Generalized quantum entropies: A DEFINITION AND SOME PROPERTIES

Steeve Zozor

G. M. Bosyk, F. Holik, M. Portesi \& P. W. Lamberti

Universidad Nacional de Córdoba

GIPSA-Lab - CNRS \& Grenoble INP, Grenoble, France
IFLP \& Dpto de Física - CONICET \& UNLP, La Plata, Argentina FaMAF - CONICET \& UNC, Córdoba, Argentina

Cagliari, November 3, 2016

Contents

(1) Motivations \& goals

Contents

(1) Motivations \& goals
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties

Contents

(1) Motivations \& goals
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties

Contents

(1) Motivations \& goals
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement

Contents

(1) Motivations \& goals
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(5) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context

Contents

(1) Motivations \& goals
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(5) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context
(6) Conclusions

PROGRAMA

(1) Motivations \& goals

(2) Classical (h, ϕ)-Entropies

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(5) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context

Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.

Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.

Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ...

Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ... no trivially connected; with common properties.

Motivation

Motivations

- Increasing field of investigation on quantum information processing or transmission.
- Necesitate the use of quantum information measures, or of quantum entropies.
- There exist some definitions: von Neumann, quantum versions of Rényi, Tsallis, Kaniadakis types, ... no trivially connected; with common properties.

Note

In the classical context, there exists a generalized family proposed by Salicrú (Csiszàr); Contains the Shannon entropy, that of Rényi, Havrda-Charvát (Daróczy, Vajda, Tsallis, ...) among others.

GOALS

- To define a generalized family of quantum entropies.
- To study their properties (common or specific).
- To apply them in quantum information processing.

PROGRAMA

(1) Motivations \& GOALS
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(5) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context

DEfinition

Definition

Let $p=\left[\begin{array}{lll}p_{1} & \cdots & p_{N}\end{array}\right] \in[0 ; 1]^{N}, \quad \sum_{k} p_{k}=1$

$$
H_{(h, \phi)}(p)=h\left(\sum_{k} \phi\left(p_{k}\right)\right)
$$

$\phi:[0 ; 1] \rightarrow \mathbb{R}$ y $h: \mathbb{R} \rightarrow \mathbb{R}$,

- ϕ is concave and h is increasing, or
- ϕ is convex and h is decreasing

DEFINITION

Definition

Let $p=\left[\begin{array}{lll}p_{1} & \cdots & p_{N}\end{array}\right] \in[0 ; 1]^{N}, \quad \sum_{k} p_{k}=1$

$$
H_{(h, \phi)}(p)=h\left(\sum_{k} \phi\left(p_{k}\right)\right)
$$

$\phi:[0 ; 1] \rightarrow \mathbb{R}$ y $h: \mathbb{R} \rightarrow \mathbb{R}$,

- ϕ is concave and h is increasing, or
- ϕ is convex and h is decreasing

Moreover

- $\phi(0)=0$ (no elementary uncertainty associated to the probability 0)
- $h(\phi(1))=0$ (no uncertainty associated to a deterministic state)

Salicru et al., Asymptotic distribution of (h, ϕ)-entropies, Comm. in Stat.: Th. Meth. (1993)

FAMOUS EXAMPLES

	ϕ	h	$H_{(h, \phi)}(p)$
Shannon	$-x \ln x$	x	$-\sum_{k} p_{k} \ln p_{k}$
Rényi	x^{α}	$\frac{\ln x}{1-\alpha}$	$\frac{\ln \left(\sum_{k} p_{k}^{\alpha}\right)}{1-\alpha}$
HCT	x^{α}	$\frac{x-1}{1-\alpha}$	$\frac{\sum_{k} p_{k}^{\alpha}-1}{1-\alpha}$
Unified	x^{r}	$\frac{x^{s}-1}{(1-r) s}$	$\frac{\left(\sum_{k} p_{k}^{r}\right)^{s}-1}{(1-r) s}$
Kaniadakis	$\frac{x^{1-\kappa}-x^{1+\kappa}}{2 \kappa}$	x	$\frac{\sum_{k}\left(p_{k}^{1-\kappa}-p_{k}^{1+\kappa}\right)}{2 \kappa}$

BASIC PROPERTIES

For any pair of entropic functional (h, ϕ),

BASIC PROPERTIES

- Invariance to a permutation of the p_{k} 's
- Expansibility: $H_{(h, \phi)}\left(\left[\begin{array}{lll}p_{1} \cdots p_{N} & 0\end{array}\right]\right)=H_{(h, \phi)}\left(\left[p_{1} \cdots p_{N}\right]\right)$ (consequence of $\phi(0)=0$)
- Fusion: $H_{(h, \phi)}\left(\left[\begin{array}{lll}p_{1} & p_{2} \cdots p_{N}\end{array}\right]\right) \geq H_{(h, \phi)}\left(\left[\begin{array}{ll}p_{1}+p_{2} & \cdots\end{array} p_{N}\right]\right)$ (Petković's inequality $\phi(a+b) \leq \phi(a)+\phi(b)$ for concave ϕ with $\phi(0)=0$)

MAJORIZATION

Definition

p, p^{\prime} proba. vectors, with components increasingly arranged,

$$
p \prec p^{\prime} \quad\left(p \text { is majorized by } p^{\prime}\right)
$$

$$
\text { if } \quad \sum_{k=1}^{n} p_{k} \leq \sum_{k=1}^{n} p_{k}^{\prime} \quad \forall n<\max \left(N, N^{\prime}\right) \quad \& \quad \sum_{k=1}^{\max \left(N, N^{\prime}\right)} p_{k}=\sum_{k=1}^{\max \left(N, N^{\prime}\right)} p_{k}^{\prime}
$$

Majorization is a partial order relationship

Majorization

Definition

p, p^{\prime} proba. vectors, with components increasingly arranged,

$$
p \prec p^{\prime} \quad\left(p \text { is majorized by } p^{\prime}\right)
$$

$$
\text { if } \quad \sum_{k=1}^{n} p_{k} \leq \sum_{k=1}^{n} p_{k}^{\prime} \quad \forall n<\max \left(N, N^{\prime}\right) \quad \& \quad \sum_{k=1}^{\max \left(N, N^{\prime}\right)} p_{k}=\sum_{k=1}^{\max \left(N, N^{\prime}\right)} p_{k}^{\prime}
$$

Majorization is a partial order relationship

Examples

For any p, of dimension N,

$$
\left[\begin{array}{lll}
\frac{1}{N} & \cdots & \frac{1}{N}
\end{array}\right] \prec\left[\begin{array}{lllll}
\frac{1}{\|p\|_{0}} \cdots & \frac{1}{\|p\|_{0}} & 0 & \cdots & 0
\end{array}\right] \prec\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]
$$

PROPERTIES LINKED TO THE MAJORIZATION

For any pair of entropic functionals (h, ϕ),

SCHUR-CONCAVITY

- $p \prec p^{\prime} \quad \Rightarrow \quad H_{(h, \phi)}(p) \geq H_{(h, \phi)}\left(p^{\prime}\right) \quad$ (equality iif $p \equiv p^{\prime}$)
(consequence of the Karamata's theorem)
- Reciprocal if for all pairs (h, ϕ)

PROPERTIES LINKED TO THE MAJORIZATION

For any pair of entropic functionals (h, ϕ),

SCHUR-CONCAVITY

- $p \prec p^{\prime} \Rightarrow H_{(h, \phi)}(p) \geq H_{(h, \phi)}\left(p^{\prime}\right) \quad$ (equality iif $p \equiv p^{\prime}$)
(consequence of the Karamata's theorem)
- Reciprocal if for all pairs (h, ϕ)

Bounds

$$
0 \leq H_{(h, \phi)}(p) \leq h\left(\|p\|_{0} \phi\left(\frac{1}{\|p\|_{0}}\right)\right) \leq h\left(N \phi\left(\frac{1}{N}\right)\right)
$$

certainty uniform
(consequence of majorization relationships)

PROGRAMA

(1) Motivations \& Goals
(2) CLASSICAL (h, ϕ)-ENTROPIES

- Definition
- Properties
(3) Quantum (h, ϕ)-Entropies
- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(3) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context

QUANTUM (h, ϕ)-ENTROPY: DEFINITION

Let ρ be a density operator acting on \mathcal{H}^{N}
($\rho \geq 0$ hermitian, with $\operatorname{Tr} \rho=1$)

Definition

$$
\boldsymbol{H}_{(h, \phi)}(\rho)=h(\operatorname{Tr} \phi(\rho))
$$

with $\phi:[0 ; 1] \rightarrow \mathbb{R}, \phi(0)=0 \quad \& \quad h: \mathbb{R} \rightarrow \mathbb{R}, h(\phi(1))=0$,

- ϕ is concave and h is increasing, or
- ϕ is convex and h is decreasing
(for $\left.\rho=\sum_{k} \lambda_{k}\left|e_{k}\right\rangle\left\langle e_{k}\right|, \phi(\rho)=\sum_{k} \phi\left(\lambda_{k}\right)\left|e_{k}\right\rangle\left\langle e_{k}\right|\right)$

QuANTUM VS CLASSICAL (h, ϕ)-ENTROPY

DIAGONAL FORM

$$
\rho=\sum_{k} \lambda_{k}\left|e_{k}\right\rangle\left\langle e_{k}\right|
$$

where

- $\left\{\left|e_{k}\right\rangle\right\}$ is the orthonomal base of \mathcal{H}^{N} that diagonalizes ρ,
- $\lambda=\left[\lambda_{1} \cdots \lambda_{N}\right] \in[0 ; 1]^{N}, \quad \sum_{k} \lambda_{k}=1$ the eigenvalues of ρ

QuANTUM VS CLASSICAL (h, ϕ)-ENTROPY

DIAGONAL FORM

$$
\rho=\sum_{k} \lambda_{k}\left|e_{k}\right\rangle\left\langle e_{k}\right|
$$

where

- $\left\{\left|e_{k}\right\rangle\right\}$ is the orthonomal base of \mathcal{H}^{N} that diagonalizes ρ,
- $\lambda=\left[\lambda_{1} \cdots \lambda_{N}\right] \in[0 ; 1]^{N}, \quad \sum_{k} \lambda_{k}=1$ the eigenvalues of ρ

Quantum vs classical

$$
\boldsymbol{H}_{(h, \phi)}(\rho)=H_{(h, \phi)}(\lambda)
$$

Properties linked TO THE MAJORIZATION

By definition, $\quad \rho \prec \rho^{\prime} \quad$ means that $\quad \lambda \prec \lambda^{\prime}$

Properties linked to the majorization

By definition, $\quad \rho \prec \rho^{\prime} \quad$ means that $\quad \lambda \prec \lambda^{\prime}$
For any pair of entropic functionals (h, ϕ),
SCHUR-CONCAVIDAD (\& RECIP.)

$$
\rho \prec \rho^{\prime} \Rightarrow \boldsymbol{H}_{(h, \phi)}(\rho) \geq \boldsymbol{H}_{(h, \phi)}\left(\rho^{\prime}\right)
$$

equality iif $\rho^{\prime}=U \rho U^{\dagger}$ or $\rho=U \rho^{\prime} U^{\dagger}$ with U isometry $\left(U^{\dagger} U=I\right)$

Properties linked to the majorization

By definition, $\quad \rho \prec \rho^{\prime} \quad$ means that $\quad \lambda \prec \lambda^{\prime}$
For any pair of entropic functionals (h, ϕ),
SCHUR-CONCAVIDAD (\& RECIP.)

$$
\rho \prec \rho^{\prime} \Rightarrow \boldsymbol{H}_{(h, \phi)}(\rho) \geq \boldsymbol{H}_{(h, \phi)}\left(\rho^{\prime}\right)
$$

equality iif $\rho^{\prime}=U \rho U^{\dagger}$ or $\rho=U \rho^{\prime} U^{\dagger}$ with U isometry $\left(U^{\dagger} U=I\right)$

Bounds

$$
0 \leq \boldsymbol{H}_{(h, \phi)}(\rho) \leq h\left(\operatorname{rank} \rho \phi\left(\frac{1}{\operatorname{rank} \rho}\right)\right) \leq h\left(N \phi\left(\frac{1}{N}\right)\right)
$$

pure state $|\psi\rangle\langle\psi|$ max. mixed $\frac{I}{N}$

Properties specific to the quantum context

Concavity

If h is concave, then $\boldsymbol{H}_{(h, \phi)}(\cdot)$ is concave,

$$
\boldsymbol{H}_{(h, \phi)}\left(\omega \rho+(1-\omega) \rho^{\prime}\right) \geq \omega \boldsymbol{H}_{(h, \phi)}(\rho)+(1-\omega) \boldsymbol{H}_{(h, \phi)}\left(\rho^{\prime}\right)
$$

(Peierls's inequality, $\operatorname{Tr}(\rho) \leq \sum_{k} \phi\left(\left\langle f_{k}\right| \rho\left|f_{k}\right\rangle\right) \& \phi$ concave)

Properties specific to the quantum context

Concavity

If h is concave, then $\boldsymbol{H}_{(h, \phi)}(\cdot)$ is concave,

$$
\boldsymbol{H}_{(h, \phi)}\left(\omega \rho+(1-\omega) \rho^{\prime}\right) \geq \omega \boldsymbol{H}_{(h, \phi)}(\rho)+(1-\omega) \boldsymbol{H}_{(h, \phi)}\left(\rho^{\prime}\right)
$$

(Peierls's inequality, $\operatorname{Tr}(\rho) \leq \sum_{k} \phi\left(\left\langle f_{k}\right| \rho\left|f_{k}\right\rangle\right) \& \phi$ concave)

Mixture

$$
\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \quad \Rightarrow \quad \boldsymbol{H}_{(h, \phi)}(\rho) \leq H_{(h, \phi)}(p)
$$

(Schrödinger's mixture $p=B \lambda, B$ bistoch., Hardy-Littlewood-Pólya $p \prec \lambda$)

Properties specific to the quantum context

Concavity

If h is concave, then $\boldsymbol{H}_{(h, \phi)}(\cdot)$ is concave,

$$
\boldsymbol{H}_{(h, \phi)}\left(\omega \rho+(1-\omega) \rho^{\prime}\right) \geq \omega \boldsymbol{H}_{(h, \phi)}(\rho)+(1-\omega) \boldsymbol{H}_{(h, \phi)}\left(\rho^{\prime}\right)
$$

(Peierls's inequality, $\operatorname{Tr}(\rho) \leq \sum_{k} \phi\left(\left\langle f_{k}\right| \rho\left|f_{k}\right\rangle\right) \& \phi$ concave)

Mixture

$$
\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \quad \Rightarrow \quad \boldsymbol{H}_{(h, \phi)}(\rho) \leq H_{(h, \phi)}(p)
$$

(Schrödinger's mixture $p=B \lambda, B$ bistoch., Hardy-Littlewood-Pólya $p \prec \lambda$)

Entropy vs diagonal

$p^{E}(\rho)$ diag. ρ in $E=\left\{e_{k}\right\}$ orth. base: $\quad \boldsymbol{H}_{(h, \phi)}(\rho) \leq H_{(h, \phi)}\left(p^{E}(\rho)\right)$ (Schur-Horn's theorem: $p^{E}(\rho) \prec \lambda$)

EFFECT OF A TRANSFORM OR A MEASURE

TRANSFORM

- Invariance to a unitary transf. U (e.g., time evolution)

$$
\boldsymbol{H}_{(h, \phi)}\left(U \rho U^{\dagger}\right)=\boldsymbol{H}_{(h, \phi)}(\rho)
$$

Effect of a transform or a measure

TRANSFORM

- Invariance to a unitary transf. U (e.g., time evolution)

$$
\boldsymbol{H}_{(h, \phi)}\left(U \rho U^{\dagger}\right)=\boldsymbol{H}_{(h, \phi)}(\rho)
$$

- Decrease s.t. bistochastic operation (e.g., general measure): $\mathcal{E}(\rho)=\sum_{k} A_{k} \rho A_{k}^{\dagger}, \quad \sum_{k} A_{k}^{\dagger} A_{k}=I=\sum_{k} A_{k} A_{k}^{\dagger}$ (complete)

$$
\boldsymbol{H}_{(h, \phi)}(\mathcal{E}(\rho)) \geq \boldsymbol{H}_{(h, \phi)}(\rho) \quad \text { (information degradation) }
$$

Equality iif $\mathcal{E}(\rho)=U \rho U^{\dagger}, \quad U$ unitary
(Hardy-Littlewood-Pólya: $\mathcal{E}(\rho) \prec \rho$)

Effect of a transform or a measure

Transform

- Invariance to a unitary transf. U (e.g., time evolution)

$$
\boldsymbol{H}_{(h, \phi)}\left(U \rho U^{\dagger}\right)=\boldsymbol{H}_{(h, \phi)}(\rho)
$$

- Decrease s.t. bistochastic operation (e.g., general measure): $\mathcal{E}(\rho)=\sum_{k} A_{k} \rho A_{k}^{\dagger}, \quad \sum_{k} A_{k}^{\dagger} A_{k}=I=\sum_{k} A_{k} A_{k}^{\dagger}$ (complete)

$$
\boldsymbol{H}_{(h, \phi)}(\mathcal{E}(\rho)) \geq \boldsymbol{H}_{(h, \phi)}(\rho) \quad \text { (information degradation) }
$$

Equality iif $\mathcal{E}(\rho)=U \rho U^{\dagger}, \quad U$ unitary
(Hardy-Littlewood-Pólya: $\mathcal{E}(\rho) \prec \rho$)

Consequence

$\left\{E_{k}\right\} \in \mathbb{E}$ rank one POVM, $p^{E}(\rho)=\operatorname{Tr}\left(E_{k} \rho\right)$,

$$
\boldsymbol{H}_{(h, \phi)}(\rho)=\min _{\mathbb{E}} H_{(h, \phi)}\left(p^{E}(\rho)\right)
$$

PROGRAMA

Motivations \& Goals

Classical (h, ϕ)-Entropies

- Definition
- Properties

3 Quantum (h, ϕ)-Entropies

- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
- Classical context
- Quantum context

AdDITIVITIES, PURE STATE

Let $\mathcal{H}^{A} \otimes \mathcal{H}^{B}, \quad \rho^{A B}, \quad \rho^{A}=\operatorname{Tr}_{B} \rho^{A B}, \quad \rho^{B}=\operatorname{Tr}_{A} \rho^{A B}$

(Sub)ADDITIVITY

- If (i) $\phi(a b)=\phi(a) b+a \phi(b)$ and $h(x+y)=h(x)+h(y)$, or
(ii) $\phi(a b)=\phi(a) \phi(b)$ and $h(x y)=h(x)+h(y)$, then

$$
\boldsymbol{H}_{(h, \phi)}\left(\rho^{A} \otimes \rho^{B}\right)=\boldsymbol{H}_{(h, \phi)}\left(\rho^{A}\right)+\boldsymbol{H}_{(h, \phi)}\left(\rho^{B}\right)
$$

(e.g., von Neuman, Rényi)

Bipartite systems - (sub)additivity, pure state (h, ϕ)-entropy and entanglement

Additivities, pure state

Let $\mathcal{H}^{A} \otimes \mathcal{H}^{B}, \quad \rho^{A B}, \quad \rho^{A}=\operatorname{Tr}_{B} \rho^{A B}, \quad \rho^{B}=\operatorname{Tr}_{A} \rho^{A B}$

(Sub)ADDITIVITY

- If (i) $\phi(a b)=\phi(a) b+a \phi(b)$ and $h(x+y)=h(x)+h(y)$, or
(ii) $\phi(a b)=\phi(a) \phi(b)$ and $h(x y)=h(x)+h(y)$, then

$$
\boldsymbol{H}_{(h, \phi)}\left(\rho^{A} \otimes \rho^{B}\right)=\boldsymbol{H}_{(h, \phi)}\left(\rho^{A}\right)+\boldsymbol{H}_{(h, \phi)}\left(\rho^{B}\right)
$$

(e.g., von Neuman, Rényi)

- $\boldsymbol{H}_{(h, \phi)}\left(\rho^{A B}\right) \leq \boldsymbol{H}_{(h, \phi)}\left(\rho^{A} \otimes \rho^{B}\right) \Leftrightarrow \phi(x)=-x \ln x$ (counterexample, except if ϕ satisfies a functional eq....)

ADDITIVITIES, PURE STATE

Let $\mathcal{H}^{A} \otimes \mathcal{H}^{B}, \quad \rho^{A B}, \quad \rho^{A}=\operatorname{Tr}_{B} \rho^{A B}, \quad \rho^{B}=\operatorname{Tr}_{A} \rho^{A B}$

(Sub)ADDITIVITY

- If (i) $\phi(a b)=\phi(a) b+a \phi(b)$ and $h(x+y)=h(x)+h(y)$, or
(ii) $\phi(a b)=\phi(a) \phi(b)$ and $h(x y)=h(x)+h(y)$, then

$$
\boldsymbol{H}_{(h, \phi)}\left(\rho^{A} \otimes \rho^{B}\right)=\boldsymbol{H}_{(h, \phi)}\left(\rho^{A}\right)+\boldsymbol{H}_{(h, \phi)}\left(\rho^{B}\right)
$$

(e.g., von Neuman, Rényi)

- $\boldsymbol{H}_{(h, \phi)}\left(\rho^{A B}\right) \leq \boldsymbol{H}_{(h, \phi)}\left(\rho^{A} \otimes \rho^{B}\right) \Leftrightarrow \phi(x)=-x \ln x$
(counterexample, except if ϕ satisfies a functional eq....)
Pure states

$$
\rho^{A B}=|\psi\rangle\langle\psi| \quad \Rightarrow \quad \boldsymbol{H}_{(h, \phi)}\left(\rho^{A}\right)=\boldsymbol{H}_{(h, \phi)}\left(\rho^{B}\right)
$$

(Schmidt's decomposition)

Bipartite systems - (sub)additivity, pure state (h, ϕ)-entropy and entanglement

SEPARABLE STATES

Separable states:

$$
\rho^{A B}=\sum_{m} \omega_{m}\left|\Psi_{m}^{A}\right\rangle\left\langle\Psi_{m}^{A}\right| \otimes\left|\Psi_{m}^{B}\right\rangle\left\langle\Psi_{m}^{B}\right| \quad \omega_{m} \geq 0, \sum_{m} \omega_{m}=1
$$

Separable states

Separable states:

$$
\rho^{A B}=\sum_{m} \omega_{m}\left|\Psi_{m}^{A}\right\rangle\left\langle\Psi_{m}^{A}\right| \otimes\left|\Psi_{m}^{B}\right\rangle\left\langle\Psi_{m}^{B}\right| \quad \omega_{m} \geq 0, \sum_{m} \omega_{m}=1
$$

SEPARABILITY INEQUALITY

If $\rho^{A B}$ is separable, then

$$
\boldsymbol{H}_{(h, \phi)}\left(\rho^{A B}\right) \geq \max \left\{\boldsymbol{H}_{(h, \phi)}\left(\rho^{A}\right), \boldsymbol{H}_{(h, \phi)}\left(\rho^{B}\right)\right\}
$$

$\left(\rho^{A B} \prec \rho^{A} \& \rho^{A B} \prec \rho^{B}\right)$
Generalizable to multipartite systems and totally separable states

Entanglement Detection: an example

Werner: $\quad \rho^{A B}=\omega\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-\omega) \frac{I}{4}$,

$$
\left|\Psi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}
$$

Entangled iif $\omega>\frac{1}{3} ; \quad \rho^{A}=\rho^{B}=\frac{I}{2}$

Entanglement Detection: An Example

Werner: $\quad \rho^{A B}=\omega\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-\omega) \frac{I}{4}, \quad\left|\Psi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}$
Entangled iif $\omega>\frac{1}{3} ; \quad \rho^{A}=\rho^{B}=\frac{I}{2} \quad \phi(x)=x^{\alpha}, h(x)=\frac{f(x)}{1-\alpha}$

Detection

Criterion: $\quad \frac{f\left(3\left(\frac{1-\omega}{4}\right)^{\alpha}+\left(\frac{1+3 \omega}{4}\right)^{\alpha}\right)-f\left(2^{1-\alpha}\right)}{\alpha-1}>0 \Rightarrow$ entangled

Entanglement Detection: An example

Werner: $\rho^{A B}=\omega\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-\omega) \frac{I}{4}, \quad\left|\Psi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}$
Entangled iif $\omega>\frac{1}{3} ; \quad \rho^{A}=\rho^{B}=\frac{I}{2} \quad \phi(x)=x^{\alpha}, h(x)=\frac{f(x)}{1-\alpha}$

Detection

Criterion:

$$
\frac{f\left(3\left(\frac{1-\omega}{4}\right)^{\alpha}+\left(\frac{1+3 \omega}{4}\right)^{\alpha}\right)-f\left(2^{1-\alpha}\right)}{\alpha-1}>0 \Rightarrow \text { entangled }
$$

Classical context
Quantum context

PROGRAMA

Motivations \& Goals
(2) Classical (h, ϕ)-Entropies

- Definition
- Properties

3 Quantum (h, ϕ)-Entropies

- Definition
- Basic properties
(4) Composite quantum systems
- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(5) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context

ReLATIVE ENTROPY AND MUTUAL INFORMATION

Conditional probability: $p^{A \mid B=b}=\frac{p_{a, b}^{A B}}{p_{b}^{B}}$

Relative entropy and mutual information

Conditional probability: $p^{A \mid B=b}=\frac{p_{a, b}^{A B}}{p_{b}^{B}}$

From the conditional probability

Relative entropy: $H_{(h, \phi)}^{\mathcal{J}}(A \mid B)=\sum_{b} p_{b}^{B} H_{(h, \phi)}\left(p^{A \mid B=b}\right)$
Mutual information: $\mathcal{J}_{(h, \phi)}(A ; B)=H_{(h, \phi)}(A)-H_{(h, \phi)}^{\mathcal{J}}(A \mid B)$
h concave guarantees that $\mathcal{J}_{(h, \phi)} \geq 0 \ldots \quad \mathcal{J}_{(h, \phi)}$ not symmetrical...

Relative entropy and mutual information

Conditional probability: $p^{A \mid B=b}=\frac{p_{a, b}^{A B}}{p_{b}^{b}}$

From the conditional probability

Relative entropy: $H_{(h, \phi)}^{\mathcal{J}}(A \mid B)=\sum_{b} p_{b}^{B} H_{(h, \phi)}\left(p^{A \mid B=b}\right)$
Mutual information: $\mathcal{J}_{(h, \phi)}(A ; B)=H_{(h, \phi)}(A)-H_{(h, \phi)}^{\mathcal{J}}(A \mid B)$
h concave guarantees that $\mathcal{J}_{(h, \phi)} \geq 0 \ldots \quad \mathcal{J}_{(h, \phi)}$ not symmetrical...
FROM THE CHAIN RULE
Relative entropy: $H_{(h, \phi)}^{\mathcal{I}}(A \mid B)=H_{(h, \phi)}(A, B)-H_{(h, \phi)}(B)$
Mutual information: $\mathcal{I}_{(h, \phi)}(A ; B)=H_{(h, \phi)}(A)-H_{(h, \phi)}^{\mathcal{I}}(A \mid B)$
$\mathcal{I}_{(h, \phi)}$ symmetrical, but with no guarantee that $\mathcal{I}_{(h, \phi)} \geq 0 \ldots$

RELATIVE ENTROPY AND MUTUAL INFORMATION

$\left\{\Pi^{B}\right\}$ local projective measurement:
$p_{j}^{B}=\operatorname{Tr}\left(I \otimes \Pi_{j}^{B} \rho^{A B}\right), \quad \rho^{A \mid \Pi_{j}^{B}}=\frac{I \otimes \Pi_{j}^{B} \rho^{A B} I \otimes \Pi_{j}^{B}}{p_{j}^{B}}$

Relative entropy and mutual information

$\left\{\Pi^{B}\right\}$ local projective measurement:
$p_{j}^{B}=\operatorname{Tr}\left(I \otimes \Pi_{j}^{B} \rho^{A B}\right), \quad \rho^{A \mid \Pi_{j}^{B}}=\frac{I \otimes \Pi_{j}^{B} \rho^{A B} I \otimes \Pi_{j}^{B}}{p_{j}^{B}}$

From the conditional state

Relative entropy vs $\Pi^{B}: \quad \boldsymbol{H}_{(h, \phi)}^{\mathcal{J}}\left(A \mid \Pi^{B}\right)=\sum_{j} p_{j}^{B} \boldsymbol{H}_{(h, \phi)}\left(\rho^{A \mid \Pi_{j}^{B}}\right)$
Relative entropy vs $B: \boldsymbol{H}_{(h, \phi)}^{\mathcal{J}}(A \mid B)=\min _{\left\{\Pi^{B}\right\}} \boldsymbol{H}_{(h, \phi)}^{\mathcal{J}}\left(A \mid \Pi^{B}\right)$

Relative entropy and mutual information

$\left\{\Pi^{B}\right\}$ local projective measurement:
$p_{j}^{B}=\operatorname{Tr}\left(I \otimes \Pi_{j}^{B} \rho^{A B}\right), \quad \rho^{A \mid \Pi_{j}^{B}}=\frac{I \otimes \Pi_{j}^{B} \rho^{A B} I \otimes \Pi_{j}^{B}}{p_{j}^{B}}$
From the conditional state
Relative entropy vs $\Pi^{B}: \boldsymbol{H}_{(h, \phi)}^{\mathcal{J}}\left(A \mid \Pi^{B}\right)=\sum_{j} p_{j}^{B} \boldsymbol{H}_{(h, \phi)}\left(\rho^{A \mid \Pi_{j}^{B}}\right)$
Relative entropy vs $B: \boldsymbol{H}_{(h, \phi)}^{\mathcal{J}}(A \mid B)=\min _{\left\{\Pi^{B}\right\}} \boldsymbol{H}_{(h, \phi)}^{\mathcal{J}}\left(A \mid \Pi^{B}\right)$

From the chain rule

Relative entropy: $\boldsymbol{H}_{(h, \phi)}^{\mathcal{T}}(A \mid B)=\boldsymbol{H}_{(h, \phi)}(A, B)-\boldsymbol{H}_{(h, \phi)}(B)$

PROGRAMA

Motivations \& Goals

Classical (h, ϕ)-Entropies

- Definition
- Properties

3 Quantum (h, ϕ)-Entropies

- Definition
- Basic properties

4 Composite quantum systems

- Bipartite systems - (sub)additivity, pure state
- (h, ϕ)-entropy and entanglement
(5) Relative (h, ϕ)-Entropies
- Classical context
- Quantum context

(6) Conclusions

SUMMARY

- We proposed an extension of the (h, ϕ)-entropies for the quantum systems (that extends the trace-entropies).

Summary

- We proposed an extension of the (h, ϕ)-entropies for the quantum systems (that extends the trace-entropies).
- These extensions are based on two entropic functionals $\phi \& h$, and encompass various famous entropies such that the von Neuman's, Tsallis's, Rényi's (thanks to h), unified, trace entropies or not.

SUMMARY

- We proposed an extension of the (h, ϕ)-entropies for the quantum systems (that extends the trace-entropies).
- These extensions are based on two entropic functionals $\phi \& h$, and encompass various famous entropies such that the von Neuman's, Tsallis's, Rényi's (thanks to h), unified, trace entropies or not.
- We proposed possibles associated measures such that relative entropies and mutual informations; a unified point of view is still missing; there properties remain to be investigated.

SUMMARY

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.

Summary

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.

Summary

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.

SUMMARY

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.

SUMMARY

- We studied various properties shared by the whole family; the main ones rely on the notion of majorization.
- In particular, the Schur-concavity appears to be crucial in the quantum context.
- We studied the effect of quantum operations (unitary transform, measures) on these entropies.
- We studied their properties for composite systems: they allow to propose entanglement detection criteria.
G. M. Bosyk, S. Zozor, F. Holik, M. Portesi \& P. W. Lamberti, A family of generalized quantum entropies: definition and properties, Quantum Info. Process., 15(8):3393-4220, August 2016

Grazie

Thank

 you!

 you!}

Merci!
你很

