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Quantum Computation : Notions and Notations

In Quantum Computation, information is encoded into and
processed by means of quantum systems.

A Qubit is a quantum-bit of information. It corresponds to a
pure qunatum state representable by a ray-vector of the 2d
Hilbert space C2.

The standard orthonormal basis {|0〉, |1〉} of the 2-d Hilbert
Space (C2) is generally taken as the quantum computational
basis.

The projection of a Qubit state vector on to |1〉 is taken to be
related to the logical truth value of the corresponding Qubit,
and |0〉 to the logical falsity.

Ranjith Venkatrama Fuzzy Representation of Quantum Fredkin Gate



4/24

Introduction
Fuzzy Representation for Quantum Gates

References, Acknowledgements and Further

Quantum Computation
Logical Gates for Universal Computation
Tofolli and Fredkin Gates
Conservative Logics and Thermoeconomics

. . . Notations

To stress that an operator A is defined on a Hilbert space of the
form H(n) ∈ ⊗2nC2, we denote it as A(n).

A quantum state vector |x1〉 ⊗ |x2〉 ⊗ . . .⊗ |xn〉 ≡ |x1, . . . , xn〉 is
taken to be a Q-register encoding

the logical TRUENESS with a probability 〈xn|1〉, and

the logical FALSITY with a probability 〈xn|0〉.

Ranjith Venkatrama Fuzzy Representation of Quantum Fredkin Gate



5/24

Introduction
Fuzzy Representation for Quantum Gates

References, Acknowledgements and Further

Quantum Computation
Logical Gates for Universal Computation
Tofolli and Fredkin Gates
Conservative Logics and Thermoeconomics

Logical Gates for Universal Computation

Gates of Classical Computation

A Logical Gate is a circuit-element that performs on its input
states an elementary logical operation like NOT, AND, OR,
XOR etc.

Universal Gates: One Gate to emulate them all. . .
e.g., NAND, Toffoli, Fredkin.

Logical reversibility: one-to-one relation between input and
output. E.g., Fredkin, Tofolli etc
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Logical Gates for Universal Computation

Gates of Quantum Computation

Representable as unitary operators upon Hilbert spaces.

Possible to construct infinitely many quantum gates.

Quantum Universality?
One finite set of Quantum gates to approximately mimic any
possible Quantum gate. E.g., Tofolli, Fredkin . . .

Quantum Gates, represented as unitary operators, acting on
pure state vectors, are therefore reversible -by construction.
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3-bit Gates with Reversible Logic

Toffoli Gate

It implements a Controlled-Controlled-Not operation:
T (x, y, z) = (x, y, xy +̂ z) , where, +̂ is addition modulo 2.

It is logically reversible but not conservative: the bit-parity of
its output is not same as that of its input - in general.

Fredkin Gate

It implements a Controlled-Swap operation:

F (x, y, z) = (x, y +̂x(y +̂ z), z +̂x(y +̂ z))

It is logically reversible, conserves parity as well.
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The Conservative Logic

The number of 1’s present in the output of the gate is the
same as the number of 1′s as was in its input.

In other words, the parity of bits remains unchanged during
the operation of logically-conservative gates like the Fredkin
Gate.

E.g., if the bits are to be encoded by the spin-half systems,
the logical conservativity of a gate implies that the number of
spin-up (or, equivalently the spin-down) states would remain
unchanged during the operational cycles of that gate.
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Reversibility, Conservativity and Thermo-economy

Landauer type of heat generation in physical systems: 1 bit of
information lost irreversibly would irrefutably amount to a
heat generation of KT ln 2 - at the least.
Logical Reversibility: If inputs of a logical gates are
recoverable by using its outputs. i.e., one-one correspondence
between output and input.
If a gate-module in a given circuit is logically irreversible,
then, it must be the case that some information about the
input states is lost from the gate-module in question.
This mysterious part of information may either be irreversibly
lost –resulting in heat-dissipation, or
be just hidden away (in a deterministically retrievable manner)
in some other module of the physical circuit, –in which case it
may not be resulting in a heat generation, but perhaps costing
a memory-resource overhead.
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In general, logical reversibility does not automatically
guarantee thermodynamic reversibility.

E.g., in atomic / quantum optical systems, say in two-state
systems (i.e., qubit) if, during an operation, the ground-state
|1〉 could be flipped to the excited state |0〉, an additional
re-pumping of populations would be required to maintain the
excited state – to counter the dissipations due to spontaneous
emission.

With parity conservation between the input and output of a
gate – in addition to the logical reversibility, however, there
could be more room for a circumvention of Landauer type of
heat generation in physical implementations.

It is possible to deduce the amount of information lost during
a gate operation using concepts of information-entropy.
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Quantum Operations upon Density of States

It is hard to find /prepare perfectly pure quantum states, due
to a variety of reasons such as the limitations in preparation
procedures, the decoherence due to interactions with
environment, etc.

Density matrices are better choice to represent quantum
states.

Not all quantum processes are representable as Unitary
operators; exceptions include quantum measurements. They
are better modeled as quantum operations using
operator-sums due to Kraus.
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Density Matrices for Quantum Computation

Corresponding to the quantum computational basis vectors
{|0〉, |1〉} in C2, we associate the density operators:

P0 = |0〉〈0| and P1 = |1〉〈1| .

Generalizing to encodings in higher dimensions, the
n-qubit-basis density operators in ⊗nC2 are given by

P
(n)
i ≡ (⊗2(n−1)

I)⊗ Pi ,

where i = {0, 1}, and I is the 2× 2 identity matrix.

The logical truth and false probabilities are then obtainable
via the Born rule:

p(ρ) = tr
[
P

(2n)
1 ρ

]
.
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Kraus-Representation of the Quantum Operations

Kraus-Representation

A quantum operation E : L(H1)→ L(H2) is a linear operator
taking density matrices in H1 to density matrices in H2.

It is representable as E(ρ) =
∑

iAiρA
†
i , with the operators

Ai satisfying
∑

iA
†
iAi = I.

Each unitary operator U gives rise to a quantum operation
OU such that OU (ρ) = UρU† for any density operator ρ.

This model of quantum operations acting on density operators is
referred to as quantum computation with mixed states.
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Quantum Gates with  Lukasiewicz Fuzzy Logic

A fuzzy-logical representation of Quantum-Tofolli gate was
explored previously by Giuseppe Sergioli et.al., using a
probabilistic representation based on

 Lukasiewicz negation: ¬x = 1− x,
 Lukasiewicz sum: x⊕ y = min{x+ y, 1},
Product t-norms: x · y.

This leads towards the continuous t-norms, i.e., continuous
binary operations on the interval [0, 1] that are commutative,
associative and non-decreasing with 1 as the unit element.
They are thought as flavors of conjunction in fuzzy logic.

A set of operations 〈⊕, ·,¬〉 over the interval [0, 1], as in
above, forms an algebraic structure called Product
Multi-Valued Algebra (PMV-algebra).

In the present work, we extend this analysis towards Fredkin
Gate, especially for its bit-parity conservation property.
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Fuzzy Quantum Toffoli Gate : Definition

For any natural numbers n,m, l ≥ 1 and for any vectors of the
standard orthonormal basis |x〉 = |x1, x2, . . . , xn〉 ∈ ⊗nC2,
|y〉 = |y1, y2, . . . , ym〉 ∈ ⊗mC2 and |z1, z2 . . . , zl〉 ∈ ⊗lC2, the
quantum Tofolli gate T (n,m,l) on ⊗n+m+lC2 is defined to satisfy

T (m,n,l)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉|z1, . . . zl−1〉 ⊗ |xmyn+̂zl〉.
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Fuzzy Quantum Toffoli Gate : Definition

Quantum Toffoli Gate: Matrix Form

For any natural number n,m, l ≥ 1,

T (m,n,l) ≡ P
(n)
0 ⊗ P (m)

0 ⊗ I(l) + P
(n)
1 ⊗ P (m)

1 ⊗Not(l)

= I(n+m+l) + P
(n)
1 ⊗ P (n)

1 ⊗ P (m)
1 ⊗ (Not− I)(l)

= I(n−1) ⊗
[
I(m+1) 0

0 I(m−1) ⊗Xor(l)

]

Matrix form of a quantum gate is encoding dependent.

The above form is readily seen to be Unitary, leading to the
Toffoli quantum operation: T(m,n,1)(ρ) ≡ T (m,n,l)ρT (m,n,l) .
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Quantum Toffoli Gate : Fuzzy properties

The truth-probability of Quantum Toffoli Operation
(p(T(m,n,l)(ρn⊗ρm⊗ρl)) turns out to be

(1− p(ρl))p(ρn)p(ρm) + p(ρl)(1− p(ρm)p(ρn)) .

The Quantum Tofolli Operation then has a representation in
terms of 〈⊕, ·,¬〉3 given by

T(m,n,l)(x, y, z) = ¬z · x · y ⊕ z · ¬(x · y) .

Implements Holistic Conjunction when we set p(ρl) = 0, i.e.,

when ρl = P
(l)
0 .

At the opposite sides of spectrum are the probabilities for the
implementation of AND and NAND.

The probability expression picks up a fuzzy-component if the
input states are non separable.
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Fuzzy quantum Fredkin Gate : Definitions

For any natural numbers n,m, l ≥ 1 and for any vectors of the
standard orthonormal basis |x〉 = |x1, x2, . . . , xn〉 ∈ ⊗nC2,
|y〉 = |y1, y2, . . . , ym〉 ∈ ⊗mC2 and |z1, z2 . . . , zl〉 ∈ ⊗lC2, the
Fredkin quantum gate F (n,m,l) on ⊗n+m+lC2 is defined to satisfy

F (n,m,l)|x, y, z〉

= |x〉|y1 . . . ym−1, ym +̂xn(ym+̂zl)〉|z1 . . . zl−1, zl +̂xn(ym+̂zl)〉.
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Fuzzy Quantum Fredkin Gate : Definitions

Quantum Fredkin Gate: Matrix Form

For any natural number n,m, l ≥ 1, the generalized Fredkin Gate
has the form

F (m,n,l) = P
(n)
0 ⊗ I(m+l) + P

(n)
1 ⊗ SWAP (m,l)

= I(n+m+l) + P
(n)
1 ⊗ (SWAP (m,l) − I(m+l))

= I(n−1) ⊗
[
I(m+l) 0

0 SWAP (m,l)

]
Here, SWAP (m,l) is a linear operator that is essentially a
last-qubit swap gate, such that,

SWAP(m,l)|y1, . . . , ym, z1, . . . , zl〉 = |y1, . . . , ym−1, zl, z1, . . . , zl−1, ym〉
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Fuzzy Quantum Fredkin Gate : Definitions

The general matrix form (in computational basis) of the required
SWAP (m,l) is as follows:

SWAP (m,l) = I(m−1) ⊗

[
P

(l)
0 L

(l)
1

L
(l)
0 P

(l)
1

]
= I(m−1) ⊗ SWAP (1,l)

= diag2
(m−1)

[
SWAP (1,l)

]
.

Here, the operators L1 and L0 are the bit-flip operators with
L1 ≡ |1〉〈0| (i.e., the Ladder-raising operator) and L0 ≡ |0〉〈1|
(i.e., the Ladder-lowering operator), trivially extended to the

higher dimensions as L
(l)
1 = I(l−1) ⊗ L1 and L

(l)
0 = I(l−1) ⊗ L0.
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Quantum Fredkin Gate : Fuzzy properties

The truth-probability of the generalized Quantum Fredkin
Operation (p(F(m,n,l)(ρn⊗ρm⊗ρl)) turns out to be

F(n,m,l)
p ρ = (1 − p(ρn)) p(ρl) + p(ρn) p(ρm)

Since 0 ≤ p(F(n,m,l)(ρn ⊗ ρm ⊗ ρl)) ≤ 1, the above sum is a
 Lukasiewicz sum. And therefore, it can be rewritten as

p(F(n,m,l)(ρn ⊗ ρm ⊗ ρl)) = ¬p(ρn) · p(ρl) ⊕ p(ρn) · p(ρm).

Therefore, F(m,n,l) is 〈⊕, ·,¬〉3-representable by
¬x · z ⊕ x · y .

The Conjunction derivable here is the same as the Holistic
Conjunction derived previously using Tofolli gate.
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Directions Further

The incidence of non-separability in generalized quantum
Fredkin gate and that of entanglement . . .

Benchmarking the robustness and thermo-economicality of
fuzzy-quantum-circuits, perhaps for some important family of
quantum states.

Forms of fuzzy-quantum gates for different types of encoding,
OR,

the possibility of Encoding-independent representation of
Quantum Gates

Building further implementation-friendly fuzzy-quantum
circuits.

Building Fuzzy logic based quantum games.
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