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Goal: Detect or infer inhomogeneities in the ground or the presence
of particular conductive substances such as metals, minerals and
other geological structures by Electromagnetic Induction.

Applications

Hydrological and hydrogeological characterizations.

Hazardous waste characterization studies.

Archaeological surveys.

Precision-agriculture applications.

Unexploded ordnance detection (UXO).
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The main device used in applied Geophysics is GCM.

How does it work? ⇒
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The two coils axes may be aligned either vertically or horizontally
giving a di�erent response.
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The nonlinear problem

Gauss�Newton method
Linear squares problem

(ill-conditioned)

Regularization

TSVD

TGSVD
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The nonlinear model is derived from Maxwell's equations keeping
into account the cylindrical symmetry of the problem. [J. R. Wait,
Geo-Electromagnetism]
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dk are the thickness of each layer.

σk and µk are the electrical
conductivity and the magnetic
permeability of the k-th layer,
respectively.

hj are the heights above the
ground.

ω is the angular frequency.

r is the distance between the coils.
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• Characteristic admittance: Nk(λ) =
uk(λ)

iµkω

• Surface admittance: Yk(λ) = Nk(λ)
Yk+1(λ) +Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))

• Re�ection factor: R0(λ) =
N0(λ)− Y1(λ)

N0(λ) + Y1(λ)

Ratio of the secondary to the primary �eld,
HS

HP

Vertical orientation:

M1(σ,µ;h, ω) = −r3
∫ ∞
0

λ2e−2hλR0(λ)J0(rλ) dλ

Horizontal orientation:

M2(σ,µ;h, ω) = −r2
∫ ∞
0

λe−2hλR0(λ)J1(rλ) dλ
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We let

HS

HP
= Mν(σ,µ;hi, ωj), ν = 1, 2, i = 1, . . . ,mh, j = 1, . . . ,mω,

where ν indicates the orientation, mh is the number of heights and
mω is the number of frequencies.

In our numerical experiements we will reconstruct the electrical
conductivity assuming that the magnetic permeability is known, and
vice versa, and we will let the inter�coil distance, r, to be constant.
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The problem of data inversion consists of �tting the model to the
data, that is determine the electrical conductivity σ, and the
permeability vector µ which produce the best approximations

Mν(σ,µ;hi, ωj) ≈ bij ν = 1, 2, i = 1, . . . ,mh, j = 1, . . . ,mω.

Let us consider the error in the model prediction

rij(σ,µ;hi, ωj) = bνij −Mν(σ,µ;hi, ωj).

From now on, we will consider hi and ωj �xed and we vectorize the
data values bνij in lexicographical order into b ∈ Cm, m = 2mhmω.

Patricia Díaz de Alba FDEM data inversion



Motivation
The forward problem

The nonlinear inverse problem
Numerical results

We proceed similarly for the model predictions, obtaining the vector
Mν ∈ Cm , and minimize the Euclidean norm of the (complex)
residual between the data and the model, that is

(σ∗,µ∗) = arg min
σ,µ∈Rn

1

2
‖r(σ,µ)‖2.
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Iterative methods

Newton method
Newton's method requires the computation of both the gradient
vector and the Hessian matrix of the residual, which have a large
computational complexity.

Gauss�Newton method
When the residuals are small or mildly nonlinear in a neighborhood
of the solution, the Gauss�Newton method is expected to behave
similarly to Newton's method. We remark that, while the physical
problem is obviously consistent, this is not necessarily true in our
case, where in the presence of noise in the data the problem will
certainly be inconsistent.
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Iterative methods

Damped Gauss�Newton method:

(σk+1,µk+1) = (σk + αksk,µk + αksk),

where αk is parameter to be determined and sk is the solution of
the linear least squares problem

min
s∈Rn

‖r(σk,µk) + Jks‖,

with Jk = J(σkµk) is the Jacobian of r(σ,µ) or some
approximation.
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Iterative methods

How to choose αk?

Armijo Goldstein principle

αk is selected as the largest number in the sequence 2−i,
i = 0, 1..., for which the following inequality holds

‖r(σk,µk)‖2 − ‖r(σk + αksk,µk + αksk)‖2 ≥
1

2
αk‖Jksk‖2

This choice of αk ensures convergence of the method, provided
that (σk,µk) is not a critical point.
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Regularization TSVD

The regularization technique we use is the one based on a low-rank
approximation of the Jacobian matrix.

The best rank ` approximation according to the 2-norm can be
obtained by the SVD decomposition, J = UΓV T .

This procedure allows us to replace the ill-conditioned Jacobian
matrix with a well-conditioned rank-de�cient matrix A`. The
solution is known as the truncated SVD (TSVD) and it can be
expressed as

s(`) = −A†`r = −
∑̀
i=1

uTi r

γi
vi,
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Regularization TGSVD

Let us introduce a regularization matrix L ∈ Rt×n (t ≤ n) replaced
by

min
s∈S
‖Ls‖, S = {s ∈ Rn : JTJs = −JT r},

and solve the problem under the assumption N (J) ∩N (L) = {0}
and t > max(0, n− 2m).
The generalized singular value decomposition (GSVD) of the matrix
pair (J, L) is the factorization

J = UΣJZ
−1, L = V ΣLZ

−1,

By the generalized singular value decomposition (GSVD) of (J, L)
it is possible to de�ne the truncated GSVD (TGSVD) solution s`.
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Choosing `, regularization parameter

The optimal choice would be the discrepancy principle

‖b−Mν(σ(`discrepancy),µ(`discrepancy))‖ ≤ κ‖e‖, κ > 1,

but it can seldom be applied to EMI techniques because in
applications

The noise on the data is not necessarily equally distributed.

An accurate estimate of ‖e‖ is often unknown.
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Choosing `, L-curve

L-curve principle can be adapted quite naturally to the nonlinear
case.

It chooses the value of ` which identi�es the corner of the curve
connecting the points{

log ‖r(σ(`),µ(`))‖, log ‖L(σ(`)µ(`))‖
}
.

The curve is L-shaped in many discrete ill-posed problems.

To detect the corner of the L-curve we used the L-corner method
[P. C. Hansen, T. K. Jensen and G. Rodriguez, An adaptive pruning

algorithm for the discrete L-curve criterion].
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For �xed n and m, we apply the model previously described to
generate the instrument readings

b = Mν(σ,µ;hi, ωj),

with i = 1, . . . ,mh and j = 1, . . . ,mω, corresponding to frequency
ωj = 2πfj and height hi.

Finally, we add Gaussian noise to the synthetic data by the formula

b = b̂ +
τ‖b̂‖√
m

w,

where w is a vector with normally distributed entries with zero
mean and unitary variance, m = 2mhmω, and τ is the noise level.
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Electrical conductivity

For the numerical experiments we consider

The coils to be in both orientations at a �xed distance
r = 1.66m.
h is either 1m (mh = 1) or 0.5m and 1m (mh = 2).

Each data set is recorded simultaneously with the operating
frequencies fj = 775, 1175, 3925, 9825, 21725, 47025, all expressed
in Hertz.
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L mh n = 20 n = 30 n = 40

I 1 3.6e-01 3.7e-01 3.7e-01

2 4.5e-01 4.5e-01 4.4e-01

R D1 1 3.0e-01 3.3e-01 2.9e-01

2 2.4e-01 2.4e-01 2.3e-01

D2 1 2.4e-01 2.1e-01 2.8e-01

2 2.5e-01 2.5e-01 2.3e-01

I 1 3.2e-01 3.9e-01 4.0e-01

2 3.0e-01 3.4e-01 3.4e-01

I D1 1 1.9e-01 2.3e-01 1.9e-01

2 2.1e-01 1.9e-01 1.9e-01

D2 1 2.3e-01 2.0e-01 2.4e-01

2 2.1e-01 2.2e-01 2.1e-01
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µ0 µr = 10 µr = 102 µr = 103

optimal - R 2.3e-01 4.3e-01 5.3e-01 5.5e-01

0 13 9 19

optimal - I 2.4e-01 5.3e-01 4.5e-01 7.1e-01

0 6 4 12

L�curve - R 2.6e-01 6.3e-01 4.7e-01 5.4e-01

0 20 18 27

L�curve - I 2.6e-01 4.2e-01 5.5e-01 7.4e-01

0 23 10 16
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Figure: Plot of the �rst 4 regularized solutions, computed by minimizing
the real part of the signal, compared to the exact solution. The magnetic
permeability µ = µ0 is constant, the noise level is τ = 10−3.
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Figure: Solution obtained by minimizing the real part of the data (left) or
the imaginary part (right); τ = 10−3, µr = 10 in the top row, µr = 102

in the bottom row. The value of ` is chosen either optimally or by the
L�curve.

Patricia Díaz de Alba FDEM data inversion



Motivation
The forward problem

The nonlinear inverse problem
Numerical results

Magnetic permeability
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Figure: Average of the singular values of the Jacobian J(µ) computed on
100 random points in Rn, for m = n = 10, 20, 30, 40 (left-hand side);
each component of µ is in [µ0, 100µ0]. The right-hand side graph shows
the average singular values for n = 20 together with their maximum and
minimum value across the random tests.
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Magnetic permeability
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Figure: Average of the singular values of the Jacobian J(µ) computed on
100 random points in Rn, for m = n = 20; each component of µ is in
[µ0, µrµ0], with µr = 10, 102, 103, 104.
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For the numerical experiments we consider

The coils to be in both orientations.

m = 20, n = 40, and f = 1460 Hertz.

σ(z) = e−(z−1.2)
2
.

We considere the following model for the magnetic permeability as
a function of depth

µθ(z) = µ0(θe
−(z−1.2)2 + 1),

where θ is a parameter to be chosen, which takes values in
[µ0, (θ + 1)µ0] and has a maximum at z = 1.2m.
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Magnetic permeability
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Figure: θ = 10, in-phase component (left), quadrature component (right)
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Magnetic permeability
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Figure: θ = 10, in-phase component (left), quadrature component (right)

Patricia Díaz de Alba FDEM data inversion



Motivation
The forward problem

The nonlinear inverse problem
Numerical results

Patricia Díaz de Alba FDEM data inversion



Motivation
The forward problem

The nonlinear inverse problem
Numerical results

Patricia Díaz de Alba FDEM data inversion



Motivation
The forward problem

The nonlinear inverse problem
Numerical results

Quadrature component of the signal
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In-phase component of the signal
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In-phase component of the signal
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