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The celebrated convexity maximum principle was proved by Nick Kore-
vaar [12, 13] in the 80’s to answer a question posed by his advisor, prof. Robert
Finn, concerning convexity of capillary surfaces in convex pipes. Korevaar’s
idea gave birth to a number of subsequent contributions, especially due to
Kawohl [7, 8] and Kennington [9, 10, 11]. Instead of arguing by contradic-
tion, Porru and the speaker in 1993 gave an alternative proof [2] based on
the construction of a suitable elliptic inequality, in the spirit of Larry Payne’s
P-functions. This talk deals with a possible extension [1] of the convexity
maximum principle to continuous solutions of equations involving the frac-
tional Laplacian, which is a (non-local) pseudodifferential operator currently
investigated by several authors: see, for instance, [3] and the series of papers
by Iannizzotto et alii [4, 5, 6]. Further results on convexity for the fractional
Laplacian have been recently obtained by Kulczycki [14].
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