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“... I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stop – not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, arounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change
of form or diminution of speed. I followed it on horseback, and overtook it
still on a rate of some eight or nine miles an hour, preserving its original
figure .... in the month of August 1834 was my first chance inteview with
that singular and beatiful phenomenon which I have called the Wave of
Translation.....The first day I saw it it was the happiest day of my life” [Scott
Russell, 1834]

The experiment was conducted on the Union Canal between Edinburgh
and Glasgow and, scaled down, in Scott Russell’s garden/garage.
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Empirical formula: c2 = g(h+ η), where g is gravity, h the depth of the
channel, and η the maximal height of the wave.

The phenomenon was generally dismissed [e.g., by Airy (1845)]. A theo-
retical explanation was given by Boussinesq (1871) and by Korteweg and
De Vries (1895). The latter derived the (dimensionless) equation

ut − 6uux + uxxx = 0.

The traveling wave solution found by Boussinesq and by Korteweg and de
Vries has the form

u(x, t) =
−1

2c

cosh2(x− x0 − ct)
,

where c > 0 is the speed as well as half the amplitude and x0 ∈ R is the
position of the extreme value.

4



-10 -5 0 5 10

-0.5

-0.4

-0.3

-0.2

-0.1

0

KdV one-soliton as a function of x− x0 − ct for c = 1

5



In 1954 Fermi, Pasta and Ulam [plus the programmer Tsingou] studied nu-
merically a system of 64 springs, each of which is connected in a nonlinear
way to its neighbours. The system is as follows:

mẍj = k(xj+1−2xj+xj−1)[1+α(xj+1−xj−1)], j = 0,1, . . . ,63,

expecting to find equipartition of the energy between the springs. Instead
a travelling wave was found. The Los Alamos report disappeared in an
archive for eight years.

In 1965 Kruskal and Zabusky observed that, by taking the limit in an ap-
propriate way, the difference equation gives rise to the Korteweg-de Vries
equation

ut − 6uux + uxxx = 0.

These authors introduced the word soliton.
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In 1967 Gardner, Greene, Kruskal, and Miura (GGKM) presented the so-
called inverse scattering transform (IST) method to solve the Korteweg-de
Vries (KdV) equation

Qt − 6QQx +Qxxx = 0, (x, t) ∈ R2.

Q(x,0)
direct scattering−−−−−−−−−−→ {R(k,0), {κs}Ns=1, {Cs(0)}Ns=1}yKdV

y time
evolution

Q(x, t) ←−−−−−−−−−−−
inverse scattering

{R(k, t), {κj}Ns=1, {Cs(t)}
N
s=1}

where

R(k, t) = e8ik3tR(k,0), Cs(t) = e8κ3
s tCs(0).
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Consider the Schrödinger equation on the line

−ψxx(k, x, t) +Q(x, t)ψ(k, x, t) = k2ψ(k, x, t),

where Im k ≥ 0. Then the scattering data consist of the Jost solution from
the right

fr(k, x, t) '

e
−ikx, x→ −∞,
1

T (k)e
−ikx + R(k,t)

T (k) e
ikx, x→ +∞,

the (finitely many and simple) poles iκs of the transmission coefficient, and

the (positive) norming constants Cs(t) =
[∫∞
−∞ dx fr(iκs, x, t)

2
]−1

.

The potential Q(x, t) is to be Faddeev class in the sense that it is real-
valued and satisfies

∫∞
−∞ dx (1 + |x|)|Q(x, t)| < +∞.

The direct and inverse scattering theory of the Schrödinger equation on the
line for Faddeev class potentials was largely developed by Faddeev (1964).
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In 1972 Zakharov and Shabat (ZS) presented the inverse scattering trans-
form (IST) method to solve the nonlinear Schrödinger (NLS) equation

iut + uxx ± 2|u|2u = 0, (x, t) ∈ R2,

where the plus sign corresponds to the focusing case and the minus sign
to the defocusing case. In the focusing case we have

u(x,0)
direct scattering−−−−−−−−−−→ {R(k,0), {as}Ns=1, {Cs(0)}Ns=1}yNLS

y time
evolution

u(x, t) ←−−−−−−−−−−−
inverse scattering

{R(k, t), {as}Ns=1, {Cs(t)}
N
s=1}

where

R(k, t) = e4ik2tR(k,0), Cs(t) = e−4ia2
s tCs(0).
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Consider the Zakharov-Shabat system

vx =

(
−ik u(x, t)

∓u(x, t)∗ ik

)
v.

Then the scattering data consist of the Jost solution from the right

φ(k, x, t) '


e−ikx

(
1
0

)
, x→ −∞, 1

T (k)e
−ikx

R(k,t)
T (k) e

ikx

 , x→ +∞,

the (finitely many and simple) poles ias of the transmission coefficient, and
the (complex nonzero) norming constants Cs(t).

The complex potential u(x, t) is to belong to L1(R).

In the defocusing case the scattering data only consist of the reflection
coefficient R(k, t).
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Nonlinear evolution equations are called integrable if their initial-value prob-
lem can be solved by a suitable inverse scattering transform. This means
in particular that this equation is associated with a linear eigenvalue prob-
lem. The IST translates the time evolution of the potential into that of the
scattering data associated with the linear eigenvalue problem.

PROPERTIES OF INTEGRABLE SYSTEMS:

• Admitting a class of exact solutions, many of soliton or breather type.

• Being an integrable Hamiltonian system in the sense that the IST con-
stitutes a canonical transformation from physical variables to action-
angle variables.

• Having infinitely many conserved quantities.
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HOW TO GENERATE INTEGRABLE SYSTEMS: LAX PAIRS

Lax (1968): Let the associated linear eigenvalue problem be Lu = λu.
Starting from an additional linear operator A, we get

Lt + LA−AL = 0.

EXAMPLE:

L = − d2

dx2 + u(x, t), A = −4 d3

dx3 + 6u d
dx + 3ux.

Then we get the KdV equation ut + uxxx − 6uux = 0.
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HOW TO GENERATE INTEGRABLE SYSTEMS: AKNS PAIRS

Ablowitz, Kaup, Newell, and Segur (1974): Consider the pair of differential
equations

Vx = XV , Vt = TV ,

where X and T are square matrices depending on (x, t, λ), λ being as-
pectral parameter, and detV (x, t, λ) 6≡ 0. Then

(Xt +XT )V = (XV )t = (Vx)t = (Vt)x = (TV )x = (Tx + TX)V,

implying the so-called zero curvature condition

Xt − Tx +XT − TX = 0.
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The inverse scattering transform (IST) method consists of three major steps:

• DIRECT SCATTERING: Compute the scattering data from the initial
solution (potential). These scattering data can be “summarized” as
the initial Marchenko integral kernel.

• (Usually trivial) time evolution of the scattering data, including the (usu-
ally trivial) time evolution of the Marchenko integral kernel.

• INVERSE SCATTERING: Solve the Marchenko integral equation at
time t and apply the formula to get the potential from its solution.
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Instead of solving the Marchenko integral equation, we can alternatively
solve a Riemann-Hilbert problem.

The Marchenko integral equation has the form

K(x, y; t) + F (x+ y; t) +
∫ ∞
x

dzK(x, z; t)F (z + y; t) = 0,

and the potential u(x, t) follows directly from K(x, x; t).

In this talk we focus on situations where

F (x+ y; t) = F 1(x; t)F 2(y; t)

for suitable matrix functions F 1(x; t) and F 2(y; t).
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Now consider the matrix triplet (A,B,C;H), whereA has only eigenval-
ues with positive real part, H commutes with A, and

F (x+ y; t) = Ce−(x+y)AetHB = Ce−xA︸ ︷︷ ︸
=F 1(x;t)

e−yAetHB︸ ︷︷ ︸
=F 2(y;t)

.

Then

G(x; t) = e−xAetH
∫ ∞

0
dz e−zABCe−zAe−xA = e−xAetHP e−xA.

Consequently,

K(x, y; t) = −Ce−xA
[
I + e−xAetHP e−xA

]−1
e−yAetHB.

Here P is the (unique) solution to the Sylvester equation

AP + PA = BC.

16



Focusing NLS: Here the Marchenko integral kernel has the 2 × 2 matrix
form

F (x+ y; t) =

(
0 −F (x+ y; t)∗

F (x+ y; t) 0

)
,

where Ft + 8Fxxx = 0. More precisely,

F (x+y; t) =
∫ ∞
−∞

dk

2π
eik(x+y)e8ik3tR(k,0)+

N∑
s=1

ns−1∑
j=0

(x+ y)j

j!
Csj(t).

Putting

F (x+ y; t) = Ce−(x+y)AetHB, H = −4iA2,

we write

F (x+y; t) =

(
B† 01×p

01×p C

)(
e−(x+y)A†+tH† 0p×p

0p×p e−(x+y)A+tH

)(
0p×1 −C†
B 0p×1

)
.
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Then

P =
∫ ∞

0
dz

(
e−zA

†
0p×p

0p×p e−zA

)(
0p×1 −C†
B 0p×1

)(
B† 01×p

01×p C

)(
e−zA

†
0p×p

0p×p e−zA

)

=

(
0p×p −Q
N 0p×p

)
,

where

N =
∫ ∞

0
dz e−zABB†e−zA

†
, Q =

∫ ∞
0

dz e−zA
†
C†Ce−zA,

solve the Lyapunov equations

AN +NA† = BB†, A†Q+QA = C†C.

Observe that

〈Nx,x〉 =
∫ ∞

0
dz

∥∥∥∥B†e−zA†x∥∥∥∥2
, 〈Qx,x〉 =

∫ ∞
0

dz
∥∥∥Ce−zAx∥∥∥2

,

are both nonnegative.
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Writing

K(x, y; t) =

(
K

up(x, y; t) Kup(x, y; t)

K
dn(x, y; t) Kdn(x, y; t)

)
,

we obtain

K
up(x, y; t) = −B†e−2xA†etH

†
Qe−xAΓ̃(x, t)−1e−yAetHB,

K
dn(x, y; t) = −Ce−xAΓ̃(x, t)−1e−yAetHB,

Kup(x, y; t) = B†e−xA
†
Γ(x, t)−1e−yA

†
etH

†
C†,

Kdn(x, y; t) = −Ce−2xAetHNe−xA
†
Γ(x, t)−1e−yA

†
etH

†
C†,

where

Γ(x, t) = Ip + e−xA
†
etH

†
Qe−2xAetHNe−xA

†

Γ̃(x, t) = Ip + e−xAetHNe−2xA†etH
†
Qe−xA.
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The focusing NLS solution is given by

u(x, t) = −2Kup(x, x; t) = −2B†e−xA
†
Γ(x, t)−1e−xA

†
etH

†
C†,

u(x, t)∗ = 2Kdn(x, x; t) = −2Ce−xAΓ̃(x, t)−1e−xAetHB.

Alternatively,

|u(x, t)|2 = d2

dx2 log[det Γ(x, t)],

where

Γ(x, t) = Ip + e−xA
†
etH

†
Qe−2xAetHNe−xA

†
.
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MODIFICATIONS TO THE FOCUSING NLS:

Instead of H = −4iA2, we choose another matrix H commuting with A,
thus another time factor.

H = −4iA2 : ut − iuxx − 2i|u|2u = 0 NLS,

H = 8A3 : ut + uxxx − 6u2ux = 0 mKdV,

H = −1
2A
−1 : vxt = sin(v), u = 1

2vx sine-Gordon,

H = [(4iα2A
2 + 8α3A

3)/(α3 − α2)] : Hirota,

ut

α3 − α2
− iα2[uxx + 2|u|2u] + α3[uxxx + 6u2ux] = 0.
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sine-Gordon:

u(x, t) = −4
∫ ∞
x

drK(r, r; t) = −4 Tr[arctanM(x, t)]

= 2i log
det(I + iM(x, t))

det(I − iM(x, t))

= 4 arctan

(
i
det(I + iM(x, t))− det(I − iM(x, t))

det(I + iM(x, t)) + det(I − iM(x, t))

)
,

where

M(x, t) = e−xAe−
1
4tA

−1
∫ ∞

0
ds e−sABCe−sAe−xAe−

1
4tA

−1
.

For A = (a) with a > 0, B = (1), and C = (c) real nonzero,

u(x, t) = −4 arctan
(
c

2a
e−2a(x+[t/4a2])

)
.
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Fig. 4: antikink; A = B = C = (1); t ∈ {0,1,2,3}
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Heisenberg ferromagnetic equation: Find a real vector m(x, t) of unit
length satisfying the initial-value problem

mt = m×mxx,

m(x, t)→ e3, x→ ±∞,
m(x,0) known.

Here m(x, t) is the magnetization vector as a function of position-time
(x, t) ∈ R2 and x ∈ R runs along e1, {e1, e2, e3} being the canonical
basis of R3.

The above equation is the continuous limit of the (quantum) ferromagnetic
Heisenberg equation chain in a constant field (in the direction e3) when the
wavelength of the excited modes is larger than the lattice distance.
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Vx = [iλ(m · σ)]V,

Vt = [−2iλ2(m · σ)− iλ(m×mx · σ)]V,

where σ is the vector of Pauli matrices [Zakharov and Takhtajan, 1979].

Assuming that m(·, t) − e3 and mx(·, t) have only L1(R) components
and m3(x) > −1, we have the gauge transformation

m(x, t) · σ = ΨZS(x,0; t)−1σ3ΨZS(x,0; t),

where ΨZS(x, λ; t) is the focusing Zakharov-Shabat Jost matrix from the
right.
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One-soliton solution: A = (a), B = (1), C = (c), a = p+ iq, p > 0(
m1(x, t)
m2(x, t)

)
=

1−m3(x, t)

p

(
cosβ(x, t) − sinβ(x, t)
sinβ(x, t) cosβ(x, t)

)(
q coshκ(x, t)
p sinhκ(x, t)

)
,

m3(x, t) = 1−
2p

p2 + q2
sech2κ(x, t),

κ(x, t) = 2p(x− x0 − vt) =

√
ω − v2

4 (x− x0 − vt),

β(x, t) = ωt+ v
2(x− x0 − vt) + ϕ0,

where ω = 4(p2 + q2), p = 1
2

√
ω − v2

4 , and q = v
4.

v speed, ω precession frequency, x0 = 1
2p ln( |c|2p) initial position, and

ϕ0 = −arg(c) initial phase in m1-m2-plane.
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Fig. 1: Propagating, one-soliton solution.
a = 1

4

√
7 + 1

4i, c = −7+3i
√

7
8 e−2(i+

√
7), v = 1, ω = 2, x0 = −4, ϕ0 = 0
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Fig. 2: Stationary, one-soliton solution.
a = 1

2

√
2, c =

√
2, ω = 2, v = x0 = ϕ0 = 0
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Fig. 3: Head-on collision between two solitons propagating in opposite directions.

(v, ω, x0, ϕ0) 7→ (1,2,−5,0)&(−1,2,5, π2)
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Fig. 4: Scattering between a propagating and a stationary soliton.
In m3, observe the spatial shift experienced by the stationary soliton

(in the opposite direction with respect to the propagating one) after the interaction.

(v, ω, x0, ϕ) 7→ (2,3,−8,0)&(0,2,0, π2)
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Fig. 5: Interaction of three propagating solitons with different velocities.

The solitons emerged unchanged from the interaction.
(v, ω, x0, ϕ0) 7→ (1.7,5,−7,0)&(−1

4,4,
1
4,0)&(−1.8,5.5,10,0)
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Fig. 6: Stationary, breather-like soliton.
(v, ω) 7→ (0,0.8)&(0,0.4)
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Fig. 7: Propagating, breather-like soliton.
(v, ω) 7→ (0.15,0.8)&(0.15,0.4)
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Transition from two stationary solitons to a pair of solitons forming

a single stationary breather-like soliton (only m1(x, t) is shown).
(v, ω, x0, ϕ0) 7→ (0,0.8,−3,0)&(0,0.4,7,0)
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Transition from two stationary solitons to a pair of solitons forming

a single stationary breather-like soliton (only m2(x, t) is shown).
(v, ω, x0, ϕ0) 7→ (0,0.8,−3,0)&(0,0.4,7,0)

43



Fig. 8: Transition from two stationary solitons to a pair of solitons forming

a single stationary breather-like soliton (only m3(x, t) is shown).
(v, ω, x0, ϕ0) 7→ (0,0.8,−3,0)&(0,0.4,7,0)
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Fig. 9: A multipole soliton solution with algebraic multiplicity n1 = 2.

a = p+ iq =
√

2, x0 = ϕ0 = 0, Jordan block of order 2
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Fig. 10: A multipole soliton solution with algebraic multiplicity n1 = 3.

a = p+ iq = 1, x0 = ϕ0 = 0, Jordan block of order 3
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Fig. 11: A multipole soliton solution with algebraic multiplicity n1 = 4.

a = p+ iq = 1
2

√
3, x0 = ϕ0 = 0, Jordan block of order 4
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Fig. 12: Interaction of a propagating soliton with a breather-like soliton

and a multipole soliton with algebraic multiplicity 2.
(v, ω, x0, ϕ0) 7→ (0,3.6,0,0)&(0,1,0,0)&(1.75,3,−4, 3π

4 )&(0,2.9,6,0)
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