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Training set, Class, Pattern, Feature

Let us consider (as a simple example) two disjoint sets A and B
of different objects (say cats and dogs). During the training
set, we take n objects from the set A and m objects from the
set B. Let Ca ⊂ A and Cb ⊂ B.

We can measure two (or more) features of each object ai ∈ Ca
and bi ∈ Cb (for istance the weight and the lenght of the tail).

We say that Ca and Cb are classes and the objects ai and bi
are patterns that are characterized by their features.
We write, for example, ai = {x1, x2}, where x1 and x2 are the
weight and the lenght of the tail of the cat ai , respectively.
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Nearest Mean Classifier (NMC)

Let us consider the classes Ca = {a1, ...,an} and
Cb = {b1, ...,bm}, with ai and bi belonging to the training set
and an arbitrary pattern ci = {x1, x2} belonging to the test set.
The goal is to establish whether is more probably that ci ∈ A or
ci ∈ B.

We - only - consider the centroids a∗ and b∗ of Ca and Cb and
the euclidean distances Ed(ci ,a∗) and Ed(ci ,b∗).

Hence, if Ed(ci ,a∗) ≥ Ed(ci ,b∗) then (is more probabily that)
ci ∈ B; otherwise ci ∈ A.
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Training set, Class, Pattern, Feature
Nearest Mean Classifier (NMC)

The notions of "Pattern" and "Classification" are very general
and are naturally connected to our common processes of
acquiring knowledge.
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How to encode a Pattern as a Density operator
Normalized Trace Distance

All we need in order to provide a Quantum representation of
NMC are:

I a sutable encoding from patterns to quantum objects

I a quantum counterpart of the centroid

I a quantum counterpart of the Euclidean distance
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An Example: Stereographic encoding

It is possible to map the pattern a = (x , y) onto the surface of a
radius one sphere by the stereographic projection:

(x , y)→ (
2x

x2 + y2 + 1
,

2y
x2 + y2 + 1

,
x2 + y2 − 1
x2 + y2 + 1

).

By placing the Bloch components:
r1 = 2x

x2+y2+1 ; r2 = 2y
x2+y2+1 ; r3 = x2+y2−1

x2+y2+1 we obtain:

ρa =
1
2

(
1 + r3 r1 − ir2
r1 + ir2 1− r3

)
=

1
x2 + y2 + 1

(
x2 + y2 x − iy
x + iy 1

)
.

Giuseppe Sergioli & Alophis group Quantum-inspired Classification Process



Basic Notions
A Quantum representation of NMC

Quantum Pattern Recognition on a Classical Computer
Using the rescaling

Some practical implementation
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Example

Let us consider the pattern a = {1,3}. Its corresponding
Density pattern ρa, is:

ρa =
1

11

(
10 1− 3i

1 + 3i 1

)

We call ρa Density Pattern.
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Moon Dataset
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Figure : Density Patterns
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Another Example: Projective encoding

v ≡ (x , y)→ (
x
||v ||

,
y
||v ||

) ≡ (x̄ , ȳ)

|ψv 〉 = x̄ |0〉+ ȳ |1〉

ρv = |ψv 〉〈ψv |

...and many others.
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Preservation of the Order
Let a = {xa, ya} b = {xb, yb} and c = {xc , yc}
be three arbitrary patterns and let ρi be the density pattern
associated to the pattern i .

If Ed(a,b) ≤ Ed(b, c) (where Ed is the Euclidian distance), is it
possible to define a Quantum distance such that
Qd(ρa, ρb) ≤ Qd(ρb, ρc)?
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Normalized Trace Distance
Let us consider two patterns a = {xa, ya} and b = {xb, yb}.

Let ρa = 1
2

(
1 + ra3 ra1 − ira2

ra1 + ira2 1− ra3

)
the density pattern

associated to a; similarly for b.

Let place K = 2√
(1−ra3 )(1−rb3

)
and let we define the normalized

trace distance as: K Td(ρa, ρb), where Td is the usual Trace
distance.
It is straightforward to show that

Ed(a,b) = K Td(ρa, ρb).
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Classification
Hence, given a and b as the centroids of Ca and Cb
respectively, if

K Td(ρx , ρa) ≥ K Td(ρx , ρb)

then x ∈ B; otherwise x ∈ A. Similarly to the classical case.

Giuseppe Sergioli & Alophis group Quantum-inspired Classification Process



Basic Notions
A Quantum representation of NMC

Quantum Pattern Recognition on a Classical Computer
Using the rescaling

Some practical implementation
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Normalized Trace Distance

Convenience on a Quantum Computer

Quoting S. Lloyd, M. Mohseni and P. Rebentrost (Quantum
algorithms for supervised and unsupervised machine learning -
arXiv:1307.0411; 2013)

"Estimating distances between vectors in N-dimensional vector
spaces then takes time O(logN) on a quantum computer. By
contrast, sampling and estimating distances between vectors
on a classical computer is apparently exponentially hard.
Quantum machine learning provides an exponential speed-ups
over all known classical algorithms for problems involving
evaluating distances between large vectors."

But it turns out to be convenient mostly on a Classical
Computer...
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Quantum Centroid
Given a dataset {P1, ...,Pn}, let us consider the respective set
of density patterns {ρ1, ..., ρn}.

The Quantum Centroid is defined as:

ρQC =
1
n

n∑
i=1

ρi .

S. Gambs, Quantum classification, arXiv:0809.0444v2.
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Quantum Centroid
Comparison

Observations
Some observation:

I The QC ρQC is not a pure state and it has not any
counterpart in the set of classical pattern in Rn;

I In contrast to the Classical Centroid, the QC is "sensitive"
to the distribution of the patterns.
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Quantum Centroid
Comparison

We provide a comparison between the NMC and the "quantum"
classification process based on Density Patterns and Quantum
Centroids by involving different kinds of standard datasets on a
Classical Computer.

We compare the Error E and the reliability (in terms of the
Cohen’s constant k ) for both classifiers.

At a first glance - and in order to provide a clear visual
representation - we consider that the training and the test sets
are the same.
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Gaussian Dataset
Gaussian Dataset: 200 Patterns allocated in two Classes.

Figure : Gaussian
Dataset Figure : NMC

Figure : Quantum
Classifier
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Table : Gaussian Dataset

E E1 E2 Pr k TPR FPR

NMC 0.445 0.41 0.48 0.555 0.11 0.555 0.445
QC 0.24 0.28 0.2 0.762 0.52 0.76 0.24

By randomly dividing the dataset in a training set (80%) and in
a test set (20%), the average over 100 experiments gives:
NMC − Error = 44.35± 6.79; Q − Error = 23.68± 6.09.
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Comparison

A remark
Even if the error of the Quantum Classifier is lower than the
Error of the NMC, there are some patterns that are correctly
classified by the NMC but not by the Quantum Classifier.
Hence, it makes sense to consider a "merging" of the NMC and
the Quantum Classifier.
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Gaussian Dataset

Figure :
Gaussian
Dataset Figure : NMC

Figure :
Quantum
Classifier

Figure : NMC
& Quantum
Classifier
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Quantum Centroid
Comparison

Table : Gaussian Dataset

E E1 E2 Pr k TPR FPR

NMC 0.445 0.41 0.48 0.555 0.11 0.555 0.445
QC 0.24 0.28 0.2 0.762 0.52 0.76 0.24
NMC-QC 0.13 0.14 0.12 0.87 0.74 0.87 0.13
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Moon Dataset
Moon Dataset: 200 patterns allocated in two Classes.

Figure : Moon
Dataset Figure : NMC

Figure :
Quantum
Classifier

Figure : NMC
& Quantum
Classifier
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Table : Moon Dataset

E E1 E2 Pr k TPR FPR

NMC 0.22 0.22 0.22 0.78 0.56 0.78 0.22
QC 0.18 0.14 0.22 0.822 0.64 0.82 0.18

By randomly dividing the dataset in a training set (80%) and in
a test set (20%), the average over 100 experiments gives:
NMC − Error = 22.32± 6.32; Q − Error = 17.85± 5.46.
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Comparison

Banana Dataset
Banana Dataset: 5300 patterns; 2376 belonging to the first
Class and 2924 to the second Class.

Figure :
Banana
Dataset Figure : NMC

Figure :
Quantum
Classifier

Figure : NMC
& Quantum
Classifier
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Comparison

Table : Banana Dataset

E E1 E2 Pr k TPR FPR

NMC 0.447 0.423 0.468 0.554 0.108 0.555 0.445
QC 0.418 0.382 0.447 0.585 0.168 0.585 0.415
NMC-QC 0.345 0.271 0.406 0.661 0.317 0.662 0.338

By randomly dividing the dataset in a training set (80%) and in
a test set (20%), the average over 100 experiments gives:
NMC − Error = 44.88± 1.74; Q − Error = 41.57± 1.21.
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3Gaussian Dataset
3Gaussian Dataset: 450 Patterns allocated in three Classes.

Figure :
3Gaussian
Dataset Figure : NMC

Figure :
Quantum
Classifier

Figure : NMC
& Quantum
Classifier
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Quantum Centroid
Comparison

Here we randomly divide the dataset in a Training set (80% of
the patterns) and a Test set (20% of the patterns). We calculate
the average over 100 runs for each experiments.

A full comparison
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The Quantum Centroid is not invariant under rescaling→ the
"Quantum" Classifier is not invariant under rescaling!

Is it an Embarrasment or is it an Asset?

The Error is dependent on both the rescaling of the Patterns
and the different encoding.

We show how the Error changes by changing the rescaling and
for two different encodings.
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Rescaling

How the Error of the Quantum Classifier changes by ranging
the value of the rescaling.

Figure : Accuracy and Rescaling
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Further developments

As further developments, it will be checked whether the
Quantum Classifier could bring some benefit for practical
implementations, such as

Figure :
Handwriting

Figure :
Fingerprint
Recognition

Figure : Face
Recognition

Figure :
Biomedical
Imaging
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Observations and Open Problems

I The choise of the "best" Encoding (and/or the best
Rescaling) is mostly empirical and it is stritcly dependent
on the Database (No Free Lunch Theorem).

I A comparison with more performant classifiers (Linear
Discriminant Analysis, Quadratic Discriminant Analysis ...)
could be investigated. The NMC and the Quantum
Classifier are based on the concepts of centroid and
distance only.

Suggestions are wellcome!
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G. Sergioli, E. Santucci, L. Didaci, J.A. Miskczak, R. Giuntini,
Pattern Recognition on the Bloch Sphere, arXiv:1603.00173
(2016).
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