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The image restoration problem

Recorded image True image

By the knowledge of the observed data (the effect), we want to find
an approximation of the true image (the cause).



Blurring model

Classical image deblurring problem with space invariant blurring.
Under such assumption the image formation process is modelled by

bs) = / h(s — DE(t)dt +n(s), s € R2

where h is the known impulse response of the imaging system, i.e. the
point spread function (PSF),  denotes the true physical object, n takes
into account measurement errors and noise.

Point spread function



Discrete problem

We have to solve the linear equation
Ax = b,

where A is the blurring matrix and b = Az + 7 is the blurred and
NoISy 1mage.

The associated system of normal equations
AP Az = Ay

is solved in order to find an approximated least squares solution.
A is a large ill-conditioned matrix

A (hpgp, BCs) is a structured matrix



Structured matrices

B Zero BCs: Block Toeplitz with Toeplitz blocks (BTTB)

B Periodic BCs: Block circulant with circulant blocks (BCCB)
O FFT (Fast Fourier Transform)

B Reflective BCs: Block Toeplitz+Hankel with Toeplitz+Hankel blocks
(I DCT (Discrete Cosine Transform) { for symmetric PSFs }

B Anti-Reflective BCs: Block Toeplitz+Hankel with Toeplitz+Hankel
blocks + a low rank matrix

[JART (Anti-Reflective Transform) { for symmetric PSFs }
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Optimal preconditioning

Let A = A(h) be the Anti-Reflective matrix generated by the generic
Pl hpsp = [hibi?}i1=-6]1,---,Q1,i2=—QQ,---,QQ and let P = P(s) €
AR,,%D be the Anti-Reflective matrix generated by the symmetrized
Pl spsr = [8“77;2}i1=-6]1,---,Q1,i2=—qza---7qz'

We are looking for the optimal preconditioner P* = P*(s*) in the
sense that

P*= arg minl|A— PH%: , " =argmin ||A(h) — P(S)H%: ,
PeARZP i

2

where ||-|| 7 is the Frobenius norm, defined as [|A|| z = /> |a;
1)



Optimal preconditioning

The result is known for Reflective BCs.
Given a generic PSF hpgp, the optimal preconditioner in the DCT
matrix algebra is generated by the strongly symmetric PSEF s pgp given

by
h_.+ h;
1D s4; = 12 L
i —io+h_j oo+ Ry iy + Ry
2D : 8:|:’i17:|:i2 _ 15 2 14542 1, 2 1 27

4

which is a symmetrization of the original PSF.



Geometrical idea of the proof - 1D
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A point R, its swapped point R°, the optimal approximation of both Q*.

We simply observe that if we consider in the Cartesian plane a point R = (R,, R,),
its optimal approximation (*, among the points @ = (@, @,) such that Q, = Q,,
is obtained as the intersection between the line y = x with the perpendicular line
that pass through R, that is

{y—Ryz—(x—Rx)
y=2x

hence Q) = @), = (R; + R,) /2. The same holds true if we consider the swapped
point R° = (R,, R,), since they share the same distance, i.e. d(R, Q*) = d(R”, Q*).
Clearly, due to linearity of obtained expression, this result can be extended also to

the case of any linear combination of coordinates.



Geometrical idea of the proof - 1D

For the sake of simplicity we report a small example
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Zy = (&,¢Y) = (h-y — h3, hy — h_3) = (0% — 95%,9¢ — 93)




Geometrical idea of the proof - 2D

We simply observe that if we consider in the 4-dimensional space a point R =
(R., Ry, R., R,), its optimal approximation Q* among the points Q = (Q, @y, Q~, Qu)
belonging to the line £

y

r =1
y=1
< z2=1
\w:t

is obtained by minimizing the distance
d*(L,R) = (t — R,)*+ (t — R)* + (t — R.)* + (t — R,)?
= 4> = 2t(R, + Ry+ R.+ R,) + R. + R, + R; + R,
This is a trinomial of the form at? + Bt + ~y, with a > 0 and we find the minimum
by using the formula for computing the abscissa of the vertex of a parabola

o_ B _ Rt Ry+ R+ R,
200 4

Hence the point Q* is defined as Q@ = @, = Q7 = @, = t*. The same holds true it

we consider any swapped point R°, not unique but depending on the permutation at

hand, since they share the same distance, i.e. d(R, Q") = d(R°, Q*). Again, thanks

to the linearity of obtained expression, this result can be extended also in the case of

any linear combination of coordinates.



Iterative regularization methods

Van Cittert method
v =xp_1+7(b— Axp_1)

Landweber method
T =Tp_1+ TAH([) — A:Ifk_l)

Steepest descent method
T = Xp_1+ TkZ—lAHU? —QAxk_l) .
Tr—1 = Ire—1ll3/ I Arg—1 5, with 7y = A% (b — Axy_4)

Lucy-Richardson method (LR)
S

Image Space Reconstruction Algorithm (ISRA)

_ Aty
L = Tp—1 - <AHAa:kl)




The idea

All the algorithms presented base the update of the iteration on the
“key” quantities

b
Azg_y

b— Axp_q or

which both give information on the distance between the blurred data
b and the blurred iteration Ax;._ .

A can be seen as a reblurring operator, whose role is basically to
help the method to manage the noise.

Our idea is to pick a new matrix Z, which will replace A

We notice that in principle one can think to choose Z as another
operator, not necessarily related to a blurring process.



/ variant

/-Landweber method
T =Tp_1+77(b— Ax1_q)

Z-Steepest descent method

T) = 5%-1;; Tp—12(b— Axy_1)

Tk 1Tk—1 .
Th_1 = cwith rp._1 = Z(b— Axp._q)
Tk 1ZA7”k 1
Z-LR
S Al’z—l)
Z-ISRA

/b



Link with preconditioning

The conventional preconditioned system is the following
DAY Az = DA,

where D is the preconditioner, whose role is to suitably approximate
the (generalized) inverse of the normal matrix A% A.
The new strategy leads to the new preconditioned system

L Axr = Zb,

whose aim is to allow iterative methods to become faster and more
stable.



e p Low Pass Filter

o 0 if [N <¢
7 { /NP i (]2 ¢
e p Hanke Nagy Plemmons Filter

d'_{ 1 if |\ < ¢
P A = ¢
e p Tyrtyshnikov Yeremin Zamarashkin Filter
g — { 1/C if )‘j < C
TN A (] > ¢

e Tikhonov Filter .
dj =5
P\ ]‘ + «

By using each filter we can define the eigenvalues of Z as

Zj = S\jdj



BCCB preconditioning: D vs 7

Reflective and Anti-Reflective BCs
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RRE vs regularization parameter for Tikhonov filter («) and T.Y.Z. filter ({).

For all filters Z variant shows an higher stability, and with this word
we mean that iterative methods compute a good restoration also when
regularization parameters ¢ and « are very small.



A general 7 algorithm

Called c; the eigenvalues of the BCCB matrix associated with (hpgp,
‘periodic’), for any BCs, we can perform the next algorithm.

7 <— ALGORITHM(hpg, BCs)

2
. get {cj}?:l by computing FFT of hpgp
- get z; by applying a filter to ¢;

2
- get wpgp by computing [FFT of {zj }?:1
- generate Z from (wpgp, BCs)

The algorithm is consistent, in fact if the filter is identity, i.e. there
is no filtering, we have Z = A Clearly an analogous algorithm can
be applied to create the preconditioner D.



v acceleration

The so-called v-method is defined as follows
ry, = pr—1 + (L= sz + wp A (b — Azy_y),
where the coefficients p;. and w;. are given by
(k—1)(2k — 3)(2k +2v — 1)
(k+2v—1)2k +4v — 1)(2k +2v — 3)’
42k +2v — 1) (k+v —1)
“k T (k+2v—1)2k +4v — 1)
for £ > 1, and with p; =1, w; = 1.

pp = 1+




v acceleration

We rewrite LR in this way

Tjp = Tp—1 + [»%-1 - AM (

whence we have

b

An analogous formula holds for ISRA

v = (pp — W) Tp—1 + (1 — pg)Tp—o + wi

Axk—l) N xk_l] |




Automatic acceleration

The most popular acceleration technique, introduced in 1997 by Biggs
and Andrews.

It is a form of vector extrapolation that predicts subsequent points
based on previous points.

Yp = T+ op(Tp — Tp—1),
(g1—1)" gr—o

(9r—2)" gr—2
9k—1 = Tk — Yk—1,
9k—2 = k-1 — Yk—2
T4 = it.method(yz),

where a1 =0, a9 =0, 0 < ap. <1, Vk.




Numerical results

Table 1 Satellite test: best RRE with relative IT and computation time
of classical LR and ISRA

Table 2 Cameraman test: best RRE with relative IT and computation
time of classical LR and ISRA

Time (s) RRE IT Time (s) RRE IT
LR 266.1 0.3484 2128 LR 57.6 0.0798 484
ISRA 2422 0.3451 1926 ISRA 74.5 0.0770 605
Table 3 Satellite test: best RRE with relative IT, AF and computation time for accelerated methods
Aut acc v acc
v=0.7 v=1 v=2
Time(s) RRE IT AF Time(s) RRE IT AF Time(s) RRE IT AF Time(s) RRE IT AF
LR P 112 03646 83 10.1 59 03650 51 164 8.6 0.3526 69 204 114 0.3472 95 247
Q 152 0.3555 123 99 6.3 03601 55 18.2 8.6 0.3478 70 322 114 0.3471 95 25.0
ISRA P 93 03695 75 75 29 03840 24 150 7.9 0.3484 62 21.1 105 0.3443 89 23.8
Q 13.0 0.3560 109 84 58 03539 47 211 75 0.3458 65 249 109 0.3442 89 238
Table 4 Cameraman test: best RRE with relative IT, AF and computation time for accelerated methods
Aut acc v acc
v =07 v=1 v=2
Time (s) RRE IT AF Time(s) RRE IT AF Time(s) RRE IT AF Time(s) RRE IT AF
LR P 5.1 0.0836 41 52 33 0.0828 27 87 39 0.0814 31 93 5.0 0.0804 42 85
Q 58 0.0826 48 5.1 33 0.0824 27 93 39 00813 31 95 5.0 0.0804 42 85
ISRA P 359 0.0811 47 58 3.5 0.0802 29 104 45 0.0786 34 11.0 6.0 0.0775 48 9.8
Q 11 00791 58 6.0 3.6 0.0785 30 12.7 4.1 0.0779 35 12.1 6.0 0.0774 48 10.0




An alternative approach

[nstead of considering A as a structured matrix (whose structure
depends on BCs), an alternative approach consists in solving

Cxea?t — be:z:ta

where be,+ 18 the double-size extension of b, obtained following the BCs
imposed, and C' is the BCCB matrix associated with the double-size
extension of the original PSE of the problem, obtained by a pad array
of zeros. Clearly in this case the restored image will be the central part
of Teqt corresponding to b.



Test 1: Gaussian blur
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Test 1: Gaussian blur
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Test 2: motion blur
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Test2: motion blur

100
-Exact BCs
I =0 BCs
90— I Ferindic BCs
[ Reflective BCs
:Anti-Reﬂective BCs
:Replicate BCs
80— [ lxBes
[ \lean BCs
I synthetic BCs
70 — I BCs
60 — —
]
@
o
g 50— |
=
o
[&]
T
o
40 — —
30— —
20— —
10— —
0 | |

Boundary Restoration




