Quantum Probability and The Problem of Pattern Recognition

Federico Holik

Outline

(1) Introduction

(2) Non-Kolmogorovian probabilistic models

3 Pattern Recognition

Introduction

- We discuss a possible generalization of the problem of pattern recognition to arbitrary probabilistic models.
[F. Holik, G. Sergioli, H. Freytes, A. Plastino, "Pattern Recognition In Non-Kolmogorovian Structures", arxiv:1609.06340, (2016)]

Introduction

- We discuss a possible generalization of the problem of pattern recognition to arbitrary probabilistic models.
- We discuss how to deal with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov's axioms.
[F. Holik, G. Sergioli, H. Freytes, A. Plastino, "Pattern Recognition In Non-Kolmogorovian Structures", arxiv:1609.06340, (2016)]

Introduction

- We discuss a possible generalization of the problem of pattern recognition to arbitrary probabilistic models.
- We discuss how to deal with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov's axioms.
- Our framework allows for the introduction of non-trivial correlations (as entanglement or discord) between the different species involved, opening the door to a new way of harnessing these physical resources for solving pattern recognition problems.
[F. Holik, G. Sergioli, H. Freytes, A. Plastino, "Pattern Recognition In Non-Kolmogorovian Structures", arxiv:1609.06340, (2016)]

Introduction

- One of the most important axiomatizations in probability theory is due to Kolmogorov.

Introduction

- One of the most important axiomatizations in probability theory is due to Kolmogorov.
- In his approach, probabilities are considered as measures defined over boolean sigma algebras of a sample space.

Introduction

- One of the most important axiomatizations in probability theory is due to Kolmogorov.
- In his approach, probabilities are considered as measures defined over boolean sigma algebras of a sample space.
- Interestingly enough, states of classical statistical theories can be described using Kolmogorov's axioms, because they define measures over the sigma algebra of measurable subsets of phase space.

Classical Probabilistic Models

- An important example of a classical probabilistic model is provided by a point particle moving in space time whose states are described by probability functions over R^{6}.

Classical Probabilistic Models

- An important example of a classical probabilistic model is provided by a point particle moving in space time whose states are described by probability functions over R^{6}.
- Suppose that A represents an observable quantity (such as energy or angular momentum), i.e., it is defined as a function over phase space.

Classical Probabilistic Models

- An important example of a classical probabilistic model is provided by a point particle moving in space time whose states are described by probability functions over R^{6}.
- Suppose that A represents an observable quantity (such as energy or angular momentum), i.e., it is defined as a function over phase space.
- Then, the proposition "the value of A lies in the interval Δ ", defines a testeable proposition, which we denote by A_{Δ}.

Classical Probabilistic Models

- An important example of a classical probabilistic model is provided by a point particle moving in space time whose states are described by probability functions over R^{6}.
- Suppose that A represents an observable quantity (such as energy or angular momentum), i.e., it is defined as a function over phase space.
- Then, the proposition "the value of A lies in the interval Δ ", defines a testeable proposition, which we denote by A_{Δ}.
- It is natural to associate to A_{Δ} which can be represented as the measurable set $f^{-1}(\Delta)$ (the set of all states which make the proposition true).

Classical Probabilistic Models

- An important example of a classical probabilistic model is provided by a point particle moving in space time whose states are described by probability functions over R^{6}.
- Suppose that A represents an observable quantity (such as energy or angular momentum), i.e., it is defined as a function over phase space.
- Then, the proposition "the value of A lies in the interval Δ ", defines a testeable proposition, which we denote by A_{Δ}.
- It is natural to associate to A_{Δ} which can be represented as the measurable set $f^{-1}(\Delta)$ (the set of all states which make the proposition true).
- If the probabilistic state of the system is given by μ, the corresponding probability of occurrence of f_{Δ} will be given by $\mu\left(f^{-1}(\Delta)\right)$.

Classical Probabilistic Models

- There is a correspondence between a classical probabilistic state and the axioms of classical probability theory.

Classical Probabilistic Models

- There is a correspondence between a classical probabilistic state and the axioms of classical probability theory.
- Indeed, the axioms of Kolmogorov define a probability function as a measure μ on a sigma-algebra Σ such that

$$
\begin{equation*}
\mu: \Sigma \rightarrow[0,1] \tag{1}
\end{equation*}
$$

which satisfies

$$
\begin{gather*}
\mu(\emptyset)=0 \tag{2}\\
\mu\left(A^{c}\right)=1-\mu(A), \tag{3}
\end{gather*}
$$

where $(\ldots)^{c}$ means set-theoretical-complement. For any pairwise disjoint denumerable family $\left\{A_{i}\right\}_{i \in I}$,

$$
\begin{equation*}
\mu\left(\bigcup_{i \in I} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right) \tag{4}
\end{equation*}
$$

Classical Probabilistic Models

- There is a correspondence between a classical probabilistic state and the axioms of classical probability theory.
- Indeed, the axioms of Kolmogorov define a probability function as a measure μ on a sigma-algebra Σ such that

$$
\begin{equation*}
\mu: \Sigma \rightarrow[0,1] \tag{1}
\end{equation*}
$$

which satisfies

$$
\begin{gather*}
\mu(\emptyset)=0 \tag{2}\\
\mu\left(A^{c}\right)=1-\mu(A), \tag{3}
\end{gather*}
$$

where $(\ldots)^{c}$ means set-theoretical-complement. For any pairwise disjoint denumerable family $\left\{A_{i}\right\}_{i \in I}$,

$$
\begin{equation*}
\mu\left(\bigcup_{i \in I} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right) \tag{4}
\end{equation*}
$$

- A state of a classical probabilistic theory will be defined as a Kolmogorovian measure with $\Sigma=\mathcal{P}(\Gamma)$.

Outline

(1) Introduction

(2) Non-Kolmogorovian probabilistic models

3 Pattern Recognition

Quantum Probabilistic Models

- An interesting approach to the statistical character of quantum systems consists in considering quantum states as measures over the non boolean structure of projection operators in Hilbert space.

Quantum Probabilistic Models

- An interesting approach to the statistical character of quantum systems consists in considering quantum states as measures over the non boolean structure of projection operators in Hilbert space.
- As is well known, projection operators can be used to describe elementary experiments (the analogue of this in the classical setting are the subsets of phase space).

Quantum Probabilistic Models

- An interesting approach to the statistical character of quantum systems consists in considering quantum states as measures over the non boolean structure of projection operators in Hilbert space.
- As is well known, projection operators can be used to describe elementary experiments (the analogue of this in the classical setting are the subsets of phase space).
- In this way, a comparison between quantum states and classical probabilistic states can be traced in formal and conceptual grounds.

Quantum Probabilistic Models

- Birkhoff and von Neumann showed that the empirical propositions associated to a classical system can be naturally organized as a Boolean algebra (which is an orthocomplemented distributive lattice).

Quantum Probabilistic Models

- Birkhoff and von Neumann showed that the empirical propositions associated to a classical system can be naturally organized as a Boolean algebra (which is an orthocomplemented distributive lattice).
- While classical observables are defined as functions over phase space and form a commutative algebra, quantum observables are represented by self adjoint operators, which fail to be commutative.

Quantum Probabilistic Models

- Birkhoff and von Neumann showed that the empirical propositions associated to a classical system can be naturally organized as a Boolean algebra (which is an orthocomplemented distributive lattice).
- While classical observables are defined as functions over phase space and form a commutative algebra, quantum observables are represented by self adjoint operators, which fail to be commutative.
- Due to this fact, empirical propositions associated to quantum systems are represented by projection operators, which are in one to one correspondence to closed subspaces related to the projective geometry of a Hilbert space.

Quantum Probabilistic Models

- Birkhoff and von Neumann showed that the empirical propositions associated to a classical system can be naturally organized as a Boolean algebra (which is an orthocomplemented distributive lattice).
- While classical observables are defined as functions over phase space and form a commutative algebra, quantum observables are represented by self adjoint operators, which fail to be commutative.
- Due to this fact, empirical propositions associated to quantum systems are represented by projection operators, which are in one to one correspondence to closed subspaces related to the projective geometry of a Hilbert space.
- Thus, empirical propositions associated to quantum systems form a non-distributive -and thus non-Boolean- lattice.

Quantum Probabilistic Models

- States of quantum models can be described in an analogous way, but using operators acting on Hilbert spaces instead of functions over a phase space.

Quantum Probabilistic Models

- States of quantum models can be described in an analogous way, but using operators acting on Hilbert spaces instead of functions over a phase space.
- If A represents the self adjoint operator of an observable associated to a quantum particle, the proposition "the value of A lies in the interval Δ " will define a testeable experiment represented by the projection operator $\mathbf{P}_{\mathbf{A}}(\Delta) \in \mathcal{P}(\mathcal{H})$, i.e., the projection that the spectral measure of \mathbf{A} assigns to the Borel set Δ.

Quantum Probabilistic Models

- States of quantum models can be described in an analogous way, but using operators acting on Hilbert spaces instead of functions over a phase space.
- If A represents the self adjoint operator of an observable associated to a quantum particle, the proposition "the value of \mathbf{A} lies in the interval Δ " will define a testeable experiment represented by the projection operator $\mathbf{P}_{\mathbf{A}}(\Delta) \in \mathcal{P}(\mathcal{H})$, i.e., the projection that the spectral measure of \mathbf{A} assigns to the Borel set Δ.
- The probability assigned to the event $\mathbf{P}_{\mathbf{A}}(\Delta)$, given that the system is prepared in the state ρ, is computed using Born's rule:

$$
\begin{equation*}
p\left(\mathbf{P}_{\mathbf{A}}(\Delta)\right)=\operatorname{tr}\left(\rho \mathbf{P}_{\mathbf{A}}(\Delta)\right) \tag{5}
\end{equation*}
$$

Quantum Probabilistic Models

- States of quantum models can be described in an analogous way, but using operators acting on Hilbert spaces instead of functions over a phase space.
- If A represents the self adjoint operator of an observable associated to a quantum particle, the proposition "the value of A lies in the interval Δ " will define a testeable experiment represented by the projection operator $\mathbf{P}_{\mathbf{A}}(\Delta) \in \mathcal{P}(\mathcal{H})$, i.e., the projection that the spectral measure of \mathbf{A} assigns to the Borel set Δ.
- The probability assigned to the event $\mathbf{P}_{\mathbf{A}}(\Delta)$, given that the system is prepared in the state ρ, is computed using Born's rule:

$$
\begin{equation*}
p\left(\mathbf{P}_{\mathbf{A}}(\Delta)\right)=\operatorname{tr}\left(\rho \mathbf{P}_{\mathbf{A}}(\Delta)\right) \tag{5}
\end{equation*}
$$

- Born's rule defines a measure on $\mathcal{P}(\mathcal{H})$ with which it is possible to compute all probabilities and mean values for all physical observables of interest.

Quantum Probabilistic Models

Due to Gleason's theorem a quantum state can be defined by a measure s over the orthomodular lattice of projection operators $\mathcal{P}(\mathcal{H})$ as follows

$$
\begin{equation*}
s: \mathcal{P}(\mathcal{H}) \rightarrow[0 ; 1] \tag{6}
\end{equation*}
$$

such that:

$$
\begin{align*}
s(\mathbf{0})= & 0(\mathbf{0} \text { is the null subspace }) . \tag{7}\\
& s\left(P^{\perp}\right)=1-s(P), \tag{8}
\end{align*}
$$

and, for a denumerable and pairwise orthogonal family of projections P_{j}

$$
\begin{equation*}
s\left(\sum_{j} P_{j}\right)=\sum_{j} s\left(P_{j}\right) \tag{9}
\end{equation*}
$$

Quantum Probabilistic Models

- Despite their mathematical resemblance, there is a big difference between classical and quantum measures.

Quantum Probabilistic Models

- Despite their mathematical resemblance, there is a big difference between classical and quantum measures.
- In the quantum case, the Boolean algebra Σ is replaced by $\mathcal{P}(\mathcal{H})$, and the other conditions are the natural generalizations of the classical event structure to the non-Boolean setting.

Quantum Probabilistic Models

- Despite their mathematical resemblance, there is a big difference between classical and quantum measures.
- In the quantum case, the Boolean algebra Σ is replaced by $\mathcal{P}(\mathcal{H})$, and the other conditions are the natural generalizations of the classical event structure to the non-Boolean setting.
- The fact that $\mathcal{P}(\mathcal{H})$ is not Boolean lies behind the peculiarities of probabilities arising in quantum phenomena.

Quantum Probabilistic Models

- In a series of papers Murray and von Neumann searched for algebras more general than $\mathcal{B}(\mathcal{H})$.

Quantum Probabilistic Models

- In a series of papers Murray and von Neumann searched for algebras more general than $\mathcal{B}(\mathcal{H})$.
- The new algebras are known today as von Neumann algebras, and their elementary components can be classified as Type I, Type II and Type III factors.

Quantum Probabilistic Models

- In a series of papers Murray and von Neumann searched for algebras more general than $\mathcal{B}(\mathcal{H})$.
- The new algebras are known today as von Neumann algebras, and their elementary components can be classified as Type I, Type II and Type III factors.
- It can be shown that, the projective elements of a factor form an orthomodular lattice. Classical models can be described as commutative algebras.

Quantum Probabilistic Models

- In a series of papers Murray and von Neumann searched for algebras more general than $\mathcal{B}(\mathcal{H})$.
- The new algebras are known today as von Neumann algebras, and their elementary components can be classified as Type I, Type II and Type III factors.
- It can be shown that, the projective elements of a factor form an orthomodular lattice. Classical models can be described as commutative algebras.
- The models of standard quantum mechanics can be described by using Type I factors (Type I_{n} for finite dimensional Hilbert spaces and Type I_{∞} for infinite dimensional models). These are algebras isomorphic to the set of bounded operators on a Hilbert space.

Quantum Probabilistic Models

- Further work revealed that a rigorous approach to the study of quantum systems with infinite degrees of freedom needed the use of more general von Neumann algebras, as is the case in the axiomatic formulation of relativistic quantum mechanics. A similar situation holds in algebraic quantum statistical mechanics.

Quantum Probabilistic Models

- Further work revealed that a rigorous approach to the study of quantum systems with infinite degrees of freedom needed the use of more general von Neumann algebras, as is the case in the axiomatic formulation of relativistic quantum mechanics. A similar situation holds in algebraic quantum statistical mechanics.
- In these models, States are described as complex functionals satisfying certain normalization conditions, and when restricted to the projective elements of the algebras, define measures over lattices which are not the same to those of standard quantum mechanics.

Maximal Boolean Subalgebras: Contextual probabilistic Models

Contextuality rules

- It is important to mention that an arbitrary orthomodular lattice \mathcal{L} can be written as a sum:

$$
\mathcal{L}=\bigvee_{\mathcal{B} \in \mathfrak{B}} \mathcal{B}
$$

where \mathfrak{B} is the set of all possible Boolean subalgebras of \mathcal{L}.

Maximal Boolean Subalgebras: Contextual probabilistic Models

Contextuality rules

- It is important to mention that an arbitrary orthomodular lattice \mathcal{L} can be written as a sum:

$$
\mathcal{L}=\bigvee_{\mathcal{B} \in \mathfrak{B}} \mathcal{B}
$$

where \mathfrak{B} is the set of all possible Boolean subalgebras of \mathcal{L}.

- A state s on \mathcal{L} defines a classical probability measure on each \mathcal{B}. In other words, $s_{\mathcal{B}}(\ldots):=s \mid \mathcal{B}(\ldots)$ is a Kolmogorovian measure over \mathcal{B}.

Examples: Q-bit

Qbit

- Notice that when \mathcal{H} is finite dimensional, its maximal Boolean subalgebras will be finite.

Examples: Q-bit

Qbit

- Notice that when \mathcal{H} is finite dimensional, its maximal Boolean subalgebras will be finite.
- $\mathcal{P}\left(\mathbb{C}^{2}\right) \Longrightarrow\left\{\mathbf{0}, \mathbf{P}, \neg \mathbf{P}^{\perp}, \mathbf{1}_{\mathbb{C}^{2}}\right\}$ with $\mathbf{P}=|\varphi\rangle\langle\varphi|$ for some unit norm vector $|\varphi\rangle$ and $\mathbf{P}^{\perp}=\left|\varphi^{\perp}\right\rangle\left\langle\varphi^{\perp}\right|$.

Boolean algebra

Figure: Hasse diagram of \mathcal{B}_{2}

$$
B_{2}
$$

Skeleton of a qbit

$$
\mathcal{P}\left(\mathbb{C}^{2}\right)
$$

Examples: Q-trit

Qtrit-contextuality

- $\mathcal{P}\left(\mathbb{C}^{3}\right) \Longrightarrow$

$$
\mathcal{P}(\{a, b, c\})=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Examples: Q-trit

Qtrit-contextuality

- $\mathcal{P}\left(\mathbb{C}^{3}\right) \Longrightarrow$

$$
\mathcal{P}(\{a, b, c\})=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

- Given $\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle$ and $\left|\varphi_{3}\right\rangle \Longrightarrow$

$$
\begin{gathered}
\left\{\mathbf{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{12}, \mathbf{P}_{13}, \mathbf{P}_{23}, \mathbf{1}_{\mathbb{C}^{3}}\right\} \\
P_{i}=\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|(i=1,2,3) \text { and } P_{i j}:=\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|+\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|(i, j=1,2,3) .
\end{gathered}
$$

Qtrit Boolean subalgebras:

Figure: Maximal Boolean subalgebras of \mathbb{C}^{3}

Figure: Skeleton of \mathbb{C}^{3}

Partial Kolmogorovian measures

Partial measures

- A quantum state ρ defines a Kolmogorovian probability distribution on each maximal subalgebra of an orthomodular lattice.

Partial Kolmogorovian measures

Partial measures

- A quantum state ρ defines a Kolmogorovian probability distribution on each maximal subalgebra of an orthomodular lattice.
- Something completely analogous occurs for more general physical theories of importance.

Partial Kolmogorovian measures

Partial measures

- A quantum state ρ defines a Kolmogorovian probability distribution on each maximal subalgebra of an orthomodular lattice.
- Something completely analogous occurs for more general physical theories of importance.
- But these Kolmogorovian measures are pasted in a coherent way: Born's rule (von Neumann's axioms).

Generalized Probabilistic Models

This opens the door to a meaningful generalization of Kolmogorov's axioms to a wide variety of orthomodular lattices.
Let \mathcal{L} be an orthomodular lattice. Then, define

$$
s: \mathcal{L} \rightarrow[0 ; 1],
$$

(\mathcal{L} standing for the lattice of all events) such that:

$$
\begin{gathered}
s(\mathbf{0})=0 . \\
s\left(E^{\perp}\right)=1-s(E),
\end{gathered}
$$

and, for a denumerable and pairwise orthogonal family of events E_{j}

$$
s\left(\sum_{j} E_{j}\right)=\sum_{j} s\left(E_{j}\right)
$$

where \mathcal{L} is a general orthomodular lattice (with $\mathcal{L}=\Sigma$ and $\mathcal{L}=\mathcal{P}(\mathcal{H})$ for the Kolmogorovian and quantum cases respectively).

Generalized Probabilistic Models

- Another way to put this in a more general setting, is to consider a set of states of a particular probabilistic model as a convex set.

Generalized Probabilistic Models

- Another way to put this in a more general setting, is to consider a set of states of a particular probabilistic model as a convex set.
- While classical systems can be described as simplexes, non-classical theories can display a more involved geometrical structure.

Generalized Probabilistic Models

- Another way to put this in a more general setting, is to consider a set of states of a particular probabilistic model as a convex set.
- While classical systems can be described as simplexes, non-classical theories can display a more involved geometrical structure.
- These models can go far beyond classical and quantum mechanics, and can be used to described different theories (such as, for example, Popescu Rorlich boxes).

Generalized Probabilistic Models

- The fact that states of physical theories can be considered as measures over different sets of possible experimental results, reveals an essential structural feature of all possible physical statistical theories.

Generalized Probabilistic Models

- The fact that states of physical theories can be considered as measures over different sets of possible experimental results, reveals an essential structural feature of all possible physical statistical theories.
- A statistical model must specify the probabilities of actualization of all possible measurable quantities of the system involved: this is a feature which is common to all models, no matter how different they are. A study of the ontological constrains imposed by this general structure was not addressed previously in the literature.

Generalized Probabilistic Models

- The fact that states of physical theories can be considered as measures over different sets of possible experimental results, reveals an essential structural feature of all possible physical statistical theories.
- A statistical model must specify the probabilities of actualization of all possible measurable quantities of the system involved: this is a feature which is common to all models, no matter how different they are. A study of the ontological constrains imposed by this general structure was not addressed previously in the literature.
- The structure of these measurable properties imposes severe restrictions on the interpretation of the probabilities defined by the states, depending on the algebraic and geometric features of the underlying event structure.

Generalized Probabilistic Models

- The fact that states of physical theories can be considered as measures over different sets of possible experimental results, reveals an essential structural feature of all possible physical statistical theories.
- A statistical model must specify the probabilities of actualization of all possible measurable quantities of the system involved: this is a feature which is common to all models, no matter how different they are. A study of the ontological constrains imposed by this general structure was not addressed previously in the literature.
- The structure of these measurable properties imposes severe restrictions on the interpretation of the probabilities defined by the states, depending on the algebraic and geometric features of the underlying event structure.
- This has implications for the different interpretations of probability theory.

Generalized Probabilistic Models

- Suppose that we have a physical system whose states are given by measures which yield definite probabilities for the different outcomes of all possible experiments.

Generalized Probabilistic Models

- Suppose that we have a physical system whose states are given by measures which yield definite probabilities for the different outcomes of all possible experiments.
- For operational purposes and to fix ideas, these probabilities can be understood in the sense used by Feynman.

Generalized Probabilistic Models

- Suppose that we have a physical system whose states are given by measures which yield definite probabilities for the different outcomes of all possible experiments.
- For operational purposes and to fix ideas, these probabilities can be understood in the sense used by Feynman.
- Then, for an experiment E with discrete outcomes $\left\{E_{i}\right\}_{i=1, \ldots, n}$, the state ν gives us a probability $p\left(E_{i}, \nu\right):=\nu\left(E_{i}\right) \in[0,1]$ for each possible value of i.

Generalized Probabilistic Models

- Suppose that we have a physical system whose states are given by measures which yield definite probabilities for the different outcomes of all possible experiments.
- For operational purposes and to fix ideas, these probabilities can be understood in the sense used by Feynman.
- Then, for an experiment E with discrete outcomes $\left\{E_{i}\right\}_{i=1, . ., n}$, the state ν gives us a probability $p\left(E_{i}, \nu\right):=\nu\left(E_{i}\right) \in[0,1]$ for each possible value of i.
- The real numbers $p\left(E_{i}, \nu\right)$ must satisfy $\sum_{i=1}^{n} p\left(E_{i}, \nu\right)=1$; otherwise, the probabilities would not be normalized.

Generalized Probabilistic Models

- Suppose that we have a physical system whose states are given by measures which yield definite probabilities for the different outcomes of all possible experiments.
- For operational purposes and to fix ideas, these probabilities can be understood in the sense used by Feynman.
- Then, for an experiment E with discrete outcomes $\left\{E_{i}\right\}_{i=1, \ldots, n}$, the state ν gives us a probability $p\left(E_{i}, \nu\right):=\nu\left(E_{i}\right) \in[0,1]$ for each possible value of i.
- The real numbers $p\left(E_{i}, \nu\right)$ must satisfy $\sum_{i=1}^{n} p\left(E_{i}, \nu\right)=1$; otherwise, the probabilities would not be normalized.
- In this way, each state ν defines a concrete probability for each possible experiment.

Generalized Probabilistic Models

- A crucial assumption here is that the set of all possible states \mathcal{C} is convex: this assumption allows to form new states by mixing old ones.

Generalized Probabilistic Models

- A crucial assumption here is that the set of all possible states \mathcal{C} is convex: this assumption allows to form new states by mixing old ones.
- In formulae, if ν_{1} and ν_{2} are states in \mathcal{C}, then

$$
\begin{equation*}
\nu=\alpha \nu_{1}+(1-\alpha) \nu_{2} \tag{11}
\end{equation*}
$$

belongs to \mathcal{C} for all $\alpha \in[0,1]$.

Generalized Probabilistic Models

- A crucial assumption here is that the set of all possible states \mathcal{C} is convex: this assumption allows to form new states by mixing old ones.
- In formulae, if ν_{1} and ν_{2} are states in \mathcal{C}, then

$$
\begin{equation*}
\nu=\alpha \nu_{1}+(1-\alpha) \nu_{2} \tag{11}
\end{equation*}
$$

belongs to \mathcal{C} for all $\alpha \in[0,1]$.

- Then, for an experiment E with discrete outcomes $\left\{E_{i}\right\}_{i=1, \ldots, n}$, the state ν gives us a probability $p\left(E_{i}, \nu\right):=\nu\left(E_{i}\right) \in[0,1]$ for each possible value of i.

Generalized Probabilistic Models

- A crucial assumption here is that the set of all possible states \mathcal{C} is convex: this assumption allows to form new states by mixing old ones.
- In formulae, if ν_{1} and ν_{2} are states in \mathcal{C}, then

$$
\begin{equation*}
\nu=\alpha \nu_{1}+(1-\alpha) \nu_{2} \tag{11}
\end{equation*}
$$

belongs to \mathcal{C} for all $\alpha \in[0,1]$.

- Then, for an experiment E with discrete outcomes $\left\{E_{i}\right\}_{i=1, \ldots, n}$, the state ν gives us a probability $p\left(E_{i}, \nu\right):=\nu\left(E_{i}\right) \in[0,1]$ for each possible value of i.
- The real numbers $p\left(E_{i}, \nu\right)$ must satisfy $\sum_{i=1}^{n} p\left(E_{i}, \nu\right)=1$; otherwise, the probabilities would not be normalized.

Generalized Probabilistic Models

- A crucial assumption here is that the set of all possible states \mathcal{C} is convex: this assumption allows to form new states by mixing old ones.
- In formulae, if ν_{1} and ν_{2} are states in \mathcal{C}, then

$$
\begin{equation*}
\nu=\alpha \nu_{1}+(1-\alpha) \nu_{2} \tag{11}
\end{equation*}
$$

belongs to \mathcal{C} for all $\alpha \in[0,1]$.

- Then, for an experiment E with discrete outcomes $\left\{E_{i}\right\}_{i=1, \ldots, n}$, the state ν gives us a probability $p\left(E_{i}, \nu\right):=\nu\left(E_{i}\right) \in[0,1]$ for each possible value of i.
- The real numbers $p\left(E_{i}, \nu\right)$ must satisfy $\sum_{i=1}^{n} p\left(E_{i}, \nu\right)=1$; otherwise, the probabilities would not be normalized.
- Notice that each possible outcome E_{i} of each possible experiment E, induces a linear functional $E_{i}(\ldots): \mathcal{C} \longrightarrow[0,1]$, with $E_{i}(\nu):=\nu\left(E_{i}\right)$. Functionals of this form are usually called effects.

Generalized Probabilistic Models

- Thus, an experiment will the a collection of effects (functionals) satisfying $\sum_{i=1}^{n} E_{i}(\nu)=1$ for all states $\nu \in \mathcal{C}$.

Generalized Probabilistic Models

- Thus, an experiment will the a collection of effects (functionals) satisfying $\sum_{i=1}^{n} E_{i}(\nu)=1$ for all states $\nu \in \mathcal{C}$.
- In other words, the functional $\sum_{i=1}^{n} E_{i}(\ldots)$ equals the identity functional $\mathbf{1}$ (which satisfies $\mathbf{1}(\nu)=1$ for all $\nu \in \mathcal{C}$).

Generalized Probabilistic Models

- Thus, an experiment will the a collection of effects (functionals) satisfying $\sum_{i=1}^{n} E_{i}(\nu)=1$ for all states $\nu \in \mathcal{C}$.
- In other words, the functional $\sum_{i=1}^{n} E_{i}(\ldots)$ equals the identity functional $\mathbf{1}$ (which satisfies $\mathbf{1}(\nu)=1$ for all $\nu \in \mathcal{C}$).
- Any convex set \mathcal{C} can be canonically included in a vector space $V(\mathcal{C})$.

Generalized Probabilistic Models

- Thus, an experiment will the a collection of effects (functionals) satisfying $\sum_{i=1}^{n} E_{i}(\nu)=1$ for all states $\nu \in \mathcal{C}$.
- In other words, the functional $\sum_{i=1}^{n} E_{i}(\ldots)$ equals the identity functional $\mathbf{1}$ (which satisfies $\mathbf{1}(\nu)=1$ for all $\nu \in \mathcal{C}$).
- Any convex set \mathcal{C} can be canonically included in a vector space $V(\mathcal{C})$.
- In this way, any possible experiment that we can perform on the system, is described as a collection of effects represented mathematically by affine functionals in an affine space $V^{*}(\mathcal{C})$.

Generalized Probabilistic Models

- Thus, an experiment will the a collection of effects (functionals) satisfying $\sum_{i=1}^{n} E_{i}(\nu)=1$ for all states $\nu \in \mathcal{C}$.
- In other words, the functional $\sum_{i=1}^{n} E_{i}(\ldots)$ equals the identity functional $\mathbf{1}$ (which satisfies $\mathbf{1}(\nu)=1$ for all $\nu \in \mathcal{C}$).
- Any convex set \mathcal{C} can be canonically included in a vector space $V(\mathcal{C})$.
- In this way, any possible experiment that we can perform on the system, is described as a collection of effects represented mathematically by affine functionals in an affine space $V^{*}(\mathcal{C})$.
- The model will be said to be finite dimensional if and only if $V(\mathcal{C})$ is finite dimensional. As in the quantum and classical cases, extreme points of the convex set of states will represent pure states.

Generalized Probabilistic Models

- It is important to remark the generality of the framework described above: all possible probabilistic models with finite outcomes can be described in such a way.

Generalized Probabilistic Models

- It is important to remark the generality of the framework described above: all possible probabilistic models with finite outcomes can be described in such a way.
- Furthermore, if suitable definitions are made, it is possible to include continuous outcomes in this setting.

Outline

(1) Introduction

(2) Non-Kolmogorovian probabilistic models

(3) Pattern Recognition

(4) conclusions

Pattern Recognition

- Intuitively, pattern recognition could be defined as the problem of how a rational agent (which could be an automata), decides to which class of objects a given new object belongs.

Pattern Recognition

- Intuitively, pattern recognition could be defined as the problem of how a rational agent (which could be an automata), decides to which class of objects a given new object belongs.
- It is important to remark that there exist approaches that use non-classical techniques or quantum systems (like quantum computers) to solve pattern recognition problems. But the entities to be discerned are classical (i.e., they do not exhibit quantum phenomena such as superposition principle or entanglement).

Pattern Recognition

- Intuitively, pattern recognition could be defined as the problem of how a rational agent (which could be an automata), decides to which class of objects a given new object belongs.
- It is important to remark that there exist approaches that use non-classical techniques or quantum systems (like quantum computers) to solve pattern recognition problems. But the entities to be discerned are classical (i.e., they do not exhibit quantum phenomena such as superposition principle or entanglement).
- There are formulations of the problem for the particular case of non-relativistic quantum mechanics and quantum optics.

Pattern Recognition

- Intuitively, pattern recognition could be defined as the problem of how a rational agent (which could be an automata), decides to which class of objects a given new object belongs.
- It is important to remark that there exist approaches that use non-classical techniques or quantum systems (like quantum computers) to solve pattern recognition problems. But the entities to be discerned are classical (i.e., they do not exhibit quantum phenomena such as superposition principle or entanglement).
- There are formulations of the problem for the particular case of non-relativistic quantum mechanics and quantum optics.
- We look for a setting capable of describing generalized probabilistic models.

A General Framework

- Given a collection of classes of objects O_{i}, let us assume that the state of each object o_{j}^{i} (i.e., object j of class O_{i}) is represented by a state $\nu_{j}^{i} \in \mathcal{C}_{i}$, where \mathcal{C}_{i} is the convex operational model representing object o_{j}^{i}.

A General Framework

- Given a collection of classes of objects O_{i}, let us assume that the state of each object o_{j}^{i} (i.e., object j of class O_{i}) is represented by a state $\nu_{j}^{i} \in \mathcal{C}_{i}$, where \mathcal{C}_{i} is the convex operational model representing object o_{j}^{i}.
- We will assume that all objects in the class O_{i} are represented by the same convex operational model \mathcal{C}_{i} (i.e., they are all elements of the same type).

A General Framework

- Given a collection of classes of objects O_{i}, let us assume that the state of each object o_{j}^{i} (i.e., object j of class O_{i}) is represented by a state $\nu_{j}^{i} \in \mathcal{C}_{i}$, where \mathcal{C}_{i} is the convex operational model representing object o_{j}^{i}.
- We will assume that all objects in the class O_{i} are represented by the same convex operational model \mathcal{C}_{i} (i.e., they are all elements of the same type).
- Suppose that weights p_{j}^{i} are assigned to the objects o_{j}^{i}, representing the rational agent's knowledge about the importance of object o_{j}^{i} as a representative of class \mathcal{C}_{i} (if all objects are equally important, the weights are chosen as $p_{j}^{i}=\frac{1}{N_{i}}$.

A General Framework

- Given a collection of classes of objects O_{i}, let us assume that the state of each object o_{j}^{i} (i.e., object j of class O_{i}) is represented by a state $\nu_{j}^{i} \in \mathcal{C}_{i}$, where \mathcal{C}_{i} is the convex operational model representing object o_{j}^{i}.
- We will assume that all objects in the class O_{i} are represented by the same convex operational model \mathcal{C}_{i} (i.e., they are all elements of the same type).
- Suppose that weights p_{j}^{i} are assigned to the objects o_{j}^{i}, representing the rational agent's knowledge about the importance of object o_{j}^{i} as a representative of class \mathcal{C}_{i} (if all objects are equally important, the weights are chosen as $p_{j}^{i}=\frac{1}{N_{i}}$.
- This means that the probabilistic state of the whole class O_{i} can be represented by a mixture $\nu_{i}=\sum_{j} p_{j} \nu_{j}^{i} \in \mathcal{C}_{i}$.

We Allow Correlations

- It is also possible to assume that non-local correlations are given between the different classes, and the states ν_{i} are reduced states of a global —possibly entangled- state $\tilde{\nu}$.

We Allow Correlations

- It is also possible to assume that non-local correlations are given between the different classes, and the states ν_{i} are reduced states of a global —possibly entangled- state $\tilde{\nu}$.
- But we notice that under these conditions, the states ν_{i} will be improper mixtures, and then, no consistent ignorance interpretation can be given for them [?] (and this means that the weights loss their ignorance interpretation).

Comparison

- A particular object o must be identified and compared with the information given by the generalized states of the classes represented by ν_{i} (or more generally, by $\tilde{\nu}$), obtained in the learning process.

Comparison

- A particular object o must be identified and compared with the information given by the generalized states of the classes represented by ν_{i} (or more generally, by $\tilde{\nu}$), obtained in the learning process.
- The comparison could be also restricted to a collection of properties $\vec{a}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, represented now by generalized effects α_{i}.

Comparison

- A particular object o must be identified and compared with the information given by the generalized states of the classes represented by ν_{i} (or more generally, by $\tilde{\nu}$), obtained in the learning process.
- The comparison could be also restricted to a collection of properties $\vec{a}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, represented now by generalized effects α_{i}.
- We will assume, as usual, that knowledge about o is represented by a generalized state ν. Notice that, in order to obtain ν, several copies of the unknown object o may be needed, whenever the probabilistic character of the model is irreducible.

Quantum Pattern Recognition

- Suppose that we are given a collection of quantum objects each belonging to a particular class Q_{i}, and given a particular object q, the rational agent aims to determine to which class it is assigned.

Quantum Pattern Recognition

- Suppose that we are given a collection of quantum objects each belonging to a particular class Q_{i}, and given a particular object q, the rational agent aims to determine to which class it is assigned.
- The collection of chosen properties can be non-commutative. Thus, the properties of object q_{j}^{i} (object j of class C_{i}) will be represented by operators (representing the class Q_{i}).

Quantum Pattern Recognition

- Suppose that we are given a collection of quantum objects each belonging to a particular class Q_{i}, and given a particular object q, the rational agent aims to determine to which class it is assigned.
- The collection of chosen properties can be non-commutative. Thus, the properties of object q_{j}^{i} (object j of class C_{i}) will be represented by operators (representing the class Q_{i}).
- The only thing that we can do, is to assign probabilities for each property coordinate using the quantum state ρ_{j}^{i} of each object q_{j}^{i}. Thus, if —as in the classical case- we assign weights p_{j}^{i} to each object q_{j}^{i}, knowledge about the class Q_{i} can now be represented by a mixture $\rho_{i}=\sum_{j} p_{j}^{i} \rho_{j}^{i}$.

Quantum Pattern Recognition

Given the fact that in general, interaction between physical systems represented by classes Q_{i} can be non-negligible, and thus, non-trivial correlations may be involved, we will assume that the states ρ_{i} are arbitrary states of the Hilbert space \mathcal{H}_{i} (i.e., the ρ_{i} are not necessarily proper mixtures). We call $\tilde{\rho}$ the global state of the whole set of classes.

Quantum Pattern Recognition

- Given an arbitrary individual q, we are thus faced with the problem of determining to which class Q_{i} it should be assigned.

Quantum Pattern Recognition

- Given an arbitrary individual q, we are thus faced with the problem of determining to which class Q_{i} it should be assigned.
- In the general case, the state of q will be represented by a density operator ρ (acting on one of the unknown Hilbert spaces \mathcal{H}_{i}, but certainly embedded in the Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \ldots \otimes \mathcal{H}_{n}$).

Quantum Pattern Recognition

- Given an arbitrary individual q, we are thus faced with the problem of determining to which class Q_{i} it should be assigned.
- In the general case, the state of q will be represented by a density operator ρ (acting on one of the unknown Hilbert spaces \mathcal{H}_{i}, but certainly embedded in the Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \ldots \otimes \mathcal{H}_{n}$).
- Notice however, that the state ρ could, in the general case, be unknown to the agent, and he may have only access to a sample of values $\left\{a_{j}\right\}$ of the operators σ_{j}.

Quantum Pattern Recognition

- Given an arbitrary individual q, we are thus faced with the problem of determining to which class Q_{i} it should be assigned.
- In the general case, the state of q will be represented by a density operator ρ (acting on one of the unknown Hilbert spaces \mathcal{H}_{i}, but certainly embedded in the Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \ldots \otimes \mathcal{H}_{n}$).
- Notice however, that the state ρ could, in the general case, be unknown to the agent, and he may have only access to a sample of values $\left\{a_{j}\right\}$ of the operators σ_{j}.
- Thus, for the classification problem, he should be able to, either reconstruct the unknown state ρ using quantum statistical inference methods, or just directly compare the sampled values with the information provided by the global state $\tilde{\rho}$.

Quantum Pattern Recognition

- Suppose now that at an initial state, the agent has an information $\rho_{i}(0)$ for each class Q_{i}, and he is confronted with an individual of which it has information $\rho(0)$, and a global state $\tilde{\rho}(0)$.

Quantum Pattern Recognition

- Suppose now that at an initial state, the agent has an information $\rho_{i}(0)$ for each class Q_{i}, and he is confronted with an individual of which it has information $\rho(0)$, and a global state $\tilde{\rho}(0)$.
- Then, after the classification process at time t, it is necessary to update knowledge about the classes and the global state to new states $\rho_{i}(t)$ and $\tilde{\rho}(t)$, respectively.

Quantum Pattern Recognition

- Suppose now that at an initial state, the agent has an information $\rho_{i}(0)$ for each class Q_{i}, and he is confronted with an individual of which it has information $\rho(0)$, and a global state $\tilde{\rho}(0)$.
- Then, after the classification process at time t, it is necessary to update knowledge about the classes and the global state to new states $\rho_{i}(t)$ and $\tilde{\rho}(t)$, respectively.
- This can be suitably modeled by a quantum operation $\Lambda(t)$ acting on the convex quantum set of states of $\mathcal{C}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \ldots \otimes \mathcal{H}_{n}\right)$, such that $\Lambda(t) \tilde{\rho}(0)=\tilde{\rho}(t)$.

Quantum Pattern Recognition

- Suppose now that at an initial state, the agent has an information $\rho_{i}(0)$ for each class Q_{i}, and he is confronted with an individual of which it has information $\rho(0)$, and a global state $\tilde{\rho}(0)$.
- Then, after the classification process at time t, it is necessary to update knowledge about the classes and the global state to new states $\rho_{i}(t)$ and $\tilde{\rho}(t)$, respectively.
- This can be suitably modeled by a quantum operation $\Lambda(t)$ acting on the convex quantum set of states of $\mathcal{C}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \ldots \otimes \mathcal{H}_{n}\right)$, such that $\Lambda(t) \tilde{\rho}(0)=\tilde{\rho}(t)$.
- A quantum learning operator will be thus a family of quantum operations $\left\{\Lambda\left(t_{1}\right), \ldots, \Lambda\left(t_{n}\right)\right\}$. Hence, a quantum learning process will be a succession of global states $\left\{\tilde{\rho}(0), \Lambda\left(t_{1}\right) \tilde{\rho}(0), \Lambda\left(t_{2}\right) \tilde{\rho}\left(t_{1}\right), \ldots, \Lambda\left(t_{n}\right) \tilde{\rho}\left(t_{n-1}\right)\right\}$.

Quantum Pattern Recognition

- Suppose now that at an initial state, the agent has an information $\rho_{i}(0)$ for each class Q_{i}, and he is confronted with an individual of which it has information $\rho(0)$, and a global state $\tilde{\rho}(0)$.
- Then, after the classification process at time t, it is necessary to update knowledge about the classes and the global state to new states $\rho_{i}(t)$ and $\tilde{\rho}(t)$, respectively.
- This can be suitably modeled by a quantum operation $\Lambda(t)$ acting on the convex quantum set of states of $\mathcal{C}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \ldots \otimes \mathcal{H}_{n}\right)$, such that $\Lambda(t) \tilde{\rho}(0)=\tilde{\rho}(t)$.
- A quantum learning operator will be thus a family of quantum operations $\left\{\Lambda\left(t_{1}\right), \ldots, \Lambda\left(t_{n}\right)\right\}$. Hence, a quantum learning process will be a succession of global states $\left\{\tilde{\rho}(0), \Lambda\left(t_{1}\right) \tilde{\rho}(0), \Lambda\left(t_{2}\right) \tilde{\rho}\left(t_{1}\right), \ldots, \Lambda\left(t_{n}\right) \tilde{\rho}\left(t_{n-1}\right)\right\}$.
- The goal of the learning process will be achieved if the uncertainty of the final state is reduced. The dispersion could be measured using the von Neumann entropy (or other quantum entropic measures).

ARQFT

- In algebraic relativistic quantum field theory, a C^{*}-algebra is assigned to any open set O of a differential manifold M [?, ?].

ARQFT

- In algebraic relativistic quantum field theory, a C^{*}-algebra is assigned to any open set O of a differential manifold M [?, ?].
- Open sets are intended to represent local regions, and M models space-time with its symmetries. Local algebras are intended to represent local observables (such as particle detectors).

ARQFT

- In algebraic relativistic quantum field theory, a C^{*}-algebra is assigned to any open set O of a differential manifold M [?, ?].
- Open sets are intended to represent local regions, and M models space-time with its symmetries. Local algebras are intended to represent local observables (such as particle detectors).
- For example, in ARQFT, M is Minkowski’s four dimensional space-time, endowed with the Poincare group of transformations.

ARQFT

- It turns out, that (global) states of the field define measures over the local algebras.

ARQFT

- It turns out, that (global) states of the field define measures over the local algebras.
- But in general, the local algebras of ARQFT will not be Type I factors as in standard quantum mechanics. For example, it can be shown that for a diamond region, a Type III factor must be assigned.

ARQFT

- It turns out, that (global) states of the field define measures over the local algebras.
- But in general, the local algebras of ARQFT will not be Type I factors as in standard quantum mechanics. For example, it can be shown that for a diamond region, a Type III factor must be assigned.
- This means that the orthomodular lattice involved will not be the lattice of projection operators of a Hilbert space, but a one with different properties.

ARQFT

- This means that the discrimination problem must be posed between classes F_{i} represented by states of the field φ_{i} and a given individual state φ.

ARQFT

- This means that the discrimination problem must be posed between classes F_{i} represented by states of the field φ_{i} and a given individual state φ.
- In practical implementations, these states and the discrimination problem, could be restricted to a concrete space-time region.

ARQFT

- This could be useful for information protocols based on quantum optics (where the effects of the field character of the theory cannot be neglected).

ARQFT

- This could be useful for information protocols based on quantum optics (where the effects of the field character of the theory cannot be neglected).
- In particular, a simpler but analogous version of the problem could be conceived by appealing to the Fock-space formalism, in order to describe the fields and the states involved.

Pattern Recognition In AQSM:

- As in the quantum field theoretic example, a similar problem can be posed in the algebraic approach to quantum statistics.

Pattern Recognition In AQSM:

- As in the quantum field theoretic example, a similar problem can be posed in the algebraic approach to quantum statistics.
- Here, a typical problem could be to discern a kind of atoms from a set of classes of gasses; now, the comparison will be between the state of the item and the classes involved.

Pattern Recognition In AQSM:

- An example of interest could appear in problems related to image recognition.

Pattern Recognition In AQSM:

- An example of interest could appear in problems related to image recognition.
- Suppose that a machine has to solve a problem of recognizing handwritten digits. These drawings are first transformed into digitalized images of $n \times n$ pixels.

Pattern Recognition In AQSM:

- An example of interest could appear in problems related to image recognition.
- Suppose that a machine has to solve a problem of recognizing handwritten digits. These drawings are first transformed into digitalized images of $n \times n$ pixels.
- This means that the information of each image is stored in a vector \vec{x} of length $n \times n$.
- The goal is to build our automata in such a way that it takes a vector \vec{x} as an input, and gives us as output the identity of the digit in question. In a real hardware, this vector should be stored using bits of a given length.

Pattern Recognition In AQSM:

- Suppose that we have a spacial arrangement L of N-dimensional quantum systems.

Pattern Recognition In AQSM:

- Suppose that we have a spacial arrangement L of N-dimensional quantum systems.
- For each point $x \in L$ we have a Hilbert space \mathcal{H}_{x}, and for each subset of points $\Gamma \in L$, the associated Hilbert space is given by the tensor product $\mathcal{H}_{\Gamma}=\bigotimes_{x \in \Gamma} \mathcal{H}_{x}$.

Pattern Recognition In AQSM:

- Suppose that we have a spacial arrangement L of N-dimensional quantum systems.
- For each point $x \in L$ we have a Hilbert space \mathcal{H}_{x}, and for each subset of points $\Gamma \in L$, the associated Hilbert space is given by the tensor product $\mathcal{H}_{\Gamma}=\bigotimes_{x \in \Gamma} \mathcal{H}_{x}$.
- Every subset $\Gamma \in L$ has associated an algebra $\mathcal{A}\left(\mathcal{H}_{\Gamma}\right)$. The norm completion of the collection $\mathcal{A}=\left\{\mathcal{A}_{\Gamma}\right\}_{\Gamma \in L}$ is a quasi-local C^{\star}-algebra when equipped with the net of C^{\star}-subalgebras \mathcal{A}_{Γ}.

Pattern Recognition In AQSM:

- Suppose that we have a spacial arrangement L of N-dimensional quantum systems.
- For each point $x \in L$ we have a Hilbert space \mathcal{H}_{x}, and for each subset of points $\Gamma \in L$, the associated Hilbert space is given by the tensor product $\mathcal{H}_{\Gamma}=\bigotimes_{x \in \Gamma} \mathcal{H}_{x}$.
- Every subset $\Gamma \in L$ has associated an algebra $\mathcal{A}\left(\mathcal{H}_{\Gamma}\right)$. The norm completion of the collection $\mathcal{A}=\left\{\mathcal{A}_{\Gamma}\right\}_{\Gamma \in L}$ is a quasi-local C^{\star}-algebra when equipped with the net of C^{\star}-subalgebras \mathcal{A}_{Γ}.
- Thus, the classification problem must be done with respect to states defined in this algebra (such as KMS-states [?]), whose properties are different to that of a Type I factor.

Just to mention...

- Recent findings suggest that quantum speedups are obtained for structured problems.

Just to mention...

- Recent findings suggest that quantum speedups are obtained for structured problems.
- This is the case for the most known quantum algorithms: Shor, Deutsch-Jozsa, etc.

Just to mention...

- Recent findings suggest that quantum speedups are obtained for structured problems.
- This is the case for the most known quantum algorithms: Shor, Deutsch-Jozsa, etc.
- In these examples a pattern is to be found (for example, determining the period of a periodic function).

Just to mention...

- Recent findings suggest that quantum speedups are obtained for structured problems.
- This is the case for the most known quantum algorithms: Shor, Deutsch-Jozsa, etc.
- In these examples a pattern is to be found (for example, determining the period of a periodic function).
- Our framework could be useful to understand these processes.

Outline

(1) Introduction

(2) Non-Kolmogorovian probabilistic models

(3) Pattern Recognition
(4) conclusions

Conclusions

- We propose a generalization of the pattern recognition problem to the non-commutative (or equivalently, non-Kolmogorovian) setting involving incompatible (non-simultaneously determinable) properties.

Conclusions

- We propose a generalization of the pattern recognition problem to the non-commutative (or equivalently, non-Kolmogorovian) setting involving incompatible (non-simultaneously determinable) properties.
- In this way, we have shown that it is possible to find some important (and non-equivalent) examples of interest: standard quantum mechanics, algebraic relativistic quantum field theory, and algebraic quantum statistics.

Conclusions

- The examples does not restrict only to these ones, but can include more general models, and particular, hybrid systems (classical and quantum).

Conclusions

- The examples does not restrict only to these ones, but can include more general models, and particular, hybrid systems (classical and quantum).
- Our perspective could be useful to characterize some of the most important quantum computation algorithms (Shor, Simon and Jozsa-Deutsche) as quantum pattern recognition problems.

Some References

- F. Holik, G. Sergioli, H. Freytes, A. Plastino, "Pattern Recognition In Non-Kolmogorovian Structures", arxiv:1609.06340 [quant-phys], (2016).
- E. Aïmeur, G. Brassard, and S. Gambs, "Machine Learning in a Quantum World", L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 431-442, Springer-Verlag Berlin Heidelberg 2006.
- G. Sentís, M. Guţă and G. Adesso, "Quantum learning of coherent states", EPJ Quantum Technology, 2: 17, (2015).
- M. Guță and W. Kotlowski, "Quantum learning: asymptotically optimal classification of qubit states", New Journal of Physics, 12, 12303 (2010).
- A. Monràs, G. Sentís and P. Wittek, "Inductive quantum learning: Why you are doing it almost right", arXiv:1605.07541v1, (2016).

