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Quantum computational logics are special examples of
quantum logic based on the following semantic idea:
I linguistic formulas are interpreted as

pieces of quantum information
that can be stored and transmitted by some quantum
systems.

I logical connectives are interpreted as
quantum logical gates

.
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The simplest piece of quantum information is a qubit, a
unit-vector of the Hilbert space C2:

|ψ〉 = c0 |0〉 + c1 |1〉 .

The vectors |0〉 = (1,0) and |1〉 = (0,1) (the two elements of the
canonical basis of C2) represent, in this framework, the two
classical bits or (equivalently) the two classical truth-values.
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It is interesting to consider a “many-valued generalization”
of qubits, represented by qudits: unit-vectors of a space
Cd (where d ≥ 2).
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The elements of the canonical basis of Cd can be regarded as
different truth-values:

|0〉 =
∣∣∣ 0

d−1

〉
= (1, 0, . . . , 0)∣∣∣ 1

d−1

〉
= (0, 1, 0, . . . , 0)∣∣∣ 2

d−1

〉
= (0, 0, 1, 0, . . . , 0)

. . . . . . . . . . . . . . . . . . . . .
|1〉 =

∣∣∣d−1
d−1

〉
= (0, . . . , 0, 1)
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The Qutrit-space C3.

|0〉 =
∣∣∣02〉 = (1, 0, 0)∣∣∣12〉 = (0, 1, 0)

|1〉 =
∣∣∣22〉 = (0, 0, 1)
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In this framework, any piece of quantum information can be
identified with a pure or mixed state of a quantum system: a
density operator ρ living in a qudit-space

H(n)
d = Cd ⊗ . . .⊗ Cd︸ ︷︷ ︸

n−times

(the n-fold tensor product of Cd ).
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The canonical basis of a qudit space H(n)
d is the set:

{
|v1, . . . , vn〉 : |v1〉 , . . . , |vn〉 belong the canonical basis of Cd

}
(where |v1, . . . , vn〉 is an abbreviation for |v1〉 ⊗ . . .⊗ |vn〉. )

The elements of this set, called registers, represent classical
pieces of information.
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A quregister of H(n)
d is a pure state, represented by a

unit-vector |ψ〉.
Or, equivalently, by the corresponding density operator P|ψ〉
(the projection that projects over the closed subspace
determined by |ψ〉).
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Quantum information is processed by

(quantum logical) gates,

unitary quantum operations that transform density operators in
a reversible way.
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Why is reversibility so important in quantum computation?
The time-evolution of (pure) quantum systems is described by
unitary operators.
From a physical point of view, a quantum computation can be
regarded as the time-evolution of a quantum system that stores
and processes pieces of quantum information.
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Some many-valued gates that are interesting from a logical
point of view.
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Logical operations in the Łukasiewicz-semantics

. The set of truth-values:
I the real interval [0,1];
I a finite subset of [0,1]:{

0
d − 1

,
1

d − 1
,

2
d − 1

, . . . ,
d − 1
d − 1

}
.
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The negation
v ′ := 1− v .

The min-conjunction

u u v := min {u, v} .

The Łukasiewicz-conjunction

u � v := max {0,u + v − 1} .

The negation only is a reversible operation!
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Of course, the two conjunctions u and � coincide in the
two-valued semantics (when d = 2).
Generally, u and � have different properties.
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The min-conjunction gives rise to possible violations of the
non-contradiction principle. We may have:

v u v ′ 6= 0.

The Łukasiewicz-conjunction is generally non-idempotent. We
may have:

v � v 6= v .
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How to obtain quantum reversible versions of these basic
logical operations?
For simplicity, let us refer to the smallest examples of
qudit-spaces.
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THE NEGATION (on H(1)
d )

The negation is the linear operator NOT(1) defined on H(1)
d

such that, for every element |v〉 of the canonical basis:

NOT(1) |v〉 = |1− v〉 .
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In order to define a reversible min-conjunction and a
reversible Łukasiewicz-conjunction, we can use:
I the Toffoli-gate;
I the Toffoli-Łukasiewicz gate.

The Toffoli-gate (which plays a very important role in the case
of qubit-spaces) can be naturally generalized to qudit-spaces.
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THE TOFFOLI-GATE (on H(3)
d )

The Toffoli-gate is the linear operator T(1,1,1) defined on
H(3)

d such that, for every element |u, v , w〉 of the canonical
basis:

T(1,1,1) |u, v , w〉 =

|u, v , u u v〉 , if w = 0;
|u, v , (u u v )′〉 , if w = 1.
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THE TOFFOLI- ŁUKASIEWICZ GATE (on H(3)
d )

The Toffoli-Łukasiewicz gate is the linear operator
ŁT(1,1,1) defined on H(3)

d such that, for every element
|u, v , w〉 of the canonical basis:

ŁT(1,1,1) |u, v , w〉 =

|u, v , u � v〉 , if w = 0;
|u, v , (u � v )′〉 , if w3 = 1.
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The Toffoli-gate and the Toffoli-Łukasiewicz gate allow us to
define two different reversible conjunctions, for any quregister
|ψ〉 of the space H(2)

d .
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The Toffoli-conjunction

AND(1,1) |ψ〉 := T(1,1,1)(|ψ〉 ⊗ |0〉),

where |0〉 plays the role of an ancilla.
In particular:

AND(1,1) |u, v〉 = |u, v , (u ∧ v )〉 .
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The Toffoli-Łukasiewicz conjunction

ŁAND(1,1) |ψ〉 := ŁT(1,1,1)(|ψ〉 ⊗ |0〉).

In particular:

ŁAND(1,1) |u, v〉 = |u, v , (u � v )〉 .
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The negation, the Toffoli-gate and the Toffoli-Łukasiewicz gates
represent semiclassical gates, because they always transform
registers (representing classical information) into registers.
Other gates are called genuine quantum gates, because they
can create quantum superpositions from register-inputs.
An important example of a genuine quantum gate is the
Hadamard-gate.
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THE HADAMARD-GATE (on H(1)
2 )

The Hadamard-gate is the linear operator
√
I

(1) defined
on H(1)

2 such that:

√
I

(1) |0〉 =
1√
2

(|0〉 + |1〉);

√
I

(1) |1〉 =
1√
2

(|0〉 − |1〉).
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We have: √
I

(1)√
I

(1)
= I(1).
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A natural generalization of the Hadamard-gate for the space
H(1)

d = Cd is the Vandermonde-operator

THE VANDERMONDE-GATE (on H(1)
d )

The Vandermonde-gate is the linear operator V(1) defined
on H(1)

d such that for every basis-element
∣∣∣ k

d−1

〉
:

V(1)
( ∣∣∣∣∣ k

d − 1

〉)
=

1√
d

d−1∑
j=0

ω j k

∣∣∣∣∣ j
d − 1

〉
,

where ω = e
2πi
d .
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The operator V(1) represents a good generalization of the
Hadamard-gate in the space C2.
We have:

I V(1) transforms each element of the basis of Cd into a
superposition of all basis-elements, assigning to each
basis-element the same probability-value.

I V(1) =
√
I, if d = 2.

I V(1)V(1)V(1)V(1) = I.
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I The negation and the Hadamard-gate can be generalized
to any space H(n)

d .
I The Toffoli-gate and the Toffoli-Łukasiewicz gate can be

generalized to any space H(m+n+p)
d .

I All gates can be generalized to density operators.
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Physical implementations

Physical implementations of gates represent the basic issue for
the technological realization of quantum computers.
We consider the case of optical devices, where photon-beams
(possibly consisting of single photons) move in different
directions.
Let us conventionally assume that |0〉 represents the state of a
beam moving along the x-direction, while |1〉 is the state of a
beam moving along the y -direction.

M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli Qudit Spaces and a Many-valued Approach to Quantum Computational Logics



In the framework of this “physical semantics”, one-qubit gates
(like NOT(1),

√
I

(1)) can be easily implemented.
A natural implementation of NOT(1) can be obtained by a mirror
M that reflects in the y -direction any beam moving along the
x-direction, and viceversa. Hence we have:

|0〉 �M |1〉 ; |1〉 �M |0〉 .

The mirror transforms the state |0〉 into the state |1〉, and
viceversa.
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An implementation of the Hadamard-gate
√
I

(1) can be
obtained by a beam splitter BS. Any beam that goes through BS
is split into two components: one component moves along the
x-direction, while the other component moves along the
y -direction. And the probability of both paths (along the
x-direction or along the y -direction) is 1

2 .
We have:

|0〉 �BS
1√
2

(|0〉 + |1〉); |1〉 �BS
1√
2

(|0〉 − |1〉).
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Other apparatuses that may be useful for optical
implementations of gates are the relative phase shifters along a
given direction.
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A particular example: the relative phase shifter along the
y -direction (on H(1)

d -

The relative phase shifter along the y -direction is the
linear operator UPS that is defined for every element of the
canonical basis of C2 as follows:

UPS |v〉 = c |v〉, where c =
{

eiπ, if v = 1;
1, otherwise.

M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli Qudit Spaces and a Many-valued Approach to Quantum Computational Logics



We obtain:

UPS |0〉 = |0〉 ; UPS |1〉 = − |1〉 .

Let us indicate by PS a physical apparatus that realizes the
phase shift described by UPS.
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Relative phase shifters, beam splitters and mirrors are the
basic physical components of the Mach-Zehnder interferometer
(MZI), an apparatus that has played a very important role in the
logical and philosophical debates about the foundations of
quantum theory.
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The Mach-Zehnder interferometer
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A beam (which may move either along the x-direction or along
the y -direction) goes through the relative phase shifter PS of
MZI:

|0〉 �PS |0〉 ; |1〉 �PS − |1〉 .

The phase of the beam changes only in the case where the
beam is moving along the y -direction.
Soon after the beam goes through the first beam splitter BS1.
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As a consequence, it is split into two components: one
component moves along the interferometer’s arm in the
x-direction, the other component moves along the arm in the
y -direction.
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We have:

|0〉 �BS1

1√
2

(|0〉 + |1〉); − |1〉 �BS1

1√
2

(− |0〉 + |1〉).
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Then, both components of the superposed beam (on both
arms) are reflected by the mirrors M:
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We have:

1√
2

(|0〉+|1〉) �M
1√
2

(|0〉+|1〉); 1√
2

(− |0〉+|1〉) �M
1√
2

(|0〉−|1〉).
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Finally, the superposed beam goes through the second beam
splitter BS2, which re-composes the two components.
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We have:

1√
2

(|0〉 + |1〉) �BS2 |0〉 ;
1√
2

(|0〉 − |1〉) �BS2 |1〉 .
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Accordingly, MZI transforms the input |0〉 into the output |0〉,
while the input |1〉 is transformed into the output |1〉.
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One is dealing with a result that has for a long time been
described as deeply counter-intuitive. In fact, according to a
“classical way of thinking” we would expect that the outcoming
photons from the second beam splitter should be detected with
probability 1

2 either along the x-direction or along the
y -direction.
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While optical implementations of one-qubit gates are relatively
simple, trying to implement many-qubit gates may be rather
complicated.
Consider the case of the Toffoli-gate T(1,1,1).
Mathematically we have:

T(1,1,1) |u, v ,w〉 =

{
|u, v ,u u v〉 , if w = 0;
|u, v , (u u v )′〉 , if w = 1.

M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli Qudit Spaces and a Many-valued Approach to Quantum Computational Logics



The main problem is finding a device that can realize a physical
dependence of the target-bit (u u v or (u u v )′) from the
control-bits (u, v ).
A possible strategy is based on an appropriate use of the
optical “Kerr-effect”: a substance with an intensity-dependent
refractive index is placed into a given device, giving rise to an
intensity-dependent phase shift.
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A unitary operator that describes a particular form of
conditional phase shift.

The relative conditional phase shifter of the space
H(3)

2 = C2 ⊗ C2 ⊗ C2 is the unitary operator UCPS that is
defined for every element of the canonical basis as
follows:

UCPS |u, v , w〉 = |u, v〉 ⊗ c |w〉 ,

where c =
{

eiπ, if u = 1, v = 1 and w = 0;
1, otherwise. .
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Let us indicate by CPS a physical apparatus that realizes the
phase shift described by the operator UCPS.
Clearly, CPS determines a conditional phase shift. For, the
phase of a three-beam system in state |u, v ,w〉 is changed only
in the case where both control-bits |u〉 and |v〉 are the state |1〉,
while the ancilla-bit |w〉 is the state |0〉.
From a physical point of view, such a result can be obtained by
using a convenient substance that produces the Kerr-effect.
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In order to obtain an implementation of the Toffoli-gate T(1,1,1,)

we consider a “more sophisticated” version of the
Mach-Zehnder interferometer: the “Kerr-Mach-Zehnder
interferometer” (KMZI).
Besides the relative phase shifter (PS), the two beam splitters
(BS1, BS2) and the mirrors (M), the Kerr-Mach-Zehnder
interferometer also contains a relative conditional phase shifter
(CPS) that can produce the Kerr-effect.
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The Kerr-Mach-Zehnder interferometer
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While the inputs of the canonical Mach-Zehnder interferometer
are single beams (whose states live in the space C2), the
apparatus KMZI acts on composite systems consisting of three
beams (S1,S2,S3), whose states live in the space
H(3)

2 = C2 ⊗ C2 ⊗ C2.
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For the sake of simplicity we can assume that S1,S2,S3 are
single photons that may enter into the interferometer-box either
along the x-direction or along the y -direction.
Let |u, v ,w〉 be the input-state of the composite system
S1 + S2 + S3. Photons S1,S2 (whose states |u〉 , |v〉 represent
the control-bits) are supposed to enter into the box along the
yz-plane, while photon S3 (whose state |w〉 is the ancilla-bit)
will enter through the first beam-splitter BS1.
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Mathematically, the action performed by the apparatus KMZI is
described by the following unitary operator (of the space H(3)

2 ):
UKMZ :=
(I⊗I⊗

√
I

(1))◦(I⊗I⊗NOT(1))◦UCPS◦(I⊗I⊗
√
I

(1))◦(I⊗I⊗UPS).
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In order to “see” how KMZI is working from a physical point of
view, it is expedient to consider a particular example.
Take the input |u, v ,w〉 = |1,1,0〉 and let us describe the
physical evolution determined by the operator UKMZ for the
system S1 + S2 + S3, whose initial state is |1,1,0〉.
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(I⊗ I⊗ UPS) |1,1,0〉 = |1,1,0〉 .

The relative phase shifter along the y -direction (PS) does not
change the state of photon S3, which is moving along the
x-direction.
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(I⊗ I⊗
√
I

(1)
) |1,1,0〉 = |1,1〉 ⊗ 1√

2
(|0〉 + |1〉).

Photon S3 goes through the first beam splitter BS1 splitting into
two components: one component moves along the
interferometer’s arm along the x-direction, the other component
moves along the arm in the y -direction (like in the case of the
canonical Mach-Zehnder interferometer). At the same time,
photons S1 and S2 (both in state |1〉) enter into the
interferometer-box along the yz-plane.
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UCPS(|1,1〉 ⊗ 1√
2

(|0〉 + |1〉)) = |1,1〉 ⊗ 1√
2

(− |0〉 + |1〉).

The conditional phase shifter CPS determines a phase shift for
the component of S3 that is moving along the x-direction;
because both photons S1 and S2 (in state |1〉) have gone
through the substance (contained in CPS) that produces the
Kerr-effect.
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(I⊗I⊗NOT(1))(|1,1〉⊗ 1√
2

(− |0〉+ |1〉)) = |1,1〉⊗ 1√
2

(|0〉− |1〉).

Both components of S3 (on both arms) are reflected by the
mirrors.
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(I⊗ I⊗
√
I

(1)
)(|1,1〉 ⊗ 1√

2
(|0〉 − |1〉)) = |1,1,1〉 .

Finally, the second beam splitter BS2 re-composes the two
components of the superposed photon S3.
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Consequently, we obtain:

UKMZ |1,1,0〉 = |1,1,1〉 = T(1,1,1) |1,1,0〉 .
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In general, one can easily prove that:

UKMZ = T(1,1,1).

Although, from a mathematical point of view, UKMZ and T(1,1,1)

represent the same gate, physically it is not guaranteed that the
apparatus KMZI always realizes its “expected job”.
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All difficulties are due to the behavior of the conditional phase
shifter. In fact, the substances used to produce the Kerr-effect
generally determine only stochastic results.
As a consequence one shall conclude that the
Kerr-Mach-Zehnder interferometer allows us to obtain an
approximate implementation of the Toffoli-gate with an
accuracy that is, in some cases, very good.
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So far we have considered possible optical implementations of
gates in the case of qubit-spaces. The techniques we have
illustrated can be also generalized to qudit-spaces.
The main idea is using, instead of single beams, systems
consisting of many beams (corresponding to different
truth-values) that may move either along the x-direction or
along the y -direction.
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