Fuzzy Representation of Quantum Fredkin Gate

Ranjith Venkatrama¹

in collaboration with Giuseppe Sergioli 1 $\,$ Hector Freytes 1 $\,$ Roberto Leporini 2

¹University of Cagliari, Italy.

²University of Bergamo, Italy.

Friday 4th November, 2016 AMQI'2016, University of Cagliari, Italy

◆□▶ ◆□▶ ◆ 注▶ ◆ 注▶ 注 ・ ① へ ○ 1/24

Table of Contents

Introduction

- Quantum Computation
- Logical Gates for Universal Computation
- Tofolli and Fredkin Gates
- Conservative Logics and Thermoeconomics
- 2 Fuzzy Representation for Quantum Gates
 - Quantum Operations upon Density-Matrices
 - Quantum Gates with Łukasiewicz Fuzzy Logic
 - Fuzzy Quantum Toffoli Gate
 - Fuzzy Quantum Fredkin Gate
- 8 References, Acknowledgements and Further

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

Quantum Computation : Notions and Notations

- In Quantum Computation, information is encoded into and processed by means of quantum systems.
- A *Qubit* is a quantum-bit of information. It corresponds to a pure qunatum state representable by a ray-vector of the 2d Hilbert space \mathbb{C}^2 .
- The standard orthonormal basis $\{|0\rangle, |1\rangle\}$ of the 2-d Hilbert Space (\mathbb{C}^2) is generally taken as the quantum computational basis.
- The projection of a Qubit state vector on to |1⟩ is taken to be related to the *logical truth value* of the corresponding Qubit, and |0⟩ to the *logical falsity*.

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 ● ● ● ●

... Notations

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

To stress that an operator A is defined on a Hilbert space of the form $H^{(n)} \in \otimes^{2^n} \mathbb{C}^2$, we denote it as $A^{(n)}$.

A quantum state vector $|x_1\rangle \otimes |x_2\rangle \otimes \ldots \otimes |x_n\rangle \equiv |x_1, \ldots, x_n\rangle$ is taken to be a Q-register encoding

- the logical TRUENESS with a probability $\langle x_n|1
 angle$, and
- the logical FALSITY with a probability $\langle x_n | 0 \rangle$.

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

Logical Gates for Universal Computation

Gates of Classical Computation

- A Logical Gate is a circuit-element that performs on its input states an elementary logical operation like NOT, AND, OR, XOR etc.
- Universal Gates: One Gate to emulate them all... e.g., NAND, Toffoli, Fredkin.
- Logical reversibility: one-to-one relation between input and output. E.g., Fredkin, Tofolli etc

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

Logical Gates for Universal Computation

Gates of Quantum Computation

- Representable as unitary operators upon Hilbert spaces.
- Possible to construct infinitely many quantum gates.
- Quantum Universality?
 One finite set of Quantum gates to approximately mimic any possible Quantum gate. E.g., Tofolli, Fredkin . . .
- Quantum Gates, represented as unitary operators, acting on pure state vectors, are therefore reversible -by construction.

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

3-bit Gates with Reversible Logic

Toffoli Gate

- It implements a Controlled-Controlled-Not operation: T(x, y, z) = (x, y, xy + z), where, + is addition modulo 2.
- It is logically *reversible* but not conservative: the *bit-parity* of its output is not same as that of its input in general.

Fredkin Gate

• It implements a Controlled-Swap operation:

$$F(x,y,z) = (x, \ y \mathbin{\widehat{+}} x(y \mathbin{\widehat{+}} z), \ z \ \mathbin{\widehat{+}} x(y \mathbin{\widehat{+}} z))$$

• It is logically reversible, conserves parity as well.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

The Conservative Logic

- The number of 1's present in the output of the gate is the same as the number of 1's as was in its input.
- In other words, the *parity of bits* remains unchanged during the operation of logically-conservative gates like the Fredkin Gate.
- E.g., if the bits are to be encoded by the spin-half systems, the logical conservativity of a gate implies that the number of spin-up (or, equivalently the spin-down) states would remain unchanged during the operational cycles of that gate.

Reversibility, Conservativity and Thermo-economy

- Landauer type of heat generation in physical systems: 1 bit of information lost irreversibly would irrefutably amount to a heat generation of $KT \ln 2$ at the least.
- Logical Reversibility: If inputs of a logical gates are recoverable by using its outputs. i.e., one-one correspondence between output and input.
- If a gate-module in a given circuit is logically irreversible, then, it must be the case that some information about the input states is lost from the gate-module in question.
- This mysterious part of information may either be irreversibly lost -resulting in heat-dissipation, or
- be just hidden away (in a deterministically retrievable manner) in some other module of the physical circuit, -in which case it may not be resulting in a heat generation, but perhaps costing a memory-resource overhead.

Quantum Computation Logical Gates for Universal Computation Tofolli and Fredkin Gates Conservative Logics and Thermoeconomics

- In general, *logical reversibility* does not automatically guarantee *thermodynamic reversibility*.
- E.g., in atomic / quantum optical systems, say in two-state systems (i.e., qubit) if, during an operation, the ground-state |1⟩ could be flipped to the excited state |0⟩, an additional re-pumping of populations would be required to maintain the excited state – to counter the dissipations due to spontaneous emission.
- With parity conservation between the input and output of a gate – in addition to the logical reversibility, however, there could be more room for a circumvention of Landauer type of heat generation in physical implementations.
- It is possible to deduce the amount of information lost during a gate operation using concepts of information-entropy.

▲ロト▲団ト▲目ト▲目ト ヨークタマ

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Operations upon Density of States

• It is hard to find /prepare perfectly pure quantum states, due to a variety of reasons such as the limitations in preparation procedures, the *decoherence* due to interactions with environment, etc.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Operations upon Density of States

- It is hard to find /prepare perfectly pure quantum states, due to a variety of reasons such as the limitations in preparation procedures, the *decoherence* due to interactions with environment, etc.
- Density matrices are better choice to represent quantum states.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Operations upon Density of States

- It is hard to find /prepare perfectly pure quantum states, due to a variety of reasons such as the limitations in preparation procedures, the *decoherence* due to interactions with environment, etc.
- Density matrices are better choice to represent quantum states.
- Not all quantum processes are representable as Unitary operators; exceptions include *quantum measurements*. They are better modeled as *quantum operations* using operator-sums due to Kraus.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Density Matrices for Quantum Computation

• Corresponding to the quantum computational basis vectors $\{|0\rangle, |1\rangle\}$ in \mathbb{C}^2 , we associate the density operators:

$$P_0 = |0\rangle\langle 0|$$
 and $P_1 = |1\rangle\langle 1|$.

 Generalizing to encodings in higher dimensions, the n-qubit-basis density operators in ⊗ⁿC² are given by

$$P_i^{(n)} \equiv (\otimes^{2^{(n-1)}} I) \otimes P_i ,$$

where $i = \{0, 1\}$, and I is the 2×2 identity matrix.

• The logical truth and false probabilities are then obtainable via the Born rule:

$$p(\rho) = \operatorname{tr}\left[P_1^{(2^n)}\rho\right]$$

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Kraus-Representation of the Quantum Operations

Kraus-Representation

- A quantum operation *E* : *L*(*H*₁) → *L*(*H*₂) is a linear operator taking density matrices in *H*₁ to density matrices in *H*₂.
- It is representable as $\mathcal{E}(\rho) = \sum_i A_i \rho A_i^{\dagger}$, with the operators A_i satisfying $\sum_i A_i^{\dagger} A_i = I$.
- Each unitary operator U gives rise to a quantum operation $\mathcal{O}_{\mathcal{U}}$ such that $\mathcal{O}_{\mathcal{U}}(\rho) = \mathcal{U}\rho\mathcal{U}^{\dagger}$ for any density operator ρ .

This model of *quantum operations* acting on *density operators* is referred to as *quantum computation with mixed states*.

・ロト・西ト・ヨト・ヨー つくで

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

• A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

• A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on

• Łukasiewicz negation: $\neg x = 1 - x$,

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

- A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on
 - Łukasiewicz negation: $\neg x = 1 x$,
 - Łukasiewicz sum: $x \oplus y = \min\{x + y, 1\}$,

▲ロ▶▲冊▶▲ヨ▶▲ヨ▶ ヨ のQ@

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

- A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on
 - Łukasiewicz negation: $\neg x = 1 x$,
 - Łukasiewicz sum: $x \oplus y = \min\{x + y, 1\}$,
 - Product t-norms: $x \cdot y$.

▲ロ▶▲冊▶▲ヨ▶▲ヨ▶ ヨ のQ@

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

- A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on
 - Łukasiewicz negation: $\neg x = 1 x$,
 - Łukasiewicz sum: $x \oplus y = \min\{x + y, 1\}$,
 - Product t-norms: $x \cdot y$.
- This leads towards the continuous t-norms, *i.e.*, continuous binary operations on the interval [0, 1] that are commutative, associative and non-decreasing with 1 as the unit element. They are thought as flavors of *conjunction* in fuzzy logic.

▲ロ▶▲冊▶▲ヨ▶▲ヨ▶ ヨ のQ@

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

- A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on
 - Łukasiewicz negation: $\neg x = 1 x$,
 - Łukasiewicz sum: $x \oplus y = \min\{x + y, 1\}$,
 - Product t-norms: $x \cdot y$.
- This leads towards the continuous t-norms, *i.e.*, continuous binary operations on the interval [0, 1] that are commutative, associative and non-decreasing with 1 as the unit element. They are thought as flavors of *conjunction* in fuzzy logic.
- A set of operations (⊕, ·, ¬) over the interval [0, 1], as in above, forms an algebraic structure called *Product Multi-Valued Algebra* (PMV-algebra).

▲ロ▶▲冊▶▲ヨ▶▲ヨ▶ ヨ のQ@

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Gates with Łukasiewicz Fuzzy Logic

- A fuzzy-logical representation of Quantum-Tofolli gate was explored previously by *Giuseppe Sergioli et.al.*, using a probabilistic representation based on
 - Łukasiewicz negation: $\neg x = 1 x$,
 - Łukasiewicz sum: $x \oplus y = \min\{x + y, 1\}$,
 - Product t-norms: $x \cdot y$.
- This leads towards the continuous t-norms, *i.e.*, continuous binary operations on the interval [0, 1] that are commutative, associative and non-decreasing with 1 as the unit element. They are thought as flavors of *conjunction* in fuzzy logic.
- A set of operations (⊕, ·, ¬) over the interval [0, 1], as in above, forms an algebraic structure called *Product Multi-Valued Algebra* (PMV-algebra).
- In the present work, we extend this analysis towards Fredkin Gate, especially for its bit-parity conservation property.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Fuzzy Quantum Toffoli Gate : Definition

For any natural numbers $n, m, l \ge 1$ and for any vectors of the standard orthonormal basis $|x\rangle = |x_1, x_2, \ldots, x_n\rangle \in \otimes^n \mathbb{C}^2$, $|y\rangle = |y_1, y_2, \ldots, y_m\rangle \in \otimes^m \mathbb{C}^2$ and $|z_1, z_2, \ldots, z_l\rangle \in \otimes^l \mathbb{C}^2$, the quantum Tofolli gate $T^{(n,m,l)}$ on $\otimes^{n+m+l} \mathbb{C}^2$ is defined to satisfy

$$T^{(m,n,l)}(|x\rangle \otimes |y\rangle \otimes |z\rangle) = |x\rangle \otimes |y\rangle |z_1, \dots z_{l-1}\rangle \otimes |x_m y_n \widehat{+} z_l\rangle.$$

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Fuzzy Quantum Toffoli Gate : Definition

Quantum Toffoli Gate: Matrix Form

For any natural number $n,m,l\geq 1$,

$$T^{(m,n,l)} \equiv P_0^{(n)} \otimes P_0^{(m)} \otimes I^{(l)} + P_1^{(n)} \otimes P_1^{(m)} \otimes Not^{(l)}$$

= $I^{(n+m+l)} + P_1^{(n)} \otimes P_1^{(n)} \otimes P_1^{(m)} \otimes (Not - I)^{(l)}$
= $I^{(n-1)} \otimes \left[\begin{array}{c|c} I^{(m+1)} & \mathbf{0} \\ \hline \mathbf{0} & I^{(m-1)} \otimes Xor^{(l)} \end{array} \right]$

- Matrix form of a quantum gate is encoding dependent.
- The above form is readily seen to be Unitary, leading to the Toffoli quantum operation: $\mathbb{T}^{(m,n,1)}(\rho) \equiv T^{(m,n,l)}\rho T^{(m,n,l)}$.

▲ロト▲団ト▲目ト▲目ト ヨークタマ

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Toffoli Gate : Fuzzy properties

• The truth-probability of Quantum Toffoli Operation $(p(\mathbb{T}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)}))$ turns out to be

 $(1 - p(\rho_l))p(\rho_n)p(\rho_m) + p(\rho_l)(1 - p(\rho_m)p(\rho_n))$.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Toffoli Gate : Fuzzy properties

• The truth-probability of Quantum Toffoli Operation $(p(\mathbb{T}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)}))$ turns out to be

 $(1 - p(\rho_l))p(\rho_n)p(\rho_m) + p(\rho_l)(1 - p(\rho_m)p(\rho_n))$.

• The Quantum Tofolli Operation then has a representation in terms of $\langle\oplus,\cdot,\neg\rangle_3$ given by

$$\mathbb{T}^{(m,n,l)}(x,y,z) = \neg z \cdot x \cdot y \oplus z \cdot \neg (x \cdot y)$$

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Toffoli Gate : Fuzzy properties

• The truth-probability of Quantum Toffoli Operation $(p(\mathbb{T}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)}))$ turns out to be

 $(1 - p(\rho_l))p(\rho_n)p(\rho_m) + p(\rho_l)(1 - p(\rho_m)p(\rho_n))$.

• The Quantum Tofolli Operation then has a representation in terms of $\langle\oplus,\cdot,\neg\rangle_3$ given by

$$\mathbb{T}^{(m,n,l)}(x,y,z) = \neg z \cdot x \cdot y \oplus z \cdot \neg (x \cdot y) .$$

• Implements Holistic Conjunction when we set $p(\rho_l) = 0$, i.e., when $\rho_l = P_0^{(l)}$.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Toffoli Gate : Fuzzy properties

• The truth-probability of Quantum Toffoli Operation $(p(\mathbb{T}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)}))$ turns out to be

 $(1 - p(\rho_l))p(\rho_n)p(\rho_m) + p(\rho_l)(1 - p(\rho_m)p(\rho_n))$.

• The Quantum Tofolli Operation then has a representation in terms of $\langle\oplus,\cdot,\neg\rangle_3$ given by

$$\mathbb{T}^{(m,n,l)}(x,y,z) = \neg z \cdot x \cdot y \oplus z \cdot \neg (x \cdot y)$$

- Implements Holistic Conjunction when we set $p(\rho_l) = 0$, i.e., when $\rho_l = P_0^{(l)}$.
- At the opposite sides of spectrum are the probabilities for the implementation of AND and NAND.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Toffoli Gate : Fuzzy properties

• The truth-probability of Quantum Toffoli Operation $(p(\mathbb{T}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)}))$ turns out to be

 $(1 - p(\rho_l))p(\rho_n)p(\rho_m) + p(\rho_l)(1 - p(\rho_m)p(\rho_n))$.

• The Quantum Tofolli Operation then has a representation in terms of $\langle\oplus,\cdot,\neg\rangle_3$ given by

$$\mathbb{T}^{(m,n,l)}(x,y,z) = \neg z \cdot x \cdot y \oplus z \cdot \neg (x \cdot y)$$

- Implements Holistic Conjunction when we set $p(\rho_l) = 0$, *i.e.*, when $\rho_l = P_0^{(l)}$.
- At the opposite sides of spectrum are the probabilities for the implementation of AND and NAND.
- The probability expression picks up a *fuzzy-component* if the input states are non separable.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Fuzzy quantum Fredkin Gate : Definitions

For any natural numbers $n, m, l \geq 1$ and for any vectors of the standard orthonormal basis $|x\rangle = |x_1, x_2, \ldots, x_n\rangle \in \otimes^n \mathbb{C}^2$, $|y\rangle = |y_1, y_2, \ldots, y_m\rangle \in \otimes^m \mathbb{C}^2$ and $|z_1, z_2, \ldots, z_l\rangle \in \otimes^l \mathbb{C}^2$, the Fredkin quantum gate $F^{(n,m,l)}$ on $\otimes^{n+m+l} \mathbb{C}^2$ is defined to satisfy

$$F^{(n,m,l)}|x,y,z\rangle$$

 $= |x\rangle |y_1 \dots y_{m-1}, \ y_m + x_n (y_m + z_l)\rangle |z_1 \dots z_{l-1}, \ z_l + x_n (y_m + z_l)\rangle.$

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Fuzzy Quantum Fredkin Gate : Definitions

Quantum Fredkin Gate: Matrix Form

For any natural number $n,m,l\geq 1,$ the generalized Fredkin Gate has the form

$$F^{(m,n,l)} = P_0^{(n)} \otimes I^{(m+l)} + P_1^{(n)} \otimes SWAP^{(m,l)}$$

= $I^{(n+m+l)} + P_1^{(n)} \otimes (SWAP^{(m,l)} - I^{(m+l)})$
= $I^{(n-1)} \otimes \left[\frac{I^{(m+l)} | \mathbf{0}}{\mathbf{0} | SWAP^{(m,l)}} \right]$

Here, $SWAP^{(m,l)}$ is a linear operator that is essentially a last-qubit swap gate, such that,

$$SWAP^{(m,l)}|y_1, \dots, y_m, z_1, \dots, z_l\rangle = |y_1, \dots, y_{m-1}, z_l, z_1, \dots, z_{l-1}, y_m\rangle$$

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Fuzzy Quantum Fredkin Gate : Definitions

The general matrix form (in computational basis) of the required $SWAP^{(m,l)}$ is as follows:

$$SWAP^{(m,l)} = I^{(m-1)} \otimes \left[\begin{array}{c} \mathbf{P_{0}^{(l)} \mid L_{1}^{(l)}} \\ \hline \mathbf{L_{0}^{(l)} \mid P_{1}^{(l)}} \\ \end{array} \right] \\ = I^{(m-1)} \otimes SWAP^{(1,l)} \\ = diag^{2^{(m-1)}} \left[SWAP^{(1,l)} \right] \end{array}$$

Here, the operators L_1 and L_0 are the *bit-flip* operators with $L_1 \equiv |1\rangle\langle 0|$ (*i.e.*, the Ladder-raising operator) and $L_0 \equiv |0\rangle\langle 1|$ (*i.e.*, the Ladder-lowering operator), trivially extended to the higher dimensions as $\mathbf{L}_1^{(l)} = I^{(l-1)} \otimes L_1$ and $\mathbf{L}_0^{(l)} = I^{(l-1)} \otimes L_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Fredkin Gate : Fuzzy properties

• The truth-probability of the generalized Quantum Fredkin Operation $(p(\mathbb{F}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)})$ turns out to be

$$\mathbb{F}_{p}^{(n,m,l)}\rho = (1 - p(\rho_{n})) p(\rho_{l}) + p(\rho_{n}) p(\rho_{m})$$

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Fredkin Gate : Fuzzy properties

• The truth-probability of the generalized Quantum Fredkin Operation $(p(\mathbb{F}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)})$ turns out to be

$$\mathbb{F}_{p}^{(n,m,l)}\rho = (1 - p(\rho_{n})) p(\rho_{l}) + p(\rho_{n}) p(\rho_{m})$$

• Since $0 \le p(\mathbb{F}^{(n,m,l)}(\rho_n \otimes \rho_m \otimes \rho_l)) \le 1$, the above sum is a Łukasiewicz sum. And therefore, it can be rewritten as

$$p(\mathbb{F}^{(n,m,l)}(\rho_n \otimes \rho_m \otimes \rho_l)) = \neg p(\rho_n) \cdot p(\rho_l) \oplus p(\rho_n) \cdot p(\rho_m).$$

◆□ ▶ ◆ 酉 ▶ ◆ 亘 ▶ ◆ 国 ■ ● ● ●

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Fredkin Gate : Fuzzy properties

• The truth-probability of the generalized Quantum Fredkin Operation $(p(\mathbb{F}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)})$ turns out to be

$$\mathbb{F}_{p}^{(n,m,l)}\rho = (1 - p(\rho_{n})) p(\rho_{l}) + p(\rho_{n}) p(\rho_{m})$$

• Since $0 \le p(\mathbb{F}^{(n,m,l)}(\rho_n \otimes \rho_m \otimes \rho_l)) \le 1$, the above sum is a Łukasiewicz sum. And therefore, it can be rewritten as

$$p(\mathbb{F}^{(n,m,l)}(\rho_n\otimes \rho_m\otimes \rho_l)) = \neg p(\rho_n)\cdot p(\rho_l) \oplus p(\rho_n)\cdot p(\rho_m).$$

• Therefore, $\mathbb{F}^{(m,n,l)}$ is $\langle \oplus, \cdot, \neg \rangle_3$ -representable by $\neg \mathbf{x} \cdot \mathbf{z} \oplus \mathbf{x} \cdot \mathbf{y}$.

Quantum Operations upon Density-Matrices Quantum Gates with Łukasiewicz Fuzzy Logic Fuzzy Quantum Toffoli Gate Fuzzy Quantum Fredkin Gate

Quantum Fredkin Gate : Fuzzy properties

• The truth-probability of the generalized Quantum Fredkin Operation $(p(\mathbb{F}^{(m,n,l)(\rho_n\otimes\rho_m\otimes\rho_l)})$ turns out to be

$$\mathbb{F}_{p}^{(n,m,l)}\rho = (1 - p(\rho_{n})) p(\rho_{l}) + p(\rho_{n}) p(\rho_{m})$$

• Since $0 \le p(\mathbb{F}^{(n,m,l)}(\rho_n \otimes \rho_m \otimes \rho_l)) \le 1$, the above sum is a Łukasiewicz sum. And therefore, it can be rewritten as

$$p(\mathbb{F}^{(n,m,l)}(\rho_n \otimes \rho_m \otimes \rho_l)) = \neg p(\rho_n) \cdot p(\rho_l) \oplus p(\rho_n) \cdot p(\rho_m).$$

- Therefore, $\mathbb{F}^{(m,n,l)}$ is $\langle \oplus, \cdot, \neg \rangle_3$ -representable by $\neg \mathbf{x} \cdot \mathbf{z} \oplus \mathbf{x} \cdot \mathbf{y}$.
- The Conjunction derivable here is the same as the Holistic Conjunction derived previously using Tofolli gate.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Directions Further

- The incidence of non-separability in generalized quantum Fredkin gate and that of entanglement ...
- Benchmarking the robustness and thermo-economicality of fuzzy-quantum-circuits, perhaps for some important family of quantum states.
- Forms of fuzzy-quantum gates for different types of encoding, OR,
- the possibility of Encoding-independent representation of Quantum Gates
- Building further implementation-friendly fuzzy-quantum circuits.
- Building Fuzzy logic based quantum games.

Future Directions Acknowledgements References

Acknowledgements

Thanks to Dr Giuseppe Sergioli and Prof Roberto Giuntini for introducing the problem to me.

Special thanks to Prof Roberto Leporini for helpful discussions.

Thank You All

Future Directions Acknowledgements **References**

References

- M.L Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli, *Holistic logical arguments in quantum computation*, Mathematica Slovaca, to appear.
- M.L Dalla Chiara, R. Leporini, G. Sergioli, *Entanglement and quantum logical gates. Part II*, International Journal of Theoretical Physics, Vol. 54, n.12, pp. 4530–4545 (2015).
- H. Freytes, R. Giuntini, R. Leporini, G. Sergioli, *Entanglement and quantum logical gates. Part I*, International Journal of Theoretical Physics, Vol. 54, n.12, pp. 4518–4529 (2015).
- H. Freytes, G. Sergioli, Fuzzy approach for Toffoli gate in quantum computation with mixed states, Reports on Mathematical Physics, Vol. 74, Issue 2, pp. 159–180 (2014).

G. Cattaneo, A. Leporati, R. Leporini *Fredkin Gates for 24/24* Ranjith Venkatrama Fuzzy Representation of Quantum Fredkin Gate