped onto the
upper and lower semicircles of radius q0 and center at the origin of
the z-plane.

Taking into account the symmetries in the eigenfunctions and scattering
coe�cients, the scattering data consist of:

Re�ection coe�cient ρ(z) = b(z)/a(z)

Discrete eigenvalues [zeros of a(z)] ζn = kn + iνn, with |kn| < q0
and νn =

√
q2
0
− k2n . It is known that they are simple and belong to

the spectral gap k ∈ (−q0, q0). If q − q± ∈ L1,4(R±), we proved
that the discrete eigenvalues are �nite in number.

Norming constants Cn associated with the discrete eigenvalues ζn.
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Riemann-Hilbert problem

Inverse problem: Riemann-Hilbert problem

We formulate the inverse problem as a matrix Riemann-Hilbert problem
on the real z-axis, with poles at the zeros of a(z) in the upper half-plane
of z and of a(z) in the lower half-plane:

φ(x , z)

a(z)
e iλx − ψ(x , z)e iλx = ρ(z)e2iλxψ(x , z)e−iλx ,

φ(x , z)

a(z)
e−iλx − ψ(x , z)e−iλx = ρ(z)e−2iλxψ(x , z)e iλx ,

where ρ(z) and ρ(z) are the re�ection coe�cients.

We solve the Riemann-Hilbert problem by reducing it to a linear
system of algebraic-integral equations.

We study the asymptotic behavior of ρ(z) and ρ(z) (z ∈ R) as
z →∞ and as z → 0. It ensures that the algebraic-integral system
of equations providing the solution of the inverse problem is well
de�ned.
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Marchenko equations and triplet method

Inverse problem: Marchenko integral equations

We can also formulate the inverse problem in terms of the following
Marchenko integral equations:

K (x , y) + G(x + y) +

∫ ∞
x

ds K (x , s)G(s + y) = 0

where

K (x , y) =

(
K11(x , y) K12(x , y)
K21(x , y) K22(x , y)

)
, G(s + y) =

(
F1(s + y) F ∗

2
(s + y)

F2(s + y) F ∗
1

(s + y)

)
,

F1(x) = F1,c(x) + iF ′
2,c(x)− ζ∗n

2
F1,d(x) , F2(x) = −iq∗+

[
F2,c(x) +

1

2
F1,d(x)

]
,

F1,c(x) =
1

2π

∫ ∞
−∞

dζ e iζx
ρ(
√
ζ2 + q2

0
, ζ) + ρ(−

√
ζ2 + q2

0
, ζ)

2
,

F2,c(x) =
1

2π

∫ ∞
−∞

dζ e iζx
ρ(
√
ζ2 + q2

0
, ζ)− ρ(−

√
ζ2 + q2

0
, ζ)

2
√
ζ2 + q2

0

,

F1,d (x) = −i

N∑
n=1

Cn e
−νnx .
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Marchenko equations and triplet method

Triplet method

We have developed the triplet method as a tool to obtain explicit
multisoliton solutions by solving the Marchenko integral equations via
separation of variables.

In the re�ectionless case (ρ(z) ≡ 0 for all z ∈ R), we represent
Marchenko kernel G as:

G(z) = Ce−zA
B ,

where

(A,B,C ) is a minimal triplet
The triplet yielding a minimal realization is unique up to a similarity
transformation (A,B,C)→ (SAS−1,SB,CS−1) for some unique
invertible matrix S

A is a p × p matrix having only eigenvalues with positive real parts

B is a p × 2 matrix, C is a 2× p matrix
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Marchenko equations and triplet method

Taking into account the time evolution of the scattering data and

C =

(
C

(1)

C
(2)

)
with C (1) and C (2) rows of length p

B =
(
B

(1)
B

(2)
)
with B(1) and B(2) columns of length p

P the unique solution of the Sylvester equation AP + PA = BC ,

we recover the solution of defocusing NLS as

q(x , t) = q+(t) + 2C (1)(t)[P(t) + e2xA]−1B(2)(t).

In order to have solutions of defocusing NLS with NZBCs, we have
to assume

the minimality of the triplet (A,B,C )

the positivity of the real parts of the eigenvalues of the matrix A

the invertibility of the matrices P + e2xA and P

Theorem 3

If P is an invertible matrix, then (A,B,C ) is a minimal triplet.

Unlike what happens with other NLEEs for which the triplet method has
been applied, here the converse to Theorem 3 is not generally true.
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Summary and overview

A rigorous theory of the IST for the defocusing NLS equation with
(symmetric) NZBCs q± ≡ q0e

iθ± as x → ±∞ has been presented.

The direct problem is shown to be well-posed for potentials q such
that q − q± ∈ L1,2(R±), for which analyticity properties of
eigenfunctions and scattering data are established.

The inverse problem is formulated and solved both as a
Riemann-Hilbert problem and via Marchenko integral equations in
terms of a suitable uniform variable.

The triplet method is developed as a tool to obtain explicit
multisoliton solutions by solving the Marchenko integral equations.

We plan to extend the investigation to defocusing NLS with fully
asymmetric NZBCs (di�erent amplitudes as x → ±∞) in order to study
the long-time asymptotic behavior for the solutions of defocusing NLS.
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