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Introduction

We discuss a possible generalization of the problem of pattern
recognition to arbitrary probabilistic models.

We discuss how to deal with the problem of recognizing an individual
pattern among a family of different species or classes of objects which
obey probabilistic laws which do not comply with Kolmogorov’s axioms.

Our framework allows for the introduction of non-trivial correlations (as
entanglement or discord) between the different species involved, opening
the door to a new way of harnessing these physical resources for solving
pattern recognition problems.

[F. Holik, G. Sergioli, H. Freytes, A. Plastino, “Pattern Recognition In
Non-Kolmogorovian Structures”, arxiv:1609.06340, (2016)]
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Introduction

One of the most important axiomatizations in probability theory is due to
Kolmogorov.

In his approach, probabilities are considered as measures defined over
boolean sigma algebras of a sample space.

Interestingly enough, states of classical statistical theories can be
described using Kolmogorov’s axioms, because they define measures
over the sigma algebra of measurable subsets of phase space.
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Classical Probabilistic Models

An important example of a classical probabilistic model is provided by a
point particle moving in space time whose states are described by
probability functions over R6.

Suppose that A represents an observable quantity (such as energy or
angular momentum), i.e., it is defined as a function over phase space.

Then, the proposition “the value of A lies in the interval ∆”, defines a
testeable proposition, which we denote by A∆.

It is natural to associate to A∆ which can be represented as the
measurable set f−1(∆) (the set of all states which make the proposition
true).

If the probabilistic state of the system is given by µ, the corresponding
probability of occurrence of f∆ will be given by µ(f−1(∆)).
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Classical Probabilistic Models

There is a correspondence between a classical probabilistic state and the
axioms of classical probability theory.

Indeed, the axioms of Kolmogorov define a probability function as a
measure µ on a sigma-algebra Σ such that

µ : Σ→ [0, 1] (1)

which satisfies
µ(∅) = 0 (2)

µ(Ac) = 1− µ(A), (3)

where (. . .)c means set-theoretical-complement. For any pairwise
disjoint denumerable family {Ai}i∈I ,

µ(
⋃
i∈I

Ai) =
∑

i

µ(Ai). (4)

A state of a classical probabilistic theory will be defined as a
Kolmogorovian measure with Σ = P(Γ).
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Quantum Probabilistic Models

An interesting approach to the statistical character of quantum systems
consists in considering quantum states as measures over the non boolean
structure of projection operators in Hilbert space.

As is well known, projection operators can be used to describe
elementary experiments (the analogue of this in the classical setting are
the subsets of phase space).

In this way, a comparison between quantum states and classical
probabilistic states can be traced in formal and conceptual grounds.
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Quantum Probabilistic Models

Birkhoff and von Neumann showed that the empirical propositions
associated to a classical system can be naturally organized as a Boolean
algebra (which is an orthocomplemented distributive lattice).

While classical observables are defined as functions over phase space
and form a commutative algebra, quantum observables are represented
by self adjoint operators, which fail to be commutative.

Due to this fact, empirical propositions associated to quantum systems
are represented by projection operators, which are in one to one
correspondence to closed subspaces related to the projective geometry of
a Hilbert space.

Thus, empirical propositions associated to quantum systems form a
non-distributive —and thus non-Boolean— lattice.
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Quantum Probabilistic Models

States of quantum models can be described in an analogous way, but
using operators acting on Hilbert spaces instead of functions over a
phase space.

If A represents the self adjoint operator of an observable associated to a
quantum particle, the proposition “the value of A lies in the interval ∆”
will define a testeable experiment represented by the projection operator
PA(∆) ∈ P(H), i.e., the projection that the spectral measure of A
assigns to the Borel set ∆.

The probability assigned to the event PA(∆), given that the system is
prepared in the state ρ, is computed using Born’s rule:

p(PA(∆)) = tr(ρPA(∆)). (5)

Born’s rule defines a measure on P(H) with which it is possible to
compute all probabilities and mean values for all physical observables of
interest.
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Quantum Probabilistic Models

Due to Gleason’s theorem a quantum state can be defined by a measure s over
the orthomodular lattice of projection operators P(H) as follows

s : P(H)→ [0; 1] (6)

such that:
s(0) = 0 (0 is the null subspace). (7)

s(P⊥) = 1− s(P), (8)

and, for a denumerable and pairwise orthogonal family of projections Pj

s(
∑

j

Pj) =
∑

j

s(Pj). (9)
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Quantum Probabilistic Models

Despite their mathematical resemblance, there is a big difference
between classical and quantum measures.

In the quantum case, the Boolean algebra Σ is replaced by P(H), and the
other conditions are the natural generalizations of the classical event
structure to the non-Boolean setting.

The fact that P(H) is not Boolean lies behind the peculiarities of
probabilities arising in quantum phenomena.
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Quantum Probabilistic Models

In a series of papers Murray and von Neumann searched for algebras
more general than B(H).

The new algebras are known today as von Neumann algebras, and their
elementary components can be classified as Type I, Type II and Type III
factors.

It can be shown that, the projective elements of a factor form an
orthomodular lattice. Classical models can be described as commutative
algebras.

The models of standard quantum mechanics can be described by using
Type I factors (Type In for finite dimensional Hilbert spaces and Type I∞
for infinite dimensional models). These are algebras isomorphic to the
set of bounded operators on a Hilbert space.
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Quantum Probabilistic Models

Further work revealed that a rigorous approach to the study of quantum
systems with infinite degrees of freedom needed the use of more general
von Neumann algebras, as is the case in the axiomatic formulation of
relativistic quantum mechanics. A similar situation holds in algebraic
quantum statistical mechanics.

In these models, States are described as complex functionals satisfying
certain normalization conditions, and when restricted to the projective
elements of the algebras, define measures over lattices which are not the
same to those of standard quantum mechanics.
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Maximal Boolean Subalgebras: Contextual probabilistic
Models

Contextuality rules
It is important to mention that an arbitrary orthomodular lattice L can be
written as a sum:

L =
∨
B∈B
B

where B is the set of all possible Boolean subalgebras of L.

A state s on L defines a classical probability measure on each B. In other
words, sB(. . .) := s|B(. . .) is a Kolmogorovian measure over B.
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Examples: Q-bit

Qbit
Notice that whenH is finite dimensional, its maximal Boolean
subalgebras will be finite.

P(C2) =⇒ {0,P,¬P⊥, 1C2} with P = |ϕ〉〈ϕ| for some unit norm vector
|ϕ〉 and P⊥ = |ϕ⊥〉〈ϕ⊥|.
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Boolean algebra

Figure: Hasse diagram of B2

B2

∅

{1} {2}

{1, 2}
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Skeleton of a qbit

P(C2)

1

. . .¬p¬q. . .pq. . .

0
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Examples: Q-trit

Qtrit-contextuality

P(C3) =⇒
P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Given |ϕ1〉, |ϕ2〉 and |ϕ3〉 =⇒

{0,P1,P2,P3,P12,P13,P23, 1C3}

Pi = |ϕi〉〈ϕi| (i = 1, 2, 3) and Pij := |ϕi〉〈ϕi|+ |ϕj〉〈ϕj| (i, j = 1, 2, 3).
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Qtrit Boolean subalgebras:

Figure: Maximal Boolean subalgebras of C3
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Figure: Skeleton of C3
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Partial Kolmogorovian measures

Partial measures
A quantum state ρ defines a Kolmogorovian probability distribution on
each maximal subalgebra of an orthomodular lattice.

Something completely analogous occurs for more general physical
theories of importance.

But these Kolmogorovian measures are pasted in a coherent way: Born’s
rule (von Neumann’s axioms).
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Generalized Probabilistic Models

This opens the door to a meaningful generalization of Kolmogorov’s axioms
to a wide variety of orthomodular lattices.
Let L be an orthomodular lattice. Then, define

s : L → [0; 1],

(L standing for the lattice of all events) such that:

s(0) = 0. (10)

s(E⊥) = 1− s(E),

and, for a denumerable and pairwise orthogonal family of events Ej

s(
∑

j

Ej) =
∑

j

s(Ej).

where L is a general orthomodular lattice (with L = Σ and L = P(H) for the
Kolmogorovian and quantum cases respectively).
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Generalized Probabilistic Models

Another way to put this in a more general setting, is to consider a set of
states of a particular probabilistic model as a convex set.

While classical systems can be described as simplexes, non-classical
theories can display a more involved geometrical structure.

These models can go far beyond classical and quantum mechanics, and
can be used to described different theories (such as, for example,
Popescu Rorlich boxes).

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 24 / 50



Generalized Probabilistic Models

Another way to put this in a more general setting, is to consider a set of
states of a particular probabilistic model as a convex set.

While classical systems can be described as simplexes, non-classical
theories can display a more involved geometrical structure.

These models can go far beyond classical and quantum mechanics, and
can be used to described different theories (such as, for example,
Popescu Rorlich boxes).

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 24 / 50



Generalized Probabilistic Models

Another way to put this in a more general setting, is to consider a set of
states of a particular probabilistic model as a convex set.

While classical systems can be described as simplexes, non-classical
theories can display a more involved geometrical structure.

These models can go far beyond classical and quantum mechanics, and
can be used to described different theories (such as, for example,
Popescu Rorlich boxes).

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 24 / 50



Generalized Probabilistic Models

The fact that states of physical theories can be considered as measures
over different sets of possible experimental results, reveals an essential
structural feature of all possible physical statistical theories.

A statistical model must specify the probabilities of actualization of all
possible measurable quantities of the system involved: this is a feature
which is common to all models, no matter how different they are. A
study of the ontological constrains imposed by this general structure was
not addressed previously in the literature.

The structure of these measurable properties imposes severe restrictions
on the interpretation of the probabilities defined by the states, depending
on the algebraic and geometric features of the underlying event structure.

This has implications for the different interpretations of probability
theory.
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Generalized Probabilistic Models

Suppose that we have a physical system whose states are given by
measures which yield definite probabilities for the different outcomes of
all possible experiments.

For operational purposes and to fix ideas, these probabilities can be
understood in the sense used by Feynman.

Then, for an experiment E with discrete outcomes {Ei}i=1,..,n, the state ν
gives us a probability p(Ei, ν) := ν(Ei) ∈ [0, 1] for each possible value
of i.

The real numbers p(Ei, ν) must satisfy
∑n

i=1 p(Ei, ν) = 1; otherwise, the
probabilities would not be normalized.

In this way, each state ν defines a concrete probability for each possible
experiment.
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Generalized Probabilistic Models

A crucial assumption here is that the set of all possible states C is convex:
this assumption allows to form new states by mixing old ones.

In formulae, if ν1 and ν2 are states in C, then

ν = αν1 + (1− α)ν2 (11)

belongs to C for all α ∈ [0, 1].

Then, for an experiment E with discrete outcomes {Ei}i=1,..,n, the state ν
gives us a probability p(Ei, ν) := ν(Ei) ∈ [0, 1] for each possible value
of i.

The real numbers p(Ei, ν) must satisfy
∑n

i=1 p(Ei, ν) = 1; otherwise, the
probabilities would not be normalized.

Notice that each possible outcome Ei of each possible experiment E,
induces a linear functional Ei(...) : C −→ [0, 1], with Ei(ν) := ν(Ei).
Functionals of this form are usually called effects.
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Generalized Probabilistic Models

Thus, an experiment will the a collection of effects (functionals)
satisfying

∑n
i=1 Ei(ν) = 1 for all states ν ∈ C.

In other words, the functional
∑n

i=1 Ei(...) equals the identity functional
1 (which satisfies 1(ν) = 1 for all ν ∈ C).

Any convex set C can be canonically included in a vector space V(C).

In this way, any possible experiment that we can perform on the system,
is described as a collection of effects represented mathematically by
affine functionals in an affine space V∗(C).

The model will be said to be finite dimensional if and only if V(C) is
finite dimensional. As in the quantum and classical cases, extreme points
of the convex set of states will represent pure states.
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Generalized Probabilistic Models

It is important to remark the generality of the framework described
above: all possible probabilistic models with finite outcomes can be
described in such a way.

Furthermore, if suitable definitions are made, it is possible to include
continuous outcomes in this setting.
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Pattern Recognition

Intuitively, pattern recognition could be defined as the problem of how a
rational agent (which could be an automata), decides to which class of
objects a given new object belongs.

It is important to remark that there exist approaches that use
non-classical techniques or quantum systems (like quantum computers)
to solve pattern recognition problems. But the entities to be discerned are
classical (i.e., they do not exhibit quantum phenomena such as
superposition principle or entanglement).

There are formulations of the problem for the particular case of
non-relativistic quantum mechanics and quantum optics.

We look for a setting capable of describing generalized probabilistic
models.
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A General Framework

Given a collection of classes of objects Oi, let us assume that the state of
each object oi

j (i.e., object j of class Oi) is represented by a state ν i
j ∈ Ci,

where Ci is the convex operational model representing object oi
j.

We will assume that all objects in the class Oi are represented by the
same convex operational model Ci (i.e., they are all elements of the same
type).

Suppose that weights pi
j are assigned to the objects oi

j, representing the
rational agent’s knowledge about the importance of object oi

j as a
representative of class Ci (if all objects are equally important, the weights
are chosen as pi

j = 1
Ni

).

This means that the probabilistic state of the whole class Oi can be
represented by a mixture νi =

∑
j pjν

i
j ∈ Ci.
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same convex operational model Ci (i.e., they are all elements of the same
type).

Suppose that weights pi
j are assigned to the objects oi

j, representing the
rational agent’s knowledge about the importance of object oi

j as a
representative of class Ci (if all objects are equally important, the weights
are chosen as pi

j = 1
Ni

).

This means that the probabilistic state of the whole class Oi can be
represented by a mixture νi =

∑
j pjν

i
j ∈ Ci.
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We Allow Correlations

It is also possible to assume that non-local correlations are given between
the different classes, and the states νi are reduced states of a global
—possibly entangled— state ν̃.

But we notice that under these conditions, the states νi will be improper
mixtures, and then, no consistent ignorance interpretation can be given
for them [?] (and this means that the weights loss their ignorance
interpretation).

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 33 / 50



We Allow Correlations

It is also possible to assume that non-local correlations are given between
the different classes, and the states νi are reduced states of a global
—possibly entangled— state ν̃.

But we notice that under these conditions, the states νi will be improper
mixtures, and then, no consistent ignorance interpretation can be given
for them [?] (and this means that the weights loss their ignorance
interpretation).

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 33 / 50



Comparison

A particular object o must be identified and compared with the
information given by the generalized states of the classes represented by
νi (or more generally, by ν̃), obtained in the learning process.

The comparison could be also restricted to a collection of properties
~a = (α1, ...., αm), represented now by generalized effects αi.

We will assume, as usual, that knowledge about o is represented by a
generalized state ν. Notice that, in order to obtain ν, several copies of the
unknown object o may be needed, whenever the probabilistic character
of the model is irreducible.
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Quantum Pattern Recognition

Suppose that we are given a collection of quantum objects each
belonging to a particular class Qi, and given a particular object q, the
rational agent aims to determine to which class it is assigned.

The collection of chosen properties can be non-commutative. Thus, the
properties of object qi

j (object j of class Ci) will be represented by
operators (representing the class Qi).

The only thing that we can do, is to assign probabilities for each property
coordinate using the quantum state ρi

j of each object qi
j. Thus, if —as in

the classical case— we assign weights pi
j to each object qi

j, knowledge
about the class Qi can now be represented by a mixture ρi =

∑
j pi

jρ
i
j.
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Quantum Pattern Recognition

Given the fact that in general, interaction between physical systems
represented by classes Qi can be non-negligible, and thus, non-trivial
correlations may be involved, we will assume that the states ρi are arbitrary
states of the Hilbert spaceHi (i.e., the ρi are not necessarily proper mixtures).
We call ρ̃ the global state of the whole set of classes.
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Quantum Pattern Recognition

Given an arbitrary individual q, we are thus faced with the problem of
determining to which class Qi it should be assigned.

In the general case, the state of q will be represented by a density
operator ρ (acting on one of the unknown Hilbert spacesHi, but certainly
embedded in the Hilbert spaceH1 ⊗H2...⊗Hn).

Notice however, that the state ρ could, in the general case, be unknown to
the agent, and he may have only access to a sample of values {aj} of the
operators σj.

Thus, for the classification problem, he should be able to, either
reconstruct the unknown state ρ using quantum statistical inference
methods, or just directly compare the sampled values with the
information provided by the global state ρ̃.
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Quantum Pattern Recognition

Suppose now that at an initial state, the agent has an information ρi(0)
for each class Qi, and he is confronted with an individual of which it has
information ρ(0), and a global state ρ̃(0).

Then, after the classification process at time t, it is necessary to update
knowledge about the classes and the global state to new states ρi(t) and
ρ̃(t), respectively.
This can be suitably modeled by a quantum operation Λ(t) acting on the
convex quantum set of states of C(H1 ⊗H2...⊗Hn), such that
Λ(t)ρ̃(0) = ρ̃(t).
A quantum learning operator will be thus a family of quantum
operations {Λ(t1), ...,Λ(tn)}. Hence, a quantum learning process will be
a succession of global states
{ρ̃(0),Λ(t1)ρ̃(0),Λ(t2)ρ̃(t1), ...,Λ(tn)ρ̃(tn−1)}.
The goal of the learning process will be achieved if the uncertainty of the
final state is reduced. The dispersion could be measured using the von
Neumann entropy (or other quantum entropic measures).
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ARQFT

In algebraic relativistic quantum field theory, a C∗-algebra is assigned to
any open set O of a differential manifold M [?, ?].

Open sets are intended to represent local regions, and M models
space-time with its symmetries. Local algebras are intended to represent
local observables (such as particle detectors).

For example, in ARQFT, M is Minkowski’s four dimensional space-time,
endowed with the Poincare group of transformations.

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 39 / 50



ARQFT

In algebraic relativistic quantum field theory, a C∗-algebra is assigned to
any open set O of a differential manifold M [?, ?].

Open sets are intended to represent local regions, and M models
space-time with its symmetries. Local algebras are intended to represent
local observables (such as particle detectors).

For example, in ARQFT, M is Minkowski’s four dimensional space-time,
endowed with the Poincare group of transformations.

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 39 / 50



ARQFT

In algebraic relativistic quantum field theory, a C∗-algebra is assigned to
any open set O of a differential manifold M [?, ?].

Open sets are intended to represent local regions, and M models
space-time with its symmetries. Local algebras are intended to represent
local observables (such as particle detectors).

For example, in ARQFT, M is Minkowski’s four dimensional space-time,
endowed with the Poincare group of transformations.

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 39 / 50



ARQFT

It turns out, that (global) states of the field define measures over the local
algebras.

But in general, the local algebras of ARQFT will not be Type I factors as
in standard quantum mechanics. For example, it can be shown that for a
diamond region, a Type III factor must be assigned.

This means that the orthomodular lattice involved will not be the lattice
of projection operators of a Hilbert space, but a one with different
properties.

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 40 / 50



ARQFT

It turns out, that (global) states of the field define measures over the local
algebras.

But in general, the local algebras of ARQFT will not be Type I factors as
in standard quantum mechanics. For example, it can be shown that for a
diamond region, a Type III factor must be assigned.

This means that the orthomodular lattice involved will not be the lattice
of projection operators of a Hilbert space, but a one with different
properties.

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 40 / 50



ARQFT

It turns out, that (global) states of the field define measures over the local
algebras.

But in general, the local algebras of ARQFT will not be Type I factors as
in standard quantum mechanics. For example, it can be shown that for a
diamond region, a Type III factor must be assigned.

This means that the orthomodular lattice involved will not be the lattice
of projection operators of a Hilbert space, but a one with different
properties.

Federico Holik (Instituto de Fı́sica de La PLata) Quantum Probability and The Problem of Pattern Recognition4/11/2016 - Cagliari -2016 40 / 50



ARQFT

This means that the discrimination problem must be posed between
classes Fi represented by states of the field ϕi and a given individual state
ϕ.

In practical implementations, these states and the discrimination
problem, could be restricted to a concrete space-time region.
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ARQFT

This could be useful for information protocols based on quantum optics
(where the effects of the field character of the theory cannot be
neglected).

In particular, a simpler but analogous version of the problem could be
conceived by appealing to the Fock-space formalism, in order to describe
the fields and the states involved.
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Pattern Recognition In AQSM:

As in the quantum field theoretic example, a similar problem can be
posed in the algebraic approach to quantum statistics.

Here, a typical problem could be to discern a kind of atoms from a set of
classes of gasses; now, the comparison will be between the state of the
item and the classes involved.
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Pattern Recognition In AQSM:

An example of interest could appear in problems related to image
recognition.

Suppose that a machine has to solve a problem of recognizing
handwritten digits. These drawings are first transformed into digitalized
images of n× n pixels.

This means that the information of each image is stored in a vector~x of
length n× n.

The goal is to build our automata in such a way that it takes a vector~x as
an input, and gives us as output the identity of the digit in question. In a
real hardware, this vector should be stored using bits of a given length.
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Pattern Recognition In AQSM:

Suppose that we have a spacial arrangement L of N-dimensional
quantum systems.

For each point x ∈ L we have a Hilbert spaceHx, and for each subset of
points Γ ∈ L, the associated Hilbert space is given by the tensor product
HΓ =

⊗
x∈ΓHx.

Every subset Γ ∈ L has associated an algebra A(HΓ). The norm
completion of the collection A = {AΓ}Γ∈L is a quasi-local C?-algebra
when equipped with the net of C?-subalgebras AΓ.

Thus, the classification problem must be done with respect to states
defined in this algebra (such as KMS-states [?]), whose properties are
different to that of a Type I factor.
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when equipped with the net of C?-subalgebras AΓ.

Thus, the classification problem must be done with respect to states
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Just to mention...

Recent findings suggest that quantum speedups are obtained for
structured problems.

This is the case for the most known quantum algorithms: Shor,
Deutsch-Jozsa, etc.

In these examples a pattern is to be found (for example, determining the
period of a periodic function).

Our framework could be useful to understand these processes.
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Conclusions

We propose a generalization of the pattern recognition problem to the
non-commutative (or equivalently, non-Kolmogorovian) setting
involving incompatible (non-simultaneously determinable) properties.

In this way, we have shown that it is possible to find some important (and
non-equivalent) examples of interest: standard quantum mechanics,
algebraic relativistic quantum field theory, and algebraic quantum
statistics.
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Conclusions

The examples does not restrict only to these ones, but can include more
general models, and particular, hybrid systems (classical and quantum).

Our perspective could be useful to characterize some of the most
important quantum computation algorithms (Shor, Simon and
Jozsa-Deutsche) as quantum pattern recognition problems.
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