GENERALIZED QUANTUM ENTROPIES: A DEFINITION AND SOME PROPERTIES

Steeve Zozor

G. M. Bosyk, F. Holik, M. Portesi & P. W. Lamberti

GIPSA-Lab – CNRS & Grenoble INP, Grenoble, France IFLP & Dpto de Física – CONICET & UNLP, La Plata, Argentina FaMAF – CONICET & UNC, Córdoba, Argentina

Cagliari, November 3, 2016

Contents

1 Motivations & goals

-) Classical (h, ϕ) -entropies
 - Definition
 - Properties
- \bigcirc Quantum (h,ϕ) -entropies
 - Definition
 - Basic properties
- D Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
-) Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context

Contents

- **1** Motivations & goals
- **2** CLASSICAL (h, ϕ) -ENTROPIES
 - Definition
 - Properties
-]) Quantum (h,ϕ) -entropies
 - Definition
 - Basic properties
- D Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **Relative** (h, ϕ) -entropies
 - Classical context
 - Quantum context

Contents

- 1 Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties

Composite quantum systems

- Bipartite systems (sub)additivity, pure state
- (h, ϕ) -entropy and entanglement
- **Relative** (h, ϕ) -entropies
 - Classical context
 - Quantum context

Contents

- 1 Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- **4** Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
 - Classical context
 - Quantum context

Contents

- 1 Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- **4** Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **(5)** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context

CONTENTS

- 1 Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- **4** Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **5** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context

Programa

1 Motivations & goals

- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties

3 Quantum (h, ϕ) -entropies

- Definition
- Basic properties
- Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **5** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context
- 6 CONCLUSIONS

MOTIVATION

MOTIVATIONS

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...

MOTIVATION

MOTIVATIONS

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...

MOTIVATION

MOTIVATIONS

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...

MOTIVATION

MOTIVATIONS

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.

• There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ... no trivially connected; with common properties.

MOTIVATION

MOTIVATIONS

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.

• There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ... no trivially connected; with common properties.

Note

In the classical context, there exists a generalized family proposed by Salicrú (Csiszàr); Contains the Shannon entropy, that of Rényi, Havrda-Charvát (Daróczy, Vajda, Tsallis, ...) among others.

- To define a generalized family of quantum entropies.
- To study their properties (common or specific).
- To apply them in quantum information processing.

Definition Properties

Programa

- D MOTIVATIONS & GOALS
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- OMPOSITE QUANTUM SYSTEMS
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **5** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context
- 6 CONCLUSIONS

Definition Properties

DEFINITION

DEFINITION

Let
$$p = [p_1 \quad \cdots \quad p_N] \in [0; 1]^N$$
, $\sum_k p_k = 1$
 $H_{(h,\phi)}(p) = h\left(\sum_k \phi(p_k)\right)$

$$\phi: [0; 1] \to \mathbb{R} \quad \mathbf{y} \quad \mathbf{h}: \mathbb{R} \to \mathbb{R},$$

- ϕ is concave and h is increasing, or
- ϕ is convex and h is decreasing

Salicru et al., Asymptotic distribution of (h, ϕ) -entropies, Comm. in Stat.: Th. Meth. (1993)

Definition Properties

DEFINITION

DEFINITION

Let
$$p = [p_1 \quad \cdots \quad p_N] \in [0; 1]^N$$
, $\sum_k p_k = 1$
 $H_{(h,\phi)}(p) = h\left(\sum_k \phi(p_k)\right)$

$$\phi: [0; 1] \to \mathbb{R} \quad \mathbf{y} \quad \frac{h}{h} : \mathbb{R} \to \mathbb{R},$$

- ϕ is concave and h is increasing, or
- ϕ is convex and h is decreasing

Moreover

- $\phi(0) = 0$ (no elementary uncertainty associated to the probability 0)
- $h(\phi(1)) = 0$ (no uncertainty associated to a deterministic state)

Salicru et al., Asymptotic distribution of (h, ϕ) -entropies, Comm. in Stat.: Th. Meth. (1993)

Definition Properties

FAMOUS EXAMPLES

	ϕ	h	$H_{\left(h,\phi ight)}\left(p ight)$
Shannon	$-x \ln x$	x	$-\sum_k p_k \ln p_k$
Rényi	x^{α}	$\frac{\ln x}{1-\alpha}$	$rac{\ln\left(\sum_k p_k^{lpha} ight)}{1-lpha}$
НСТ	x^{α}	$\frac{x-1}{1-\alpha}$	$\frac{\sum_k p_k^\alpha - 1}{1 - \alpha}$
Unified	x^r	$rac{x^s-1}{(1-r)s}$	$\frac{\left(\sum_k p_k^r\right)^s - 1}{\left(1 - r\right)s}$
Kaniadakis	$\frac{x^{1-\kappa}-x^{1+\kappa}}{2\kappa}$	x	$\frac{\sum_k \left(p_k^{1-\kappa} - p_k^{1+\kappa} \right)}{2 \kappa}$

 $\begin{array}{c} {
m Definition} \\ {
m Properties} \end{array}$

BASIC PROPERTIES

For any pair of entropic functional (h, ϕ) ,

BASIC PROPERTIES

- Invariance to a permutation of the p_k 's
- Expansibility: $H_{(h,\phi)}([p_1 \cdots p_N \quad 0]) = H_{(h,\phi)}([p_1 \cdots p_N])$ (consequence of $\phi(0) = 0$)
- Fusion: $H_{(h,\phi)}\left(\begin{bmatrix}p_1 & p_2 & \cdots & p_N\end{bmatrix}\right) \ge H_{(h,\phi)}\left(\begin{bmatrix}p_1 + p_2 & \cdots & p_N\end{bmatrix}\right)$ (Petković's inequality $\phi(a+b) \le \phi(a) + \phi(b)$ for concave ϕ with $\phi(0) = 0$)

Motivations & goals Classical (h, ϕ) -entropies Quantum (h, ϕ) -entropies Composite quantum systems Relative (h, ϕ) -entropies Conclusions

 $\begin{array}{c} {
m Definition} \\ {
m Properties} \end{array}$

MAJORIZATION

DEFINITION

p, p' proba. vectors, with components increasingly arranged,

$$p \prec p'$$
 (p is majorized by p')

if
$$\sum_{k=1}^{n} p_k \le \sum_{k=1}^{n} p'_k \quad \forall n < \max(N, N') \quad \& \sum_{k=1}^{\max(N, N')} p_k = \sum_{k=1}^{\max(N, N')} p'_k$$

Majorization is a partial order relationship

 $\begin{array}{c} {
m Definition} \\ {
m Properties} \end{array}$

MAJORIZATION

DEFINITION

p, p' proba. vectors, with components increasingly arranged,

$$p \prec p'$$
 (*p* is majorized by p')

if
$$\sum_{k=1}^{n} p_k \leq \sum_{k=1}^{n} p'_k \quad \forall n < \max(N, N') \quad \& \sum_{k=1}^{\max(N, N')} p_k = \sum_{k=1}^{\max(N, N')} p'_k$$

Majorization is a partial order relationship

EXAMPLES

For any p, of dimension N,

$$\left[\frac{1}{N} \ \cdots \ \frac{1}{N}\right] \ \prec \ \left[\frac{1}{\|p\|_0} \ \cdots \ \frac{1}{\|p\|_0} \ 0 \ \cdots \ 0\right] \ \prec \ \left[1 \quad 0 \ \cdots \ 0\right]$$

Generalized quantum entropies: a definition and some properties

Motivations & goals **Classical** (h, ϕ)-entropies Quantum (h, ϕ)-entropies Composite quantum systems Relative (h, ϕ)-entropies Conclusions

Definition Properties

PROPERTIES LINKED TO THE MAJORIZATION

For any pair of entropic functionals (h, ϕ) ,

SCHUR-CONCAVITY

• $p \prec p' \Rightarrow H_{(h,\phi)}(p) \ge H_{(h,\phi)}(p')$ (equality iif $p \equiv p'$)

(consequence of the Karamata's theorem)

• Reciprocal if for all pairs (h, ϕ)

Definition Properties

PROPERTIES LINKED TO THE MAJORIZATION

For any pair of entropic functionals (h, ϕ) ,

SCHUR-CONCAVITY

•
$$p \prec p' \Rightarrow H_{(h,\phi)}(p) \ge H_{(h,\phi)}(p')$$
 (eq

equality iif
$$p \equiv p'$$
)

(consequence of the Karamata's theorem)

• Reciprocal if for all pairs (h, ϕ)

Bounds

$$0 \leq H_{(h,\phi)}(p) \leq h\left(\|p\|_0 \phi\left(\frac{1}{\|p\|_0}\right)\right) \leq h\left(N\phi\left(\frac{1}{N}\right)\right)$$

certainty

uniform

(consequence of majorization relationships)

S. Zozor et al.

Definition Basic properties

Programa

- **1** Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- OMPOSITE QUANTUM SYSTEMS
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **5** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context
- 6 CONCLUSIONS

Definition Basic properties

Quantum (h, ϕ) -entropy: definition

Let ρ be a density operator acting on \mathcal{H}^N ($\rho \ge 0$ hermitian, with Tr $\rho = 1$)

DEFINITION

 $\boldsymbol{H}_{\left(h,\phi\right)}\left(\rho\right)=h\left(\mathrm{Tr}\,\phi(\rho)\right)$

with $\boldsymbol{\phi}:[0\,;\,1]\to\mathbb{R},\ \boldsymbol{\phi}(0)=0\ \&\ \boldsymbol{h}:\mathbb{R}\to\mathbb{R},\ h(\boldsymbol{\phi}(1))=0,$

- ϕ is concave and h is increasing, or
- ϕ is convex and h is decreasing

(for $\rho = \sum_k \lambda_k |e_k\rangle \langle e_k|, \ \phi(\rho) = \sum_k \phi(\lambda_k) |e_k\rangle \langle e_k|)$

Definition Basic properties

Quantum VS classical (h, ϕ) -entropy

DIAGONAL FORM

$$\rho = \sum_{k} \lambda_k \, \left| e_k \right\rangle \langle e_k |$$

where

• $\{|e_k\rangle\}$ is the orthonomal base of \mathcal{H}^N that diagonalizes ρ ,

• $\lambda = [\lambda_1 \cdots \lambda_N] \in [0; 1]^N$, $\sum_k \lambda_k = 1$ the eigenvalues of ρ

Definition Basic properties

Quantum VS classical (h, ϕ) -entropy

DIAGONAL FORM

$$\rho = \sum_{k} \lambda_k \, \left| e_k \right\rangle \langle e_k |$$

where

- $\{|e_k\rangle\}$ is the orthonomal base of \mathcal{H}^N that diagonalizes ρ ,
- $\lambda = [\lambda_1 \cdots \lambda_N] \in [0; 1]^N$, $\sum_k \lambda_k = 1$ the eigenvalues of ρ

QUANTUM VS CLASSICAL

$$\boldsymbol{H}_{(h,\phi)}\left(\rho\right) = H_{(h,\phi)}\left(\lambda\right)$$

S. Zozor et al.

Generalized quantum entropies: a definition and some properties

Definition Basic properties

PROPERTIES LINKED TO THE MAJORIZATION

By definition, $\rho \prec \rho'$ means that $\lambda \prec \lambda'$

Definition Basic properties

PROPERTIES LINKED TO THE MAJORIZATION

By definition, $\rho \prec \rho'$ means that $\lambda \prec \lambda'$

For any pair of entropic functionals (h, ϕ) ,

SCHUR-CONCAVIDAD (& RECIP.)

 $\begin{array}{rcl} \rho \prec \rho' & \Rightarrow & \boldsymbol{H}_{(h,\phi)}\left(\rho\right) \geq \boldsymbol{H}_{(h,\phi)}\left(\rho'\right) \\ \text{equality iif} & \rho' = U\rho U^{\dagger} \text{ or } \rho = U\rho' U^{\dagger} \text{ with } U \text{ isometry } (U^{\dagger}U = I) \end{array}$

Definition Basic properties

PROPERTIES LINKED TO THE MAJORIZATION

By definition, $\rho \prec \rho'$ means that $\lambda \prec \lambda'$

For any pair of entropic functionals (h, ϕ) ,

SCHUR-CONCAVIDAD (& RECIP.)

 $\rho \prec \rho' \Rightarrow \boldsymbol{H}_{(h,\phi)}(\rho) \geq \boldsymbol{H}_{(h,\phi)}(\rho')$ equality iif $\rho' = U\rho U^{\dagger}$ or $\rho = U\rho' U^{\dagger}$ with U isometry $(U^{\dagger}U = I)$

Bounds

$$0 \leq \boldsymbol{H}_{(h,\phi)}\left(\rho\right) \leq h\left(\operatorname{rank}\rho\,\phi\left(\frac{1}{\operatorname{rank}\rho}\right)\right) \leq h\left(N\phi\left(\frac{1}{N}\right)\right)$$

max. mixed $\frac{I}{N}$

pure state $|\psi\rangle\langle\psi|$

Definition Basic properties

PROPERTIES SPECIFIC TO THE QUANTUM CONTEXT

CONCAVITY

If h is concave, then $\boldsymbol{H}_{(h,\phi)}(\cdot)$ is concave,

$$\boldsymbol{H}_{(h,\phi)}\left(\omega\rho + (1-\omega)\rho'\right) \geq \omega\boldsymbol{H}_{(h,\phi)}\left(\rho\right) + (1-\omega)\boldsymbol{H}_{(h,\phi)}\left(\rho'\right)$$

(Peierls's inequality, $\operatorname{Tr}(\rho) \leq \sum_{k} \phi(\langle f_k | \rho | f_k \rangle) \& \phi \text{ concave})$

Definition Basic properties

PROPERTIES SPECIFIC TO THE QUANTUM CONTEXT

CONCAVITY

If h is concave, then $\boldsymbol{H}_{(h,\phi)}(\cdot)$ is concave,

$$\boldsymbol{H}_{(h,\phi)}\left(\omega\rho + (1-\omega)\rho'\right) \geq \omega\boldsymbol{H}_{(h,\phi)}\left(\rho\right) + (1-\omega)\boldsymbol{H}_{(h,\phi)}\left(\rho'\right)$$

(Peierls's inequality, $\operatorname{Tr}(\rho) \leq \sum_{k} \phi(\langle f_k | \rho | f_k \rangle) \& \phi \text{ concave}$)

MIXTURE

$$\rho = \sum_{k} p_{k} |\psi_{k}\rangle \langle \psi_{k}| \quad \Rightarrow \quad \boldsymbol{H}_{(h,\phi)}(\rho) \leq H_{(h,\phi)}(p)$$

(Schrödinger's mixture $p = B\lambda$, B bistoch., Hardy-Littlewood-Pólya $p \prec \lambda$)

Definition Basic properties

PROPERTIES SPECIFIC TO THE QUANTUM CONTEXT

CONCAVITY

If h is concave, then $\boldsymbol{H}_{(h,\phi)}(\cdot)$ is concave,

$$\boldsymbol{H}_{(h,\phi)}\left(\omega\rho + (1-\omega)\rho'\right) \geq \omega\boldsymbol{H}_{(h,\phi)}\left(\rho\right) + (1-\omega)\boldsymbol{H}_{(h,\phi)}\left(\rho'\right)$$

(Peierls's inequality, $\operatorname{Tr}(\rho) \leq \sum_{k} \phi(\langle f_k | \rho | f_k \rangle) \& \phi \text{ concave})$

MIXTURE

$$\rho = \sum_{k} p_{k} |\psi_{k}\rangle \langle \psi_{k}| \quad \Rightarrow \quad \boldsymbol{H}_{(h,\phi)}(\rho) \leq H_{(h,\phi)}(p)$$

(Schrödinger's mixture $p=B\lambda,\,B$ bistoch., Hardy-Littlewood-Pólya $p\prec\lambda)$

Entropy vs diagonal

 $p^{E}(\rho)$ diag. ρ in $E = \{e_k\}$ orth. base: $H_{(h,\phi)}(\rho) \leq H_{(h,\phi)}(p^{E}(\rho))$ (Schur-Horn's theorem: $p^{E}(\rho) \prec \lambda$)

Definition Basic properties

EFFECT OF A TRANSFORM OR A MEASURE

TRANSFORM

- Invariance to a unitary transf. U (e.g., time evolution) $\boldsymbol{H}_{(h,\phi)}\left(U\rho U^{\dagger}\right) = \boldsymbol{H}_{(h,\phi)}\left(\rho\right)$
- Decrease s.t. bistochastic operation (e.g., general measure): $\mathcal{E}(\rho) = \sum_k A_k \rho A_k^{\dagger}, \quad \sum_k A_k^{\dagger} A_k = I = \sum_k A_k A_k^{\dagger} \text{ (complete)}$ $\mathbf{H}_{(h,\phi)} (\mathcal{E}(\rho)) \geq \mathbf{H}_{(h,\phi)} (\rho) \quad \text{(information degradation)}$ Equality if $\mathcal{E}(\rho) = U\rho U^{\dagger}, \quad U$ unitary

Definition Basic properties

EFFECT OF A TRANSFORM OR A MEASURE

TRANSFORM

- Invariance to a unitary transf. U (e.g., time evolution) $\boldsymbol{H}_{(h,\phi)}\left(U\rho U^{\dagger}\right) = \boldsymbol{H}_{(h,\phi)}\left(\rho\right)$
- Decrease s.t. bistochastic operation (e.g., general measure):
 $$\begin{split} &\mathcal{E}(\rho) = \sum_{k} A_{k} \rho A_{k}^{\dagger}, \quad \sum_{k} A_{k}^{\dagger} A_{k} = I = \sum_{k} A_{k} A_{k}^{\dagger} \text{ (complete)} \\ & \boldsymbol{H}_{(h,\phi)} \left(\mathcal{E}(\rho) \right) \geq \boldsymbol{H}_{(h,\phi)} \left(\rho \right) \quad \text{(information degradation)} \\ & \text{Equality iif } \mathcal{E}(\rho) = U \rho U^{\dagger}, \quad U \text{ unitary} \\ & \text{(Hardy-Littlewood-Pólya: } \mathcal{E}(\rho) \prec \rho) \end{split}$$

Definition Basic properties

EFFECT OF A TRANSFORM OR A MEASURE

TRANSFORM

- Invariance to a unitary transf. U (e.g., time evolution) $\boldsymbol{H}_{(h,\phi)}\left(U\rho U^{\dagger}\right) = \boldsymbol{H}_{(h,\phi)}\left(\rho\right)$
- Decrease s.t. bistochastic operation (e.g., general measure): $\mathcal{E}(\rho) = \sum_{k} A_{k} \rho A_{k}^{\dagger}, \quad \sum_{k} A_{k}^{\dagger} A_{k} = I = \sum_{k} A_{k} A_{k}^{\dagger} \text{ (complete)}$ $\boldsymbol{H}_{(h,\phi)} \left(\mathcal{E}(\rho) \right) \geq \boldsymbol{H}_{(h,\phi)} \left(\rho \right) \qquad \text{(information degradation)}$ Equality iif $\mathcal{E}(\rho) = U\rho U^{\dagger}, \quad U$ unitary (Hardy-Littlewood-Pólya: $\mathcal{E}(\rho) \prec \rho$)

CONSEQUENCE

$$\{E_k\} \in \mathbb{E} \text{ rank one POVM, } p^E(\rho) = \operatorname{Tr}(E_k\rho), \\ \boldsymbol{H}_{(h,\phi)}(\rho) = \min_{\mathbb{E}} H_{(h,\phi)}\left(p^E(\rho)\right)$$

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

Programa

- **1** Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties

3 Quantum (h, ϕ) -entropies

- Definition
- Basic properties
- **4** Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
 - **5** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context
- 6 CONCLUSIONS

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

ADDITIVITIES, PURE STATE

Let
$$\mathcal{H}^A \otimes \mathcal{H}^B$$
, ρ^{AB} , $\rho^A = \operatorname{Tr}_B \rho^{AB}$, $\rho^B = \operatorname{Tr}_A \rho^{AB}$

(SUB)ADDITIVITY

• If (i)
$$\phi(ab) = \phi(a)b + a\phi(b)$$
 and $h(x+y) = h(x) + h(y)$, or

(ii)
$$\phi(ab) = \phi(a)\phi(b)$$
 and $h(xy) = h(x) + h(y)$, then

$$\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{A}\otimes\boldsymbol{\rho}^{B}\right)=\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{A}\right)+\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{B}\right)$$

(e.g., von Neuman, Rényi)

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

Additivities, pure state

Let
$$\mathcal{H}^A \otimes \mathcal{H}^B$$
, ρ^{AB} , $\rho^A = \operatorname{Tr}_B \rho^{AB}$, $\rho^B = \operatorname{Tr}_A \rho^{AB}$

(SUB)ADDITIVITY

• If (i)
$$\phi(ab) = \phi(a)b + a\phi(b)$$
 and $h(x+y) = h(x) + h(y)$, or

(ii)
$$\phi(ab) = \phi(a)\phi(b)$$
 and $h(xy) = h(x) + h(y)$, then

$$\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{A}\otimes\boldsymbol{\rho}^{B}\right)=\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{A}\right)+\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{B}\right)$$

(e.g., von Neuman, Rényi)

•
$$\boldsymbol{H}_{(h,\phi)}\left(\rho^{AB}\right) \leq \boldsymbol{H}_{(h,\phi)}\left(\rho^{A} \otimes \rho^{B}\right) \Leftrightarrow \phi(x) = -x \ln x$$

(counterexample, except if ϕ satisfies a functional eq....)

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

Additivities, pure state

Let
$$\mathcal{H}^A \otimes \mathcal{H}^B$$
, ρ^{AB} , $\rho^A = \operatorname{Tr}_B \rho^{AB}$, $\rho^B = \operatorname{Tr}_A \rho^{AB}$

(SUB)ADDITIVITY

• If (i)
$$\phi(ab) = \phi(a)b + a\phi(b)$$
 and $h(x+y) = h(x) + h(y)$, or

(ii)
$$\phi(ab) = \phi(a)\phi(b)$$
 and $h(xy) = h(x) + h(y)$, then

$$\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{A}\otimes\boldsymbol{\rho}^{B}\right)=\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{A}\right)+\boldsymbol{H}_{(h,\phi)}\left(\boldsymbol{\rho}^{B}\right)$$

(e.g., von Neuman, Rényi)

•
$$\boldsymbol{H}_{(h,\phi)}\left(\rho^{AB}\right) \leq \boldsymbol{H}_{(h,\phi)}\left(\rho^{A}\otimes\rho^{B}\right) \ \Leftrightarrow \ \phi(x) = -x\ln x$$

(counterexample, except if ϕ satisfies a functional eq...)

PURE STATES

$$ho^{AB} = |\psi
angle\langle\psi| \quad \Rightarrow \quad oldsymbol{H}_{(h,\phi)}\left(
ho^{A}
ight) = oldsymbol{H}_{(h,\phi)}\left(
ho^{B}
ight)$$

(Schmidt's decomposition)

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

SEPARABLE STATES

Separable states:

$$\rho^{AB} = \sum_{m} \omega_m \left| \Psi_m^A \right\rangle \left\langle \Psi_m^A \right| \otimes \left| \Psi_m^B \right\rangle \left\langle \Psi_m^B \right| \quad \omega_m \ge 0, \ \sum_{m} \omega_m = 1$$

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

SEPARABLE STATES

Separable states:

$$\rho^{AB} = \sum_{m} \omega_m \left| \Psi_m^A \right\rangle \left\langle \Psi_m^A \right| \otimes \left| \Psi_m^B \right\rangle \left\langle \Psi_m^B \right| \quad \omega_m \ge 0, \ \sum_{m} \omega_m = 1$$

SEPARABILITY INEQUALITY

If ρ^{AB} is separable, then

$$\boldsymbol{H}_{\left(h,\phi\right)}\left(\rho^{AB}\right)\geq\max\left\{\boldsymbol{H}_{\left(h,\phi\right)}\left(\rho^{A}\right)\,,\,\boldsymbol{H}_{\left(h,\phi\right)}\left(\rho^{B}\right)\right\}$$

 $(\rho^{AB} \prec \rho^A \And \rho^{AB} \prec \rho^B)$

Generalizable to multipartite systems and totally separable states

S. Zozor et al.

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

ENTANGLEMENT DETECTION: AN EXAMPLE

Werner: $\rho^{AB} = \omega |\Psi^-\rangle \langle \Psi^-| + (1-\omega)\frac{I}{4}, \qquad |\Psi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$ Entangled iif $\omega > \frac{1}{3}; \qquad \rho^A = \rho^B = \frac{I}{2}$

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

ENTANGLEMENT DETECTION: AN EXAMPLE

Werner:
$$\rho^{AB} = \omega |\Psi^-\rangle\langle\Psi^-| + (1-\omega)\frac{I}{4}, \qquad |\Psi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$

Entangled iif $\omega > \frac{1}{3}$; $\rho^A = \rho^B = \frac{I}{2}$ $\phi(x) = x^{\alpha}$, $h(x) = \frac{f(x)}{1-\alpha}$

 $\frac{f\left(3\left(\frac{1-\omega}{4}\right)^{\alpha} + \left(\frac{1+3\omega}{4}\right)^{\alpha}\right) - f\left(2^{1-\alpha}\right)}{\alpha - 1} > 0 \Rightarrow \text{ entangled}$

DETECTION

Criterion:

Bipartite systems – (sub)additivity, pure state (h, ϕ) -entropy and entanglement

ENTANGLEMENT DETECTION: AN EXAMPLE

Werner: $\rho^{AB} = \omega |\Psi^-\rangle \langle \Psi^-| + (1-\omega)\frac{I}{4}, \qquad |\Psi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$ Entangled if $\omega > \frac{1}{3}$; $\rho^A = \rho^B = \frac{I}{2}$ $\phi(x) = x^{\alpha}$, $h(x) = \frac{f(x)}{1-\alpha}$ DETECTION $f\left(3\left(\frac{1-\omega}{4}\right)^{\alpha} + \left(\frac{1+3\omega}{4}\right)^{\alpha}\right) - f\left(2^{1-\alpha}\right) > 0 \Rightarrow \text{ entangled}$ Criterion: $\alpha - 1$ 0.6 entanglement 4 0.4 detected 0.2 3 separabl entangled 0 3 2 -0.2-0.41 -0.6 0 ٥ 0.2 04 0.6 0.8 ω

S. Zozor et al.

Generalized quantum entropies: a definition and some properties

Classical context Quantum context

Programa

- **1** Motivations & goals
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- I Composite quantum systems
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **(5)** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context
- 6 CONCLUSIONS

Classical context Quantum context

RELATIVE ENTROPY AND MUTUAL INFORMATION

Conditional probability: $p^{A|B=b} = \frac{p_{a,b}^{AB}}{p_b^B}$

Classical context Quantum context

RELATIVE ENTROPY AND MUTUAL INFORMATION

Conditional probability: $p^{A|B=b} = \frac{p^{AB}_{a,b}}{p^{B}_{b}}$

FROM THE CONDITIONAL PROBABILITY

Relative entropy: $H_{(h,\phi)}^{\mathcal{J}}(A|B) = \sum_{b} p_{b}^{B} H_{(h,\phi)}\left(p^{A|B=b}\right)$

Mutual information: $\mathcal{J}_{(h,\phi)}(A;B) = H_{(h,\phi)}(A) - H_{(h,\phi)}^{\mathcal{J}}(A|B)$

h concave guarantees that $\mathcal{J}_{(h,\phi)} \geq 0... \quad \mathcal{J}_{(h,\phi)}$ not symmetrical...

Classical context Quantum context

RELATIVE ENTROPY AND MUTUAL INFORMATION

Conditional probability: $p^{A|B=b} = \frac{p_{a,b}^{AB}}{p_b^B}$

FROM THE CONDITIONAL PROBABILITY

Relative entropy: $H_{(h,\phi)}^{\mathcal{J}}(A|B) = \sum_{b} p_{b}^{B} H_{(h,\phi)}\left(p^{A|B=b}\right)$

Mutual information: $\mathcal{J}_{(h,\phi)}(A;B) = H_{(h,\phi)}(A) - H_{(h,\phi)}^{\mathcal{J}}(A|B)$

h concave guarantees that $\mathcal{J}_{(h,\phi)} \geq 0... \quad \mathcal{J}_{(h,\phi)}$ not symmetrical...

FROM THE CHAIN RULE

Relative entropy: $H_{(h,\phi)}^{\mathcal{I}}(A|B) = H_{(h,\phi)}(A,B) - H_{(h,\phi)}(B)$

Mutual information: $\mathcal{I}_{(h,\phi)}(A;B) = H_{(h,\phi)}(A) - H_{(h,\phi)}^{\mathcal{I}}(A|B)$

 $\mathcal{I}_{(h,\phi)}$ symmetrical, but with no guarantee that $\mathcal{I}_{(h,\phi)} \ge 0...$

Classical context Quantum context

RELATIVE ENTROPY AND MUTUAL INFORMATION

 $\{\Pi^B\}$ local projective measurement:

$$p_j^B = \operatorname{Tr}\left(I \otimes \Pi_j^B \rho^{AB}\right), \qquad \rho^{A|\Pi_j^B} = \frac{I \otimes \Pi_j^B \rho^{AB} I \otimes \Pi_j^B}{p_j^B}$$

Classical context Quantum context

RELATIVE ENTROPY AND MUTUAL INFORMATION

 $\{\Pi^B\}$ local projective measurement:

$$p_j^B = \operatorname{Tr}\left(I \otimes \Pi_j^B \rho^{AB}\right), \qquad \rho^{A|\Pi_j^B} = \frac{I \otimes \Pi_j^B \rho^{AB} I \otimes \Pi_j^B}{p_j^B}$$

FROM THE CONDITIONAL STATE

Relative entropy vs
$$\Pi^B$$
: $\boldsymbol{H}_{(h,\phi)}^{\mathcal{J}}\left(A|\Pi^B\right) = \sum_j p_j^B \boldsymbol{H}_{(h,\phi)}\left(\rho^{A|\Pi_j^B}\right)$

Relative entropy vs *B*: $\boldsymbol{H}_{(h,\phi)}^{\mathcal{J}}(A|B) = \min_{\{\Pi^B\}} \boldsymbol{H}_{(h,\phi)}^{\mathcal{J}}(A|\Pi^B)$

Classical context Quantum context

RELATIVE ENTROPY AND MUTUAL INFORMATION

 $\{\Pi^B\}$ local projective measurement:

$$p_j^B = \operatorname{Tr}\left(I \otimes \Pi_j^B \rho^{AB}\right), \qquad \rho^{A|\Pi_j^B} = \frac{I \otimes \Pi_j^B \rho^{AB} I \otimes \Pi_j^B}{p_j^B}$$

FROM THE CONDITIONAL STATE

Relative entropy vs
$$\Pi^B$$
: $\boldsymbol{H}_{(h,\phi)}^{\mathcal{J}}\left(A|\Pi^B\right) = \sum_j p_j^B \boldsymbol{H}_{(h,\phi)}\left(\rho^{A|\Pi_j^B}\right)$

Relative entropy vs *B*: $\boldsymbol{H}_{(h,\phi)}^{\mathcal{J}}(A|B) = \min_{\{\Pi^B\}} \boldsymbol{H}_{(h,\phi)}^{\mathcal{J}}(A|\Pi^B)$

FROM THE CHAIN RULE

Relative entropy: $\boldsymbol{H}_{(h,\phi)}^{\mathcal{I}}(A|B) = \boldsymbol{H}_{(h,\phi)}(A,B) - \boldsymbol{H}_{(h,\phi)}(B)$

Programa

- 1 MOTIVATIONS & GOALS
- 2 Classical (h, ϕ) -entropies
 - Definition
 - Properties
- **3** Quantum (h, ϕ) -entropies
 - Definition
 - Basic properties
- OMPOSITE QUANTUM SYSTEMS
 - Bipartite systems (sub)additivity, pure state
 - (h, ϕ) -entropy and entanglement
- **5** Relative (h, ϕ) -entropies
 - Classical context
 - Quantum context

- We proposed an extension of the (h, ϕ) -entropies for the quantum systems (that extends the trace-entropies).
- These extensions are based on two entropic functionals $\phi \& h$, and encompass various famous entropies such that the von Neuman's, Tsallis's, Rényi's (thanks to h), unified, trace entropies or not.
- We proposed possibles associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.

- We proposed an extension of the (h, ϕ) -entropies for the quantum systems (that extends the trace-entropies).
- These extensions are based on two entropic functionals $\phi \& h$, and encompass various famous entropies such that the von Neuman's, Tsallis's, Rényi's (thanks to h), unified, trace entropies or not.
- We proposed possibles associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.

- We proposed an extension of the (h, ϕ) -entropies for the quantum systems (that extends the trace-entropies).
- These extensions are based on two entropic functionals $\phi \& h$, and encompass various famous entropies such that the von Neuman's, Tsallis's, Rényi's (thanks to h), unified, trace entropies or not.
- We proposed possibles associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.

SUMMARY

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.

G. M. Bosyk, S. Zozor, F. Holik, M. Portesi & P. W. Lamberti, A family of generalized quantum entropies: definition and properties, Quantum Info. Process., 15(8):3393-4220, August 2016

Grazie Gracias! Thank you! DANKE! Merci! 你很