
Pietro Dell’Acqua

Fast and accurate numerical techniques for deblurring models



The image restoration problem

Recorded image True image

By the knowledge of the observed data (the effect), we want to find
an approximation of the true image (the cause).



Blurring model

Classical image deblurring problem with space invariant blurring.
Under such assumption the image formation process is modelled by

b(s) =

∫
h(s− t)x̄(t)dt + η(s), s ∈ R2

where h is the known impulse response of the imaging system, i.e. the
point spread function (PSF), x̄ denotes the true physical object, η takes
into account measurement errors and noise.

Point spread function



Discrete problem

We have to solve the linear equation

Ax = b,

where A is the blurring matrix and b = Ax̄ + η is the blurred and
noisy image.

The associated system of normal equations

AHAx = AHb

is solved in order to find an approximated least squares solution.

A is a large ill-conditioned matrix

A (hPSF , BCs) is a structured matrix



Structured matrices

� Zero BCs: Block Toeplitz with Toeplitz blocks (BTTB)

� Periodic BCs: Block circulant with circulant blocks (BCCB)

� FFT (Fast Fourier Transform)

� Reflective BCs: Block Toeplitz+Hankel with Toeplitz+Hankel blocks

� DCT (Discrete Cosine Transform) { for symmetric PSFs }
� Anti-Reflective BCs: Block Toeplitz+Hankel with Toeplitz+Hankel

blocks + a low rank matrix

� ART (Anti-Reflective Transform) { for symmetric PSFs }



Research activity



Optimal preconditioning

Let A = A(h) be the Anti-Reflective matrix generated by the generic
PSF hPSF =

[
hi1,i2

]
i1=−q1,...,q1,i2=−q2,...,q2

and let P = P (s) ∈
AR2D

n be the Anti-Reflective matrix generated by the symmetrized
PSF sPSF =

[
si1,i2

]
i1=−q1,...,q1,i2=−q2,...,q2

.

We are looking for the optimal preconditioner P ∗ = P ∗(s∗) in the
sense that

P ∗ = arg
P∈AR2D

n

min ‖A− P‖2F , s∗ = arg
s

min ‖A(h)− P (s)‖2F ,

where ‖·‖F is the Frobenius norm, defined as ‖A‖F =
√∑

i,j

∣∣ai,j∣∣2.



Optimal preconditioning

The result is known for Reflective BCs.
Given a generic PSF hPSF , the optimal preconditioner in the DCT

matrix algebra is generated by the strongly symmetric PSF sPSF given
by

1D : s±i =
h−i + hi

2
,

2D : s±i1,±i2 =
h−i1,−i2 + h−i1,i2 + hi1,−i2 + hi1,i2

4
,

which is a symmetrization of the original PSF.



Geometrical idea of the proof - 1D

R

R

Q*

s

A point R, its swapped point RS, the optimal approximation of both Q∗.

We simply observe that if we consider in the Cartesian plane a point R = (Rx, Ry),
its optimal approximation Q∗, among the points Q = (Qx, Qy) such that Qx = Qy,
is obtained as the intersection between the line y = x with the perpendicular line
that pass through R, that is {

y −Ry = −(x−Rx)
y = x

hence Q∗x = Q∗y = (Rx + Ry) /2. The same holds true if we consider the swapped

point RS = (Ry, Rx), since they share the same distance, i.e. d(R,Q∗) = d(RS, Q∗).

Clearly, due to linearity of obtained expression, this result can be extended also to

the case of any linear combination of coordinates.



Geometrical idea of the proof - 1D

For the sake of simplicity we report a small example

A− P =



ωy0 νx1 νx2 νx3
ωy1 ζy0 ζx2 ϑx2 ϑx3
ωy2 ζy1 ϑ0 ϑ

x
1 ϑx2 ϑx3

ωy3 ϑy2 ϑ
y
1 ϑ0 ϑ

x
1 ϑx2 ωx3

ϑy3 ϑ
y
2 ϑ

y
1 ϑ0 ζx1 ωx2

ϑy3 ϑ
y
2 ζy2 ζx0 ωx1
νy3 νy2 νy1 ωx0


−



ω̂y0 0 0 0

ω̂y1 ζ̂y0 ζ̂x2 ϑ̂x2 ϑ̂x3
ω̂y2 ζ̂y1 ϑ̂0 ϑ̂

x
1 ϑ̂x2 ϑ̂x3

ω̂y3 ϑ̂y2 ϑ̂
y
1 ϑ̂0 ϑ̂

x
1 ϑ̂x2 ω̂x3

ϑ̂y3 ϑ̂
y
2 ϑ̂

y
1 ϑ̂0 ζ̂x1 ω̂x2

ϑ̂y3 ϑ̂
y
2 ζ̂y2 ζ̂x0 ω̂x1

0 0 0 ω̂x0


Here, we set the points

Θi = (ϑxi , ϑ
y
i ) = (h−i, hi)

Ωi = (ωxi , ω
y
i ) = (ϑxi + 2

q∑
j=i+1

ϑxj , ϑ
y
i + 2

q∑
j=i+1

ϑyj)

Ni = (νxi , ν
y
i ) = (h−i − hi, hi − h−i) = (ϑxi − ϑSxi , ϑ

y
i − ϑ

Sy
i )

Z0 = (ζx0 , ζ
y
0 ) = (h0 − h−2, h0 − h2) = (ϑx0 − ϑx2, ϑ

y
0 − ϑ

y
2)

Z1 = (ζx1 , ζ
y
1 ) = (h−1 − h−3, h1 − h3) = (ϑx1 − ϑx3, ϑ

y
1 − ϑ

y
3)

Z2 = (ζx2 , ζ
y
2 ) = (h−1 − h3, h1 − h−3) = (ϑx1 − ϑSx3 , ϑ

y
1 − ϑ

Sy
3 )



Geometrical idea of the proof - 2D

We simply observe that if we consider in the 4-dimensional space a point R =
(Rx, Ry, Rz, Rw), its optimal approximationQ∗ among the pointsQ = (Qx, Qy, Qz, Qw)
belonging to the line L 

x = t
y = t
z = t
w = t

is obtained by minimizing the distance

d2(L, R) = (t−Rx)
2 + (t−Ry)

2 + (t−Rz)
2 + (t−Rw)2

= 4t2 − 2t(Rx + Ry + Rz + Rw) + R2
x + R2

y + R2
z + R2

w.

This is a trinomial of the form αt2 + βt + γ, with α > 0 and we find the minimum
by using the formula for computing the abscissa of the vertex of a parabola

t∗ = − β

2α
=
Rx + Ry + Rz + Rw

4
.

Hence the point Q∗ is defined as Q∗x = Q∗y = Q∗z = Q∗w = t∗. The same holds true if

we consider any swapped point RS, not unique but depending on the permutation at

hand, since they share the same distance, i.e. d(R,Q∗) = d(RS, Q∗). Again, thanks

to the linearity of obtained expression, this result can be extended also in the case of

any linear combination of coordinates.



Iterative regularization methods

Van Cittert method
xk = xk−1 + τ (b− Axk−1)

Landweber method
xk = xk−1 + τAH(b− Axk−1)

Steepest descent method
xk = xk−1 + τk−1A

H(b− Axk−1)

τk−1 = ‖rk−1‖22/‖Ark−1‖22, with rk−1 = AH(b− Axk−1)

Lucy-Richardson method (LR)

xk = xk−1 · AH
(

b
Axk−1

)
Image Space Reconstruction Algorithm (ISRA)

xk = xk−1 ·
(

AHb
AHAxk−1

)



The idea

All the algorithms presented base the update of the iteration on the
“key” quantities

b− Axk−1 or
b

Axk−1
,

which both give information on the distance between the blurred data
b and the blurred iteration Axk−1.

AH can be seen as a reblurring operator, whose role is basically to
help the method to manage the noise.

Our idea is to pick a new matrix Z, which will replace AH .

We notice that in principle one can think to choose Z as another
operator, not necessarily related to a blurring process.



Z variant

Z-Landweber method
xk = xk−1 + τZ(b− Axk−1)

Z-Steepest descent method
xk = xk−1 + τk−1Z(b− Axk−1)

τk−1 =
rHk−1rk−1

rHk−1ZArk−1
, with rk−1 = Z(b− Axk−1)

Z-LR
xk = xk−1 · Z

(
b

Axk−1

)
Z-ISRA
xk = xk−1 ·

(
Zb

ZAxk−1

)



Link with preconditioning

The conventional preconditioned system is the following

DAHAx = DAHb,

where D is the preconditioner, whose role is to suitably approximate
the (generalized) inverse of the normal matrix AHA.

The new strategy leads to the new preconditioned system

ZAx = Zb ,

whose aim is to allow iterative methods to become faster and more
stable.



• p Low Pass Filter

dj =

{
0 if

∣∣λj∣∣ < ζ

1/
∣∣λj∣∣p if

∣∣λj∣∣ ≥ ζ

• p Hanke Nagy Plemmons Filter

dj =

{
1 if

∣∣λj∣∣ < ζ

1/
∣∣λj∣∣p if

∣∣λj∣∣ ≥ ζ

• p Tyrtyshnikov Yeremin Zamarashkin Filter

dj =

{
1/ζ if

∣∣λj∣∣ < ζ

1/
∣∣λj∣∣p if

∣∣λj∣∣ ≥ ζ

• Tikhonov Filter

dj =
1∣∣λj∣∣2 + α

By using each filter we can define the eigenvalues of Z as

zj = λ̄jdj



BCCB preconditioning: D vs Z

Reflective and Anti-Reflective BCs

RRE vs regularization parameter for Tikhonov filter (α) and T.Y.Z. filter (ζ).

For all filters Z variant shows an higher stability, and with this word
we mean that iterative methods compute a good restoration also when
regularization parameters ζ and α are very small.



A general Z algorithm

Called cj the eigenvalues of the BCCB matrix associated with (hPSF ,
‘periodic’), for any BCs, we can perform the next algorithm.

Z ←− Algorithm(hPSF , BCs)
———————————————————–

· get
{
cj
}n2

j=1 by computing FFT of hPSF
· get zj by applying a filter to cj

· get wPSF by computing IFFT of
{
zj
}n2

j=1
· generate Z from (wPSF , BCs)

The algorithm is consistent, in fact if the filter is identity, i.e. there
is no filtering, we have Z = AH . Clearly an analogous algorithm can
be applied to create the preconditioner D.



ν acceleration

The so-called ν-method is defined as follows

xk = µkxk−1 + (1− µk)xk−2 + ωkA
H(b− Axk−1),

where the coefficients µk and ωk are given by

µk = 1 +
(k − 1)(2k − 3)(2k + 2ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3)
,

ωk =
4(2k + 2ν − 1)(k + ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)
,

for k > 1, and with µ1 = 1, ω1 = 1.



ν acceleration

We rewrite LR in this way

xk = xk−1 +

[
xk−1 · AH

(
b

Axk−1

)
− xk−1

]
,

whence we have

xk = µkxk−1 + (1− µk)xk−2 + ωk

[
xk−1 · AH

(
b

Axk−1

)
− xk−1

]
= (µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
xk−1 · AH

(
b

Axk−1

)]
.

An analogous formula holds for ISRA

xk = (µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
xk−1 ·

(
AHb

AHAxk−1

)]
.



Automatic acceleration

The most popular acceleration technique, introduced in 1997 by Biggs
and Andrews.

It is a form of vector extrapolation that predicts subsequent points
based on previous points.

yk = xk + αk(xk − xk−1),

αk =
(gk−1)Tgk−2

(gk−2)Tgk−2
,

gk−1 = xk − yk−1,

gk−2 = xk−1 − yk−2,

xk+1 = it.method(yk),

where α1 = 0, α2 = 0, 0 ≤ αk ≤ 1, ∀k.



Numerical results



An alternative approach

Instead of considering A as a structured matrix (whose structure
depends on BCs), an alternative approach consists in solving

Cxext = bext,

where bext is the double-size extension of b, obtained following the BCs
imposed, and C is the BCCB matrix associated with the double-size
extension of the original PSF of the problem, obtained by a pad array
of zeros. Clearly in this case the restored image will be the central part
of xext corresponding to b.



Test 1: Gaussian blur



Test 1: Gaussian blur



Test 2: motion blur



Test2: motion blur


