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Infinite-valued Lukasiewicz logic

e Since the Eighties, the interest in many-valued logics has increased enor-
mously. In particular, the logics with truth values in [0, 1] emerged as
a consequence of the 1965 proposal of fuzzy set theory by Zadeh called
Fuzzy logie.

e There exists a deep connection between the infinite-valued Lukasiewicz
logic, Ulam Games and its application to classical communication with

feedback.

e It suggest a potential implementations of Lukasiewicz logic to the quantum
error correction theory.



There are two basic operations on [0, 1] defining the Lukasiewicz logic
1. -x=1-—u=, [Negation]

2. &y =min{r +y,1} [Lukasiewicz truncated suml]

e In the framework of quantum computation with mixed states we introduce
a probabilistic type representation for the Lukasiewicz truncated sum.

e More precisely, it will be represented as a quantum operation built from
a polynomial that approximates = ¢ y = min{z + y, 1}



1 Basic notions in quantum computation

Idea and concept of quantum computing was introduced way back in 1970s
and 1980s. by Richard Feynmann. David Deutsch and Paul Benioff.

e In a classical computer, information is encoded in a series of bits and
these bits are manipulated via Boolean logic gates like NOT, OR.

AND.

e Standard quantum computing is based on quantum systems described
by finite dimensional Hilbert spaces, specially C2, the two-dimensional
space of a gbit.

e Similarly to the classical computing case, we can introduce and study
the behavior of a number of quantum logical gates (hereafter quantum
gates for short) operating on qbits.

Quantum computing can simulate all computations which can be done by
classical systems: however, one of the main advantages of quantum
computation and quantum algorithms is that they can speed up
computations



e The standard orthonormal basis {|0), |1)} of C? where |0) = (1,0) and
1) = (0,1) is called the logical basis.

e The two basis-elements |0) and |1) are usually taken as encoding the
classical bit-values 0 and 1, respectively.

e Thus, gbits |p) in C? are superpositions of the basis vectors with
complex coefficients

) = col0) 4+ ¢1]1),  with  |eo|* + |e1)* =1

Recalling the Born rule, any qubit |¢) = ¢g|0) 4+ ¢1|1) may be regarded
as a piece of information, where

e |co|? corresponds to the probability-value of the information described
by the basic state |0);

e [c1|? corresponds to the probability-value of the information described
by the basic state |1).

Definition 1.1 Let |¢)) = ¢¢|0) + ¢1|1) be a gbit. Then its probability value

1s

() = ler|?



The quantum states of interest in quantum computation lie in the tensor
product

MC2P=C?29C*®...0C* n—times
A special basis, called the 2"-computational basis, is chosen for @™C?2.

e it consists of the 2™ orthogonal states [¢), 0 < ¢ < 2™ where ¢ is in
binary representation and |¢) can be seen as tensor product of states
(Kronecker product) [¢) = |11) @ |t2) @ ... @ |tn) where ¢; € {0,1}.

o A n-qbit [1)) € @"C? is a superposition
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In the usual representation of quantum computational processes, a
quantum circuit is identified with an appropriate composition of quantum
gates, i.e. unitary operators acting on n-qbits of @"C?

L(@"CH U st. U-U=U.U=1
The standard model for quantum computation is given by

{¢bits, unitary operators}



2 Quantum computation with mixed states

e In general, a quantum system is not in a pure state. This may be
caused, for example, by the non complete efficiency in the preparation
procedure or by the fact that systems cannot be completely isolated
from the environment, undergoing decoherence of their states.

e There are interesting processes that cannot be encoded in unitary evo-
lutions, for example, at the end of the computation a non-unitary oper-
ation, a measurement, is applied, and the state becomes a probability
distribution over pure states, or what is called a mized state.

In view of these facts, several authors have paid attention to a more
general model of quantum computational processes, gbits states are
replaced by mixed states. This model is known as quantum computation
with mizred states.

[1 | D. Aharanov, A. Kitaev and N. Nisan: Quantum circuits with mized
states, Proc. 13th Annual ACM Symp. on Theory of Computation,
20-30 (STOC,1997).

12 | V. Tarasov: Quantum computer with Mired States and Four-Valued
Logic, J. Phys. A 35, 5207-5235 (2002).



Let H be a complex Hilbert space.

e In the model of quantum computation with mixed states, we regard a
quantum state in a Hilbert space H as a density operator p i.e.

1. p is Hermitian (p = p'),
2. 0 < (p(v),v) for each v € H,
3. tr(p) =1

e Quantum gates are represented by quantum operations. They are lin-
ear maps & : L(H1) — L(H3) s.t.

L. E(p)=>_; AipA;f where A; are linear operators,
2. Y. ATA; = 1.

3. We can prove that quantum operations preserve density opera-

tors.

In the representation of quantum computational processes based on mixed
states, a quantum circuit is a circuit whose inputs and outputs are labeled
with density operators and whose quantum gates are labeled with
quantum operations.



In this powerful model we can extend the notion of probability assigned to
a qbit.

e To each vector of the quantum computational basis of C? we may asso-
ciate two density operators Fyy = |0)(0| and P; = |1)(1] that represent
the standard basis in this framework.

e Let Pl(gn} be the operator Pl(iﬂ} = (2" 1) ©® P; on @"C? where I is
the 2 x 2 identity matrix.

e By applying the Born rule, we consider the probability of a density
operator p as follows:

p(p) = tr(P}> ).

Note that: in the particular case in which p = |¢) (¢)| where
1) = ¢l0) + ¢1|1),

we obtain that p(p) = |e1]°.



Proposition 1.1 For each density operator

P2.2

p=[pijl =
4 4

21’1—1

p(p) =Tr(P{p) =" paiai

i=1

T




3 Lukasiewicz sum and quantum circuits

e In literature, several logical algebraic structures related to the infinite
many valued Lukasiewicwicz logic and quantum computation were intro-
duced and investigated.

e These structures are based on an ideal quantum circuit, represented by a
quantum operation & of the form

Je

such that  p(¢”") = p(p) © p(e) = min{p(p) + p(7), 1}

& 1s a quantum operation

p and o are density operators in C?.



o
8 q}"ﬂ'n’
a
... but a such quantum operation £ does not exist!!... indeed

e the above circuit with two inputs, is mathematically represented by an
expression of the form:

E(p.o) =Y Ai(pw o)Al

o if p = [r54], 0 = [yim) and A; = |ay, s,], p(E(p,0)) can be seen as a
polynomial in the variables x3 9, 72 2 assuming the following form:

3
p(g(.ﬂr U)) — E fﬂ,_ﬁ(a?"uﬂi s Lk ?}Lm)migyiﬂ
o, 3

where o, 3 € {0,1}.

e Since Lukasiewicz sum is not a polynomial, it is not representable as a
quantum operation!!!



However the expression

PEP.a)) =Y fap(tr, si Tk Ym) TS 215 0
o, 3

suggests to look for a quantum operation £ such that the
polynomial p(&(p, o)) approximates the value p(p) & p(o)

In order to follow this strategy, we have to deal with the following two issues:



a The probability value p(&(p, o)) does not only depend on p(p) and p(o)
but it can also depend on the anti-diagonal elements of p and ¢ among
the coefficients f, g(ar, <\ Pjks O1.m)-

To solve this problem we need to introduce a quantum operation that delete
the anti diagonal elements of a density operator in C? preserving its probabil-

ity value. The following proposition provides this quantum operation for an
arbitrary density operator.

Proposition 3.1 The Matrices D = [ é g ] and Dy = [ g [i] ] define a

quantum operation
Ant(p) = D”JD}L + Dg,ﬂDi
such that

1l—ax r 1—x 0
P= [ i T ] — Ant(p) = [ 0 T ]



b. The polynomial degree of p(&(p, 7)) is equal to 1. This could not guarantee
a good approximation for the Lukasiewicz sum.

e To obtain a polynomial p(&(p, o)) of an arbitrary degree, we need to in-
crease the power of the variables x5 5 and ys 9 in the polynomial

e this can be achieved by involving tensorial powers of p and o. Indeed,

: : 1l—z r
for an arbitrary density operator p = [ 4 .

] in C?, by induction on
n, we can prove that

Diag(@"p) = {(1 —z)*2" : a+ B =n)}



Taking into account the two items above and in order to obtain a good
approximation for the Lukasiewicz sum, our strategy will be

e to consider a quantum operation of the form &£(@"p, @"0) (instead of
E(p,o)) where, p and o can be considered as diagonal density operators
in C? and p(E(@"p. @"0)) ~ p(p) & p(o).

e From a physical point of view, to implement a quantum operation & (" p, @" o)
for a large n turns out to be inefficient, because it requires many copies of
the involved states.

For this reason and in order to keep a reasonable phisical efficiency during the
implementation, we confine our attention in 2-degrees polynomial
approximant.



4 Polynomial approximation for Lukasiewicz sum

The key idea will be to reduce the problem to a one-variable approximation
function.

e Let us consider the function

if ~ € [0, 1],
if 2 € (1,2],

[QﬂﬁZHﬂﬁj—{i

b e

e and we define

mg:%+mg.
e Note that if 2 = z 4+ y and = € [0, 2] then:

gz +y)=xDy



e /i(z) is a symmetric function with respect to the point » = 1, in other

words, h(2 — 2) = h(z).

. CDILSE{Z_T[UEI]ﬂ} we can approximate /(z) by using the symmetric functions
242 — 2).

In this way, we can prove that the approximants P, (z,y) = g,(xz + y) for
the Lukasieqicz = & y assume the form:

n((l U

i+1 .
Z( 1) (1/2)(q+;) (1—2)+(1=y)"



In particular

= =4

~ 1 1
Py(r.y) = (e +y)(1 —a) + (@ +y)(1—y) + 5 (0 +3) + 7o

~ 3
E(P) = X |roy—Pf < —
(F2) = max  Jroy =)= 5

But!!

e we can see that maxX(z v)e[0,1]2 ﬁ? (z,y) = % >1

e Thus, there is not a quantum operation & such that p(&(poo)) = P (p(p),plo)).



Thus, in order to avoid this problem. if we consider the product %ﬁg we
finally obtain the following polynomial that approximates the Lukasiewicz sum:

40 5

P, (r.) = 5 (g5 +0)(1 = ) + S5+ )L =) + 500 +1) + 5

We have to built a quantum operation Lo in ©*C? such that

2 2 N\ T oA
p(La2(@%p, @%0)) = p(p) & p(o)
where p and o are density operators in C? with the null element in the
anti-diagonal entries.



5 Lukasiewicz sum as 16-dimensional quantum
operation

lanet.f,:l:[161f ? U:[

(hence, p(p) == El.ll.d plo) =y).

1—y 0

0 ) ] two density operators in C?

e the matrix (z;)1<ij<16 = (p @ p) @ (0 @ o) is the diagonal matrix whose
diagonal coefficients are given by

a=(1-220-y?%  z=01-2)2l-y)?
w=(1-x)*(1-y)y, 210 = (1= 2)z(1 - y)y,
z3=(1-2)*(1 - y)y, 211 = (1= a)z(1 - y)y,
zg = (1= x)%y?, 212 = (1 = 2)xy?,

25 = (1—x)x(1—y)2, 213 = 22(1 — )2,

2 = (1 —a)z(1 —y)y, 210 = 2%(1 = y)y,

zr = (1 —x)x(l —y)y, 215 = 2%(1 = y)y,

2z = (1 — x)xy?, 216 = T2y>.



e A quantum operation Lo(—) =>_, A;c(—)Ai, in ©*C? such that p(La(p. o)) =
Py, (p(p),p(o)) = Py, (x,y) will need to satisty

16
Pp (z.y) =) ai(Ar,... . Ap)z
i=1
o a;(Aq,..... Ay ) are real numbers depending on the elements of the matrices

Apforl <k <16

Then we need to rewrite PL2 (z,y) in the base (2;)1<i<16. Indeed ...

(e.y) — 40[ L o2r Al 97 51 14l
Pr,wy) = Blgga t o2 T 0™ T 1307 T 07 + g0
111 141 121

120°12 T o 214+ 1p 6]

_|_



Let us consider the following 16 x 16 matrices for 1 < k < 8:

(1] 2k, 5y having 1 in the (2k, j)-entry and 0 in any other entry,

[1](2k—1,5) having 1 in the (2k — 1, j)-entry and 0 in any other entry.

Let us define the following family of matrices, for 1 < k <8

Ligka) = \/%[1](%,1}
Liar2) = \/%[1]{%,2)
Loway = /5o 0
Lns) = 7sllens
Lion6) = \/% 1] (2.6)
Lians) = \/% [ (2x.8)
Lowas) = \/ E ks
Eor1a) = /Bt ox.1

L(ak,16) = o551 (2k.16)

Liok-1.1) = \/ 15 — 135 2k—1.1)
Liok—12) = /15 — 331U (2k-1.1)
Liok—1.4) =1/ 15 — 221 (2k-1.1)
Lok-15 =1/ % — %= [1@r-1.1)
Look-16) =1/ — L @r—11)
Lok-18) = /& — Blek-1.1
Look—1,13) = \/ 16 — 15 2k-1.1)
Lok-114) = 1/ 15 — 15 2k—-1,1)
Liok-1.16) = \/ 3 — 12 [12r-1.1)



Then, Lo defined as the operator in *C? given by

8

Z[L{Eksl}‘#’ﬂgzk,lj + L(ﬂfﬂﬂ}‘fﬁﬂgzk,i) T L{Ek,fl}‘f:"ﬂgzk,zxj +
k=1

Lo ()

L[Qr‘ﬂﬁ]wf’;ﬂk:ﬁ} + L{%ﬁ)‘fﬁ’{’gzk,ﬁj + Lon.s) WLI{Q&B} +
L(%al?v)if':’f’;r%:m} T L{kalfl}‘f?ﬂ](t%,lx;) T Lfﬂkalﬁ}if?f’gik:lﬁ} T
L(%—Ll}‘fﬁ’{’gzk—l,n + L(%—l,?)‘*’?qzk—1,2) T L{Ek—lﬁl}‘fﬁf‘ggk—l,@ T
L(Er‘“—lﬁ}ifﬁLJ{rik—l,E} + L(%—I,GJ‘*?LI%—LE) T L{Qk—lsg}gfjiik—l,ﬁj T

+ 4+ + 4+ o+

AT AFT AFT
L(Er‘“—LlE}*"L[Ek—l,lS} T L{%—Llﬂl)*f’{%q,m T L(%—1=15}‘f"£‘[2k—1,15}]

is a quantum operation such that, for p,o diagonal density operators in C?

p(L2((2%p) @ (9%0))) = Pg, (p(p). p(0)).



16 16
b — JLT JLT
LQ([.*’) — ZZL(Qk!S}?f.L{Ek,S} - ZZ L(Ek—LS)?r"L{gk_LS}

E 1== E 1=s

_ 1= agz 0
= (@) ® Rk
(' ) . 0 Ek (g2

where k€ {1,2,4.5,6,8,13,14,16}.




6 Lukasiewicz sum and quantum
cloning machines for qubits

e Let [1)) = ¢4|0) + ¢1]1) be a qubit in C2.

e Let us consider a quantum cloner providing the single copy density matrix

1 — l 2 1 2 l -+ 2(?1(1‘@
6 3| | ? %|(_.,1|2

2| "”"|+1f
01 = P2 = - |[W Y —1 = ;
1 P2 3 A 6 %+%((:a1(:=D)T E—I_E



e Let us start by making two approximate copies of a p = ag|0) 4+ a1|1) and
a=0bp|0)+ b1]1).

e It provides the copies ptionl = pclon2 and U-;ﬂonl _ J;gong

e If we consider the following density matrices

— Ant(pgorty = Ant(ptiorty = 2 = ( 1TE 75 0,
0 5 T 37

_ 1-3— 31 0

1 | lonl lon?2 2 - 4

o, = Ant(o,"") = Ant(o,"") = 0, = 60 % 1 2
6 T 3Y

Then

p(6) & plod) = 5 + 2 (0(p) & p(0)



In this way, we can show that the following circuit

e e
(@]
3,
5 e
o Ant =
t,
oo o)
- f‘o_'l Ant '
S|
S : >
e Ant
satisfies
1 2
P(E(P© 0)) = 2 Pr, (o). () + 7 ~ > (0lp) & p(0)) + ¢

Finally, in order to obtain the best approximation we need to consider the
following:

| 403 1
p(p) & plo) =~ Eg(iﬂ’(ff) — g)-



