Generalized quantum entropies: a definition and some properties

Steeve Zozor

G. M. Bosyk, F. Holik, M. Portesi & P. W. Lamberti

GIPSA-Lab – CNRS & Grenoble INP, Grenoble, France
IFLP & Dpto de Física – CONICET & UNLP, La Plata, Argentina
FaMAF – CONICET & UNC, Córdoba, Argentina

Cagliari, November 3, 2016
1 Motivations & goals

2 Classical \((h, \phi)\)-entropies
 • Definition
 • Properties

3 Quantum \((h, \phi)\)-entropies
 • Definition
 • Basic properties

4 Composite quantum systems
 • Bipartite systems – (sub)additivity, pure state
 • \((h, \phi)\)-entropy and entanglement

5 Relative \((h, \phi)\)-entropies
 • Classical context
 • Quantum context

6 Conclusions
Contents

1 Motivations & goals

2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties

3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties

4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement

5 Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context

6 Conclusions
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Contents

1 Motivations & goals
2 Classical \((h, \phi)\)-entropies
 • Definition
 • Properties
3 Quantum \((h, \phi)\)-entropies
 • Definition
 • Basic properties
4 Composite quantum systems
 • Bipartite systems – (sub)additivity, pure state
 • \((h, \phi)\)-entropy and entanglement
5 Relative \((h, \phi)\)-entropies
 • Classical context
 • Quantum context
6 Conclusions

S. Zozor et al. Generalized quantum entropies: a definition and some properties
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

1 Motivations & goals
2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties
3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties
4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement

S. Zozor et al.
Generalized quantum entropies: a definition and some properties
Motivations & goals

Classical \((h, \phi)\)-entropies

Quantum \((h, \phi)\)-entropies

Composite quantum systems

Relative \((h, \phi)\)-entropies

Conclusions

1 Motivations & goals

2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties

3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties

4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement

5 Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context

Conclusions

S. Zozor et al.

Generalized quantum entropies: a definition and some properties
Motivations & goals

Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Contents

1 Motivations & goals

2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties

3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties

4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement

5 Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context

6 Conclusions
Motivations & goals

Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Programa

1 Motivations & goals

2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties

3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties

4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement

5 Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context

6 Conclusions
Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necessitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...
Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...
Motivations

Increasing field of investigation on quantum information processing or transmission.

Necesitate the use of quantum information measures, or of quantum entropies.

There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...
Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ... no trivially connected; with common properties.
Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ... no trivially connected; with common properties.

Note

In the classical context, there exists a generalized family proposed by Salicrú (Csiszár); Contains the Shannon entropy, that of Rényi, Havrda-Charvát (Daróczy, Vajda, Tsallis, ...) among others.
Goals

- To define a generalized family of quantum entropies.
- To study their properties (common or specific).
- To apply them in quantum information processing.
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

PROGRAMA

1. **Motivations & goals**
2. **Classical \((h, \phi)\)-entropies**
 - Definition
 - Properties
3. **Quantum \((h, \phi)\)-entropies**
 - Definition
 - Basic properties
4. **Composite quantum systems**
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement
5. **Relative \((h, \phi)\)-entropies**
 - Classical context
 - Quantum context
6. **Conclusions**

S. Zozor *et al.* Generalized quantum entropies: a definition and some properties
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Definition

Let \(p = [p_1 \, \cdots \, p_N] \in [0 ; 1]^N\), \(\sum_k p_k = 1\)

\[
H_{(h,\phi)} (p) = h \left(\sum_k \phi(p_k) \right)
\]

\(\phi : [0 ; 1] \rightarrow \mathbb{R}\) and \(h : \mathbb{R} \rightarrow \mathbb{R}\),

- \(\phi\) is concave and \(h\) is increasing, or
- \(\phi\) is convex and \(h\) is decreasing

S. Zozor *et al.*
Generalized quantum entropies: a definition and some properties
Definition

Let \(p = [p_1 \cdots p_N] \in [0 ; 1]^N \), \(\sum_k p_k = 1 \)

\[
H_{(h,\phi)}(p) = h \left(\sum_k \phi(p_k) \right)
\]

\(\phi : [0 ; 1] \rightarrow \mathbb{R} \) y \(h : \mathbb{R} \rightarrow \mathbb{R} \),

- \(\phi \) is concave and \(h \) is increasing, or
- \(\phi \) is convex and \(h \) is decreasing

Moreover

- \(\phi(0) = 0 \) (no elementary uncertainty associated to the probability 0)
- \(h(\phi(1)) = 0 \) (no uncertainty associated to a deterministic state)

S. Zozor et al., *Generalized quantum entropies: a definition and some properties*
Famous Examples

<table>
<thead>
<tr>
<th></th>
<th>ϕ</th>
<th>h</th>
<th>$H_{(h,\phi)} (p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shannon</td>
<td>$-x \ln x$</td>
<td>x</td>
<td>$- \sum_k p_k \ln p_k$</td>
</tr>
<tr>
<td>Rényi</td>
<td>x^α</td>
<td>$\ln x / (1-\alpha)$</td>
<td>$\ln(\sum_k p_k^\alpha) / (1-\alpha)$</td>
</tr>
<tr>
<td>HCT</td>
<td>x^α</td>
<td>$x-1 / (1-\alpha)$</td>
<td>$\sum_k p_k^\alpha - 1 / (1-\alpha)$</td>
</tr>
<tr>
<td>Unified</td>
<td>x^r</td>
<td>$x^{s-1} / (1-r)^s$</td>
<td>$(\sum_k p_k^r)^s - 1 / (1-r)^s$</td>
</tr>
<tr>
<td>Kaniadakis</td>
<td>$\frac{x^{1-\kappa} - x^{1+\kappa}}{2\kappa}$</td>
<td>x</td>
<td>$\sum_k \left(p_k^{1-\kappa} - p_k^{1+\kappa} \right) / 2\kappa$</td>
</tr>
</tbody>
</table>
Basic properties

For any pair of entropic functional \((h, \phi)\),

- Invariance to a permutation of the \(p_k\)'s

- Expansibility:
 \[
 H_{(h,\phi)}([p_1 \cdots p_N \ 0]) = H_{(h,\phi)}([p_1 \cdots p_N])
 \]
 (consequence of \(\phi(0) = 0\))

- Fusion:
 \[
 H_{(h,\phi)}([p_1 \ p_2 \cdots p_N]) \geq H_{(h,\phi)}([p_1 + p_2 \cdots p_N])
 \]
 (Petković’s inequality \(\phi(a + b) \leq \phi(a) + \phi(b)\) for concave \(\phi\) with \(\phi(0) = 0\))
Majorization

Definition

p, p' proba. vectors, with components increasingly arranged,

$p \prec p'$ \hspace{10pt} (p \text{ is majorized by } p')$

if \hspace{10pt} \sum_{k=1}^{n} p_k \leq \sum_{k=1}^{n} p'_k \hspace{10pt} \forall \hspace{5pt} n < \max(N, N') \hspace{10pt} \& \hspace{10pt} \sum_{k=1}^{\max(N, N')} p_k = \sum_{k=1}^{\max(N, N')} p'_k$

Majorization is a partial order relationship
Majorization

Definition

p, p' proba. vectors, with components increasingly arranged,

$$
p < p' \quad (p \text{ is majorized by } p')
$$

if

$$
\sum_{k=1}^{n} p_k \leq \sum_{k=1}^{n} p'_{k} \quad \forall \; n < \max(N,N') \quad \& \quad \sum_{k=1}^{\max(N,N')} p_k = \sum_{k=1}^{\max(N,N')} p'_{k}
$$

Majorization is a partial order relationship

Examples

For any p, of dimension N,

$$
\begin{bmatrix}
\frac{1}{N} & \cdots & \frac{1}{N}
\end{bmatrix} \prec \begin{bmatrix}
\frac{1}{\|p\|_0} & \cdots & \frac{1}{\|p\|_0} & 0 & \cdots & 0
\end{bmatrix} \prec \begin{bmatrix}
1 & 0 & \cdots & 0
\end{bmatrix}
$$
For any pair of entropic functionals \((h, \phi)\),

Schur-concavity

- \(p \prec p' \Rightarrow H_{(h,\phi)}(p) \geq H_{(h,\phi)}(p') \) (equality iif \(p \equiv p' \))

 (consequence of the Karamata’s theorem)

- Reciprocal if for all pairs \((h, \phi)\)
Properties linked to the majorization

For any pair of entropic functionals \((h, \phi)\),

Schur-concavity

- \(p \prec p' \Rightarrow H_{(h, \phi)}(p) \geq H_{(h, \phi)}(p')\) (equality iif \(p \equiv p'\))
 (consequence of the Karamata’s theorem)

- Reciprocal if for all pairs \((h, \phi)\)

Bounds

\[
0 \leq H_{(h, \phi)}(p) \leq h \left(\|p\|_0 \phi \left(\frac{1}{\|p\|_0} \right) \right) \leq h \left(N \phi \left(\frac{1}{N} \right) \right)
\]

(certainty and uniform)
(consequence of majorization relationships)
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Programa

1. Motivations & goals
2. Classical \((h, \phi)\)-entropies
 - Definition
 - Properties
3. Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties
4. Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement
5. Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context
6. Conclusions

Generalized quantum entropies: a definition and some properties
Quantum \((h, \phi)\)-entropy: definition

Let \(\rho\) be a density operator acting on \(\mathcal{H}^N\) (\(\rho \geq 0\) hermitian, with \(\text{Tr} \rho = 1\))

Definition

\[
H_{(h,\phi)}(\rho) = h(\text{Tr} \phi(\rho))
\]

with \(\phi : [0; 1] \rightarrow \mathbb{R}, \phi(0) = 0\) \& \(h : \mathbb{R} \rightarrow \mathbb{R}, h(\phi(1)) = 0\),

- \(\phi\) is concave and \(h\) is increasing, or
- \(\phi\) is convex and \(h\) is decreasing

(for \(\rho = \sum_k \lambda_k \vert e_k \rangle \langle e_k \vert\), \(\phi(\rho) = \sum_k \phi(\lambda_k) \vert e_k \rangle \langle e_k \vert\))
Quantum vs classical \((h, \phi)\)-entropy

Diagonal form

\[
\rho = \sum_k \lambda_k \ket{e_k}\bra{e_k}
\]

where

- \(\{\ket{e_k}\}\) is the orthonomonal base of \(\mathcal{H}^N\) that diagonalizes \(\rho\),
- \(\lambda = [\lambda_1 \cdots \lambda_N] \in [0; 1]^N, \quad \sum_k \lambda_k = 1\) the eigenvalues of \(\rho\)
Quantum vs classical \((h, \phi)\)-entropy

Diagonal form

\[\rho = \sum_k \lambda_k |e_k\rangle\langle e_k| \]

where

- \(\{|e_k\rangle\}\) is the orthonormal base of \(\mathcal{H}^N\) that diagonalizes \(\rho\),
- \(\lambda = [\lambda_1 \cdots \lambda_N] \in [0; 1]^N\), \(\sum_k \lambda_k = 1\) the eigenvalues of \(\rho\)

Quantum vs classical

\[H_{(h, \phi)}(\rho) = H_{(h, \phi)}(\lambda) \]
By definition, $\rho \prec \rho'$ means that $\lambda \prec \lambda'$.
Properties linked to the majorization

By definition, $\rho \prec \rho'$ means that $\lambda \prec \lambda'$

For any pair of entropic functionals (h, ϕ),

\textbf{Schur-concavidad (& recip.)}

$$\rho \prec \rho' \implies H_{(h,\phi)}(\rho) \geq H_{(h,\phi)}(\rho')$$

equality iif $\rho' = U\rho U^\dagger$ or $\rho = U\rho' U^\dagger$ with U isometry ($U^\dagger U = I$)
By definition, \(\rho \prec \rho' \) means that \(\lambda \prec \lambda' \)

For any pair of entropic functionals \((h, \phi)\),

Schur-concavidad (\& recip.)

\[
\rho \prec \rho' \implies H_{(h,\phi)}(\rho) \geq H_{(h,\phi)}(\rho')
\]

equality iif \(\rho' = U\rho U^\dagger \) or \(\rho = U\rho' U^\dagger \) with \(U \) isometry \((U^\dagger U = I)\)

Bounds

\[
0 \leq H_{(h,\phi)}(\rho) \leq h\left(\text{rank } \rho \phi \left(\frac{1}{\text{rank } \rho}\right)\right) \leq h\left(N\phi \left(\frac{1}{N}\right)\right)
\]

pure state \(|\psi\rangle\langle\psi|\) max. mixed \(\frac{I}{N}\)
Concavity

If h is concave, then $H_{(h,\phi)}(\cdot)$ is concave,

$$H_{(h,\phi)}(\omega \rho + (1 - \omega) \rho') \geq \omega H_{(h,\phi)}(\rho) + (1 - \omega) H_{(h,\phi)}(\rho')$$

(Peierls’s inequality, $\text{Tr}(\rho) \leq \sum_k \phi(\langle f_k | \rho | f_k \rangle) \ & \ & \phi$ concave)
Properties specific to the quantum context

Concavity

If h is concave, then $H_{(h,\phi)}(\cdot)$ is concave,

$$H_{(h,\phi)}(\omega \rho + (1 - \omega) \rho') \geq \omega H_{(h,\phi)}(\rho) + (1 - \omega) H_{(h,\phi)}(\rho')$$

(Peierls’s inequality, $\text{Tr}(\rho) \leq \sum_k \phi(\langle f_k | \rho | f_k \rangle) \& \phi \text{ concave} \)

Mixture

$$\rho = \sum_k p_k |\psi_k\rangle\langle\psi_k| \implies H_{(h,\phi)}(\rho) \leq H_{(h,\phi)}(p)$$

(Schrödinger’s mixture $p = B\lambda$, B bistoch., Hardy-Littlewood-Pólya $p \prec \lambda$)
Properties Specific to the Quantum Context

Concavity

If h is concave, then $H_{(h,\phi)}(\cdot)$ is concave,

$$H_{(h,\phi)}(\omega \rho + (1 - \omega) \rho') \geq \omega H_{(h,\phi)}(\rho) + (1 - \omega) H_{(h,\phi)}(\rho')$$

(Peierls’s inequality, $\text{Tr}(\rho) \leq \sum_k \phi(\langle f_k | \rho | f_k \rangle) \ & \ \phi$ concave)

Mixture

$$\rho = \sum_k p_k |\psi_k\rangle\langle\psi_k| \ \Rightarrow \ \ H_{(h,\phi)}(\rho) \leq H_{(h,\phi)}(p)$$

(Schrödinger’s mixture $p = B\lambda$, B bistoch., Hardy-Littlewood-Pólya $p \prec \lambda$)

Entropy vs Diagonal

$p^E(\rho)$ diag. ρ in $E = \{e_k\}$ orth. base:

$$H_{(h,\phi)}(\rho) \leq H_{(h,\phi)}(p^E(\rho))$$

(Schur-Horn’s theorem: $p^E(\rho) \prec \lambda$)
Effect of a transform or a measure

Transform

- Invariance to a unitary transf. U (e.g., time evolution)

$$H_{(h,\phi)} \left(U \rho U^\dagger \right) = H_{(h,\phi)} (\rho)$$

- Decrease s.t. bistochastic operation (e.g., general measure):

$E(\rho) = \sum_k A_k \rho A_k^\dagger, \quad \sum_k A_k^\dagger A_k = I = \sum_k A_k A_k^\dagger$ (complete)

$$H_{(h,\phi)} (E(\rho)) \geq H_{(h,\phi)} (\rho) \quad \text{ (information degradation)}$$

Equality iif $E(\rho) = U \rho U^\dagger, \quad U$ unitary

(Hardy-Littlewood-Pólya: $E(\rho) \prec \rho$)
Effect of a transform or a measure

Transform

- Invariance to a unitary transf. U (e.g., time evolution)

$$H_{(h,\phi)} \left(U \rho U^\dagger \right) = H_{(h,\phi)} (\rho)$$

- Decrease s.t. bistochastic operation (e.g., general measure):

$$\mathcal{E}(\rho) = \sum_k A_k \rho A_k^\dagger, \quad \sum_k A_k^\dagger A_k = I = \sum_k A_k A_k^\dagger \quad \text{(complete)}$$

$$H_{(h,\phi)} (\mathcal{E}(\rho)) \geq H_{(h,\phi)} (\rho) \quad \text{(information degradation)}$$

Equality iif $\mathcal{E}(\rho) = U \rho U^\dagger$, U unitary

(Hardy-Littlewood-Pólya: $\mathcal{E}(\rho) \prec \rho$)
Effect of a transform or a measure

Transform

- Invariance to a unitary transf. U (e.g., time evolution)

$$H_{(h,\phi)}\left(U\rho U^\dagger\right) = H_{(h,\phi)}(\rho)$$

- Decrease s.t. bistochastic operation (e.g., general measure):

$$\mathcal{E}(\rho) = \sum_k A_k \rho A_k^\dagger$$

$$\sum_k A_k^\dagger A_k = I = \sum_k A_k A_k^\dagger$$ (complete)

$$H_{(h,\phi)}(\mathcal{E}(\rho)) \geq H_{(h,\phi)}(\rho)$$ (information degradation)

Equality iif $\mathcal{E}(\rho) = U\rho U^\dagger$, U unitary

(Hardy-Littlewood-Pólya: $\mathcal{E}(\rho) \prec \rho$)

Consequence

$$\{E_k\} \in \mathbb{E} \text{ rank one POVM, } p^E(\rho) = \text{Tr}(E_k\rho),$$

$$H_{(h,\phi)}(\rho) = \min_{\mathbb{E}} H_{(h,\phi)}(p^E(\rho))$$
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Programa

1 Motivations & goals
2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties
3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties
4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement
5 Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context
6 Conclusions

S. Zozor et al. Generalized quantum entropies: a definition and some properties
Let $\mathcal{H}^A \otimes \mathcal{H}^B$, ρ^{AB}, $\rho^A = \text{Tr}_B \rho^{AB}$, $\rho^B = \text{Tr}_A \rho^{AB}$

(Sub)additivity

- If (i) $\phi(ab) = \phi(a)b + a\phi(b)$ and $h(x + y) = h(x) + h(y)$, or
- (ii) $\phi(ab) = \phi(a)\phi(b)$ and $h(xy) = h(x) + h(y)$, then

$$H_{(h,\phi)}(\rho^A \otimes \rho^B) = H_{(h,\phi)}(\rho^A) + H_{(h,\phi)}(\rho^B)$$

(e.g., von Neuman, Rényi)

- $H_{(h,\phi)}(\rho^{AB}) \leq H_{(h,\phi)}(\rho^A \otimes \rho^B) \Rightarrow \phi(x) = -x \ln x$ (counterexample, except if ϕ satisfies a functional eq...)

S. Zozor et al. Generalized quantum entropies: a definition and some properties
Let $\mathcal{H}^A \otimes \mathcal{H}^B$, ρ^{AB}, $\rho^A = \text{Tr}_B \rho^{AB}$, $\rho^B = \text{Tr}_A \rho^{AB}$

Subadditivity

- If (i) $\phi(ab) = \phi(a)b + a\phi(b)$ and $h(x + y) = h(x) + h(y)$, or
 - (ii) $\phi(ab) = \phi(a)\phi(b)$ and $h(xy) = h(x) + h(y)$, then

\[
H_{(h,\phi)}(\rho^A \otimes \rho^B) = H_{(h,\phi)}(\rho^A) + H_{(h,\phi)}(\rho^B)
\]

(e.g., von Neuman, Rényi)

- $H_{(h,\phi)}(\rho^{AB}) \leq H_{(h,\phi)}(\rho^A \otimes \rho^B) \iff \phi(x) = -x \ln x$

(counterexample, except if ϕ satisfies a functional eq...)
ADDITIVITIES, PURE STATE

Let $\mathcal{H}^A \otimes \mathcal{H}^B$, ρ^{AB}, $\rho^A = \text{Tr}_B \rho^{AB}$, $\rho^B = \text{Tr}_A \rho^{AB}$

Sub)additivity

- If (i) $\phi(ab) = \phi(a)b + a\phi(b)$ and $h(x + y) = h(x) + h(y)$, or
- (ii) $\phi(ab) = \phi(a)\phi(b)$ and $h(xy) = h(x) + h(y)$, then

$$H_{(h,\phi)}(\rho^A \otimes \rho^B) = H_{(h,\phi)}(\rho^A) + H_{(h,\phi)}(\rho^B)$$

(e.g., von Neuman, Rényi)

- $H_{(h,\phi)}(\rho^{AB}) \leq H_{(h,\phi)}(\rho^A \otimes \rho^B) \iff \phi(x) = -x \ln x$

(counterexample, except if ϕ satisfies a functional eq....)

Pure states

$$\rho^{AB} = |\psi\rangle\langle\psi| \implies H_{(h,\phi)}(\rho^A) = H_{(h,\phi)}(\rho^B)$$

(Schmidt’s decomposition)
Separable states:

\[\rho^{AB} = \sum_m \omega_m |\Psi_m^A\rangle\langle \Psi_m^A| \otimes |\Psi_m^B\rangle\langle \Psi_m^B| \quad \omega_m \geq 0, \sum_m \omega_m = 1 \]
Separable states:

\[\rho^{AB} = \sum_m \omega_m |\Psi_m^A \rangle \langle \Psi_m^A| \otimes |\Psi_m^B \rangle \langle \Psi_m^B| \quad \omega_m \geq 0, \sum_m \omega_m = 1 \]

Separability inequality

If \(\rho^{AB} \) is separable, then

\[H_{(h,\phi)}(\rho^{AB}) \geq \max \{ H_{(h,\phi)}(\rho^A), H_{(h,\phi)}(\rho^B) \} \]

(\(\rho^{AB} \prec \rho^A \) \& \(\rho^{AB} \prec \rho^B \))

Generalizable to multipartite systems and totally separable states

S. Zozor et al. Generalized quantum entropies: a definition and some properties
Entanglement Detection: an example

Werner: \(\rho^{AB} = \omega |\Psi^-\rangle \langle \Psi^-| + (1 - \omega) \frac{I}{4} \), \(|\Psi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}} \)

Entangled iif \(\omega > \frac{1}{3} \); \(\rho^A = \rho^B = \frac{I}{2} \)
Entanglement Detection: an example

Werner: \(\rho^{AB} = \omega \ket{\Psi^-} \bra{\Psi^-} + (1 - \omega) \frac{I}{4}, \quad \ket{\Psi^-} = \frac{\ket{00} - \ket{11}}{\sqrt{2}} \)

Entangled iif \(\omega > \frac{1}{3} \); \(\rho^A = \rho^B = \frac{I}{2} \)

\(\phi(x) = x^\alpha, \quad h(x) = \frac{f(x)}{1 - \alpha} \)

Detection

Criterion: \(\frac{f \left(3 \left(\frac{1 - \omega}{4} \right)^\alpha + \left(\frac{1 + 3\omega}{4} \right)^\alpha \right) - f \left(2^{1 - \alpha} \right)}{\alpha - 1} > 0 \Rightarrow \text{entangled} \)
Entanglement Detection: an example

Werner: \(\rho^{AB} = \omega |\Psi^-\rangle \langle \Psi^-| + (1 - \omega) \frac{I}{4}, \quad |\Psi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}} \)

Entangled iif \(\omega > \frac{1}{3} \); \(\rho^A = \rho^B = \frac{I}{2} \)

\(\phi(x) = x^\alpha, \quad h(x) = \frac{f(x)}{1-\alpha} \)

Detection Criterion:

\[
\frac{f \left(3 \left(\frac{1-\omega}{4} \right)^\alpha + \left(\frac{1+3\omega}{4} \right)^\alpha \right) - f \left(2^{1-\alpha} \right)}{\alpha - 1} > 0 \Rightarrow \text{entangled}
\]
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

PROGRAMA

1. Motivations & goals
2. Classical \((h, \phi)\)-entropies
 - Definition
 - Properties
3. Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties
4. Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement
5. Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context
6. Conclusions

S. Zozor et al.
Generalized quantum entropies: a definition and some properties
Conditional probability: \(p^{A|B=b} = \frac{p^{AB}_{a,b}}{p^B_b} \)
Relative entropy and mutual information

Conditional probability: \(p^{A|B=b} = \frac{p^{AB}_{a,b}}{p^B_b} \)

From the conditional probability

Relative entropy: \(H^J_{(h,\phi)} (A|B) = \sum_b p^B_b H_{(h,\phi)} (p^{A|B=b}) \)

Mutual information: \(J_{(h,\phi)} (A; B) = H_{(h,\phi)} (A) - H^J_{(h,\phi)} (A|B) \)

\(h \) concave guarantees that \(J_{(h,\phi)} \geq 0 \ldots \) \(J_{(h,\phi)} \) not symmetrical...
Relative entropy and mutual information

Conditional probability: $p^{A|B=b} = \frac{p^{AB}_{a,b}}{p^B_b}$

From the conditional probability

Relative entropy: $H^J_{(h,\phi)}(A|B) = \sum_b p^B_b H_{(h,\phi)}(p^{A|B=b})$

Mutual information: $J_{(h,\phi)}(A; B) = H_{(h,\phi)}(A) - H^J_{(h,\phi)}(A|B)$

h concave guarantees that $J_{(h,\phi)} \geq 0$... $J_{(h,\phi)}$ not symmetrical...

From the chain rule

Relative entropy: $H^\mathcal{I}_{(h,\phi)}(A|B) = H_{(h,\phi)}(A, B) - H_{(h,\phi)}(B)$

Mutual information: $\mathcal{I}_{(h,\phi)}(A; B) = H_{(h,\phi)}(A) - H^\mathcal{I}_{(h,\phi)}(A|B)$

$\mathcal{I}_{(h,\phi)}$ symmetrical, but with no guarantee that $\mathcal{I}_{(h,\phi)} \geq 0$...
\{ \Pi^B \} \text{ local projective measurement:}
\begin{align*}
p^B_j &= \text{Tr} \left(I \otimes \Pi^B_j \rho^{AB} \right), \quad \rho^{A|\Pi^B_j} = \frac{I \otimes \Pi^B_j \rho^{AB} \otimes \Pi^B_j}{p^B_j}.
\end{align*}
{Π^B} local projective measurement:

\[p_j^B = \text{Tr} \left(I \otimes \Pi_j^B \rho^{AB} \right), \quad \rho^{A|\Pi_j^B} = \frac{I \otimes \Pi_j^B \rho^{AB} I \otimes \Pi_j^B}{p_j^B} \]

From the conditional state

Relative entropy vs Π^B: \(H^J_{(h,\phi)} (A|\Pi^B) = \sum_j p_j^B H_{(h,\phi)} (\rho^{A|\Pi_j^B}) \)

Relative entropy vs B: \(H^J_{(h,\phi)} (A|B) = \min \{\Pi^B\} H^J_{(h,\phi)} (A|\Pi^B) \)
Relative entropy and mutual information

\[\{ \Pi^B \} \text{ local projective measurement:} \]

\[
p^B_j = \text{Tr} \left(I \otimes \Pi_j^B \rho^{AB} \right), \quad \rho^{A|\Pi_j^B} = \frac{I \otimes \Pi_j^B \rho^{AB} I \otimes \Pi_j^B}{p_j^B}
\]

From the conditional state

Relative entropy vs \(\Pi^B \):

\[
H_{(h, \phi)}^J (A|\Pi^B) = \sum_j p^B_j H_{(h, \phi)} \left(\rho^{A|\Pi_j^B} \right)
\]

Relative entropy vs \(B \):

\[
H_{(h, \phi)}^J (A|B) = \min_{\{\Pi^B\}} H_{(h, \phi)}^J (A|\Pi^B)
\]

From the chain rule

Relative entropy:

\[
H_{(h, \phi)}^J (A|B) = H_{(h, \phi)} (A, B) - H_{(h, \phi)} (B)
\]
Motivations & goals
Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies
Conclusions

Programa

1 Motivations & goals
2 Classical \((h, \phi)\)-entropies
 - Definition
 - Properties
3 Quantum \((h, \phi)\)-entropies
 - Definition
 - Basic properties
4 Composite quantum systems
 - Bipartite systems – (sub)additivity, pure state
 - \((h, \phi)\)-entropy and entanglement
5 Relative \((h, \phi)\)-entropies
 - Classical context
 - Quantum context
6 Conclusions

S. Zozor et al.
Generalized quantum entropies: a definition and some properties
Summary

- We proposed an extension of the \((h, \phi)\)-entropies for the quantum systems (that extends the trace-entropies).

- These extensions are based on two entropic functionals \(\phi \& h\), and encompass various famous entropies such that the von Neuman’s, Tsallis’s, Rényi’s (thanks to \(h\)), unified, trace entropies or not.

- We proposed possible associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.
We proposed an extension of the \((h, \phi)\)-entropies for the quantum systems (that extends the trace-entropies).

These extensions are based on two entropic functionals \(\phi \& h\), and encompass various famous entropies such that the von Neuman’s, Tsallis’s, Rényi’s (thanks to \(h\)), unified, trace entropies or not.

We proposed possibles associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.
We proposed an extension of the \((h, \phi)\)-entropies for the quantum systems (that extends the trace-entropies).

These extensions are based on two entropic functionals \(\phi \& h\), and encompass various famous entropies such that the von Neuman’s, Tsallis’s, Rényi’s (thanks to \(h\)), unified, trace entropies or not.

We proposed possibly associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.
We studied various properties shared by the whole family; the main ones rely on the notion of majorization.

In particular, the Schur-concavity appears to be crucial in the quantum context.

We studied the effect of quantum operations (unitary transform, measures) on these entropies.

We studied their properties for composite systems: they allow to propose entanglement detection criteria.
Summary

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.

- In particular, the Schur-concavity appears to be crucial in the quantum context.

- We studied the effect of quantum operations (unitary transform, measures) on these entropies.

- We studied their properties for composite systems: they allow to propose entanglement detection criteria.
We studied various properties shared by the whole family; the main ones rely on the notion of majorization.

In particular, the Schur-concavity appears to be crucial in the quantum context.

We studied the effect of quantum operations (unitary transform, measures) on these entropies.

We studied their properties for composite systems: they allow to propose entanglement detection criteria.
We studied various properties shared by the whole family; the main ones rely on the notion of majorization.

In particular, the Schur-concavity appears to be crucial in the quantum context.

We studied the effect of quantum operations (unitary transform, measures) on these entropies.

We studied their properties for composite systems: they allow to propose entanglement detection criteria.
We studied various properties shared by the whole family; the main ones rely on the notion of majorization.

In particular, the Schur-concavity appears to be crucial in the quantum context.

We studied the effect of quantum operations (unitary transform, measures) on these entropies.

We studied their properties for composite systems: they allow to propose entanglement detection criteria.

Motivations & goals

Classical \((h, \phi)\)-entropies
Quantum \((h, \phi)\)-entropies
Composite quantum systems
Relative \((h, \phi)\)-entropies

Conclusions

S. Zozor et al.

Generalized quantum entropies: a definition and some properties