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Graphs

Let us consider a graph G = (V ,E ), where:

V is a set of nodes that we denote by {1, . . . , n};
E is a set of edges (or arcs) between nodes.

If the arcs are oriented we say that the graph is directed (digraph),
undirected otherwise. A graph is (strongly) connected if for any
pairs of nodes there is an (oriented) path connecting them.

To each unweighted graph corresponds an adjacency matrix

Aij =

{
1, if nodes i and j are connected,

0, if nodes i and j are not connected.

If the graph is undirected the adjacency matrix is symmetric.
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Complex networks

A complex network is a graph with particular properties, which is
used to model interaction between entities in various fields, e.g.,
computer science, sociology, economics, genetics, epidemiology,
etc.

Though there is often little randomness in the phenomena being
studied, complex networks are generally seen as random graphs
with some additional features:

strong clustering,

small world effect,

scale-free structure (power law degree distribution).
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Clustering index

The friend of your friend is likely to be your friend.

Global clustering is measured by the average of the clustering of
the nodes

clust(G ) =
1

n

n∑
i=1

C (i)

where C (i) is the probability that two nodes connected to the
same node are connected themselves

C (i) =
ti
Ti

=
(A + AT )3ii

2[deg tot(i) (deg tot(i)− 2[A2]ii )]
,

i.e., ratio between existing and possible triangles.
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Small world effect

Milgram’s six degree of separation.

In a small world network the mean distance among nodes is small:

`(G ) :=
1

N

∑
(i ,j)∈C

dist(i , j) / log n,

where C = {(i , j) : dist(i , j) <∞}.

Example from [Watts and Strogatz, 1998]:
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Power law degree distribution

The rich gets richer.

In a scale-free network the distributions of the degrees of its nodes
follows a power law: F (k) ∼ ck−p, with p > 0.
This implies the presence of hubs, i.e., super-connected nodes.
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Ranking nodes: the degree

Various indices (or metrics) have been introduced to characterize
the importance of a node in terms of connection with the rest of
the network.

The simplest is the degree. If the network is undirected:

deg(i) =
n∑

j=1
j 6=i

Aij =
n∑

j=1
j 6=i

Aji ;

if the network is directed:

degout(i) =
n∑

j=1
j 6=i

Aij and degin(i) =
n∑

j=1
j 6=i

Aji .
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Ranking nodes: f -centrality indices

Various indices (or metrics) have been introduced to characterize
the importance of a node in terms of connectivity.

A class of indices has been defined starting from matrix functions

f (A) =
∞∑

m=0

cmA
m, cm ≥ 0.

The key point is that [Am]ij gives the number of walks of length m
starting from the node i and ending at node j

i k1 · · · km−1 j

Then, [f (A)]ij is a weighted average of all the walks connecting i
to j , and describes the ease of travelling between them.
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f -centrality and f -communicability

Two common choices for the coefficients in f (A) =
∑

cmA
m are

cm = 1/m! ⇒ f (A) = eA,

cm = γm ⇒ f (A) = (I − γA)−1 .

[f (A)]ii = eTi f (A) ei is the f -centrality of node i ,

[f (A)]ij = eTi f (A) ej is the f -communicability between i and j .

[Estrada, Rodŕıguez-Velázquez 2005, 2006], [Benzi, Boito 2010],
[Estrada, Higham 2010], [Estrada, Hatano, Benzi 2012], . . .

If A is not large and symmetric, we can easily compute these
functions (e.g., spectral factorization, Padé approx.), but
the computation is not trivial for large scale problems.

G. Rodriguez Large scale computation of the trace of a matrix function



Other indices

The function f (A) plays a role in the definition of other indices for
the nodes of undirected or directed networks:
Katz centrality, communicability betweenness, average comm.,
total subgraph comm., starting/ending convenience [Katz 1953],
[Estrada, Higham, Hatano 2009], [Estrada, Hatano, Benzi 2012],
[Benzi, Klymko 2013], [Fenu, Martin, Reichel, R 2013].

These indices depend upon the row/column sums of f (A), i.e.,

n∑
j=1

[f (A)]ij = eTi f (A) e,
n∑

i=1

[f (A)]ij = eT f (A) ej ,

which give information about walks joining node i to other nodes
and walks joining other nodes to node j , respectively.
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Ranking problem

To extract information from f (A) the following quadratic forms
may be computed

eTi f (A) ej → [f (A)]ij ,

eTi f (A) e → row-sum,

with ei = (0, . . . , 1, 0, . . . 0)T and e = (1, . . . , 1)T .

It is often of interest to identify a subset of nodes for which a
chosen index is largest (or smallest). Examples:

find m nodes s.t. maxi e
T
i f (A)ei (f -subgraph centrality);

find m nodes s.t. maxi e
T
i f (A)e (f -starting convenience).

[Fenu, Martin, Reichel, R, SISC 2013],
[Baglama, Fenu, Reichel, R, LAA 2013],
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Approximation by Gauss quadrature

The actual value of uT f (A) v (A = AT , u, v = ei , ej , e, . . . ) can be
obtained by Gauss quadrature [Golub, Meurant 1993. . . 2010].
This approach was proposed for subgraph centralities and
communicabilities in [Benzi, Boito 2010].

Indeed, under suitable assumptions on f , starting from

uT f (A)u =
n∑

i=1

f (λi )ω
2
i =

∫
f (t)dω(t),

the connection between the symmetric Lanczos process and
orthogonal polynomials leads to bound the quadratic form by
sequences of Gauss and Gauss–Radau quadrature formulas

Gk−1f < Gk f < uT f (A)u < Rk+1f < Rk f .
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Complex networks and the trace operator

The Estrada index of a graph, defined as

trace(exp(A)) =
n∑

i=1

[exp(A)]ii =
n∑

i=1

exp(λi ),

provides a global characterization of the graph; see [Estrada,
Rodŕıguez-Velázquez 2005], [Estrada, Hatano, Benzi 2012].

The clustering index of a network depends upon the number T of
existing triangles, which can be obtained by computing

T =
1

6
trace(A3).
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Large scale computation of trace(f (A))

Our approach is the following

trace(f (A)) =
ñ∑

j=1

trace(ET
j f (A)Ej).

where
Ej = [ek(j−1)+1, . . . , emin{jk,m}],

for j = 1, 2, . . . , ñ =
⌊
m+k−1

k

⌋
.

Then, it is essential to approximate at a prescribed accuracy

trace(W T f (A)W ),

for W ∈ Rm×k , efficiently and without actually computing f (A).
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The global Lanczos method

For W1,W2 ∈ Rn×k , we define the inner product and induced norm

〈W1,W2〉 := trace(W T
1 W2), ‖W1‖F := 〈W1,W1〉1/2.

For A = AT it holds

A[V1, . . . ,V`] = [V1, . . . ,V`]T̂` + β`+1V`+1E
T
` ,

where Vj ∈ Rn×k , 〈Vi ,Vj〉 = δij , T̂` = T` ⊗ Ik , and

T` =


α1 β2 O
β2 α2 β3

β3 · ·
· · β`

O β` α`

 .

[Jbilou, Messaoudi, Sadok 1999]
[Elbouyahyaoui, Messaoudi, Sadok 2009]
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Global Gauss quadrature rules

In [Bellalij, Reichel, R, Sadok, ApNuM 2015] we considered the
expression

If := trace(W T f (A)W ) V1 = W /‖W ‖F
= ‖W ‖2F trace(V T

1 f (A)V1), A = UΛUT

= ‖W ‖2F trace(Ṽ T
1 f (Λ)Ṽ1) Ṽ1 = UTV1

For any i = 1, 2, . . . , k we can write

eTi Ṽ
T
1 f (Λ)Ṽ1ei =

m∑
j=1

f (λj)µ
2
j =

∫
f (λ)dµi (λ),

from which, letting µ(λ) :=
∑k

i=1 µi (λ), it follows

If = ‖W ‖2F
k∑

i=1

∫
f (λ)dµi (λ) = ‖W ‖2F

∫
f (λ)dµ(λ)
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Global Gauss quadrature rules

The global Lanczos method gives Vj = pj−1(A)V1, so that

δij = 〈Vj ,Vi 〉 = 〈pj−1(A)V1, pi−1(A)V1〉 =

∫
pj−1(λ)pi−1(λ)dµ(λ)

implies that

G`f = ‖W ‖2FeT1 f (T`)e1 is a Gauss quadrature rule

which is exact for polynomials of degree 2`− 1.

Quick proof: pj(λ) OPs recursion coefficients → T` = QDQT .
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Global Gauss quadrature rules

By extending T` to T`+1,ζ , with an additional eigenvalue at ζ, we
obtain that

R`+1,ζ f = ‖W ‖2FeT1 f (T`+1,ζ)e1 is a Gauss–Radau quadrature rule

which is exact for polynomials of degree 2`.

If the derivatives of f behave nicely and ζ ≥ maxi λi , we obtain a
sequence of lower and upper bounds

G`−1f < G`f < If < R`+1,ζ f < R`,ζ f .

We stop the iteration when

|R`+1,ζ f − G`f |
2|G`f |

< τ.
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Results for the block algorithm

Global Lanczos Scalar Lanczos expm

Matrix Nodes time kmin time SF time SF
Email 1133 3.5e-01 80 3.5e+00 (10) 1.2e+01 (34)
Yeast 2114 4.7e-01 60 3.2e+00 ( 7) 1.0e+01 (21)
Power 4941 1.9e+00 40 1.3e+01 ( 7) 2.1e+01 (11)

Internet 22963 1.2e+02 8 3.3e+02 ( 3) - -
Collab. 40421 4.8e+02 40 1.3e+03 ( 3) - -

Facebook 63731 2.6e+03 60 8.8e+03 ( 3) - -

Execution times for computing the Estrada index.
SF is the speedup factors with respect to the block method,

i.e., the ratio between the computing times.
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Parallel computation of the Estrada index

The expression

trace(exp(A)) =
ñ∑

j=1

trace(ET
j exp(A)Ej).

allows two levels of parallelization:

1 implicit parallelization triggered by the use of global Lanczos
to compute trace(ET

j exp(A)Ej);

2 explicit parallelization obtained by computing each term of the
summation on a different worker.

E. Cannas and A. Concas investigated this aspect while working on
a bachelor thesis, using the Parallel Computing Toolbox of Matlab.

G. Rodriguez Large scale computation of the trace of a matrix function



Results for the parallel algorithm
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Computation time and speedup for the yeast network
(2114 nodes, 4480 arcs)

Intel Xeon E5-2620, 2 CPUs, 12 cores
Matlab 9 - Linux Debian Stretch
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Results for the parallel algorithm
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Computation time and speedup for the Power network
(4941 nodes, 13188 arcs)

Intel Xeon E5-2620, 2 CPUs, 12 cores
Matlab 9 - Linux Debian Stretch
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Results for the parallel algorithm
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Computation time and speedup for the Collaboration network
(40421 nodes, 351384 arcs)

Intel Xeon E5-2620, 2 CPUs, 12 cores
Matlab 9 - Linux Debian Stretch
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Thanks for your attention!
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