Pietro Dell'Acqua

Fast and accurate numerical techniques for deblurring models

PING Workshop Opening Meeting for the Research Project GNCS 2016 "PING - Inverse Problems in Geophysics" Florence, April 6, 2016

The image restoration problem

Recorded image

True image

By the knowledge of the observed data (*the effect*), we want to find an approximation of the true image (*the cause*).

Blurring model

Classical image deblurring problem with space invariant blurring. Under such assumption the image formation process is modelled by

$$b(s) = \int h(s-t)\bar{x}(t)dt + \eta(s), \ s \in \mathbb{R}^2$$

where h is the known impulse response of the imaging system, i.e. the point spread function (PSF), \bar{x} denotes the true physical object, η takes into account measurement errors and noise.

Point spread function

Discrete problem

We have to solve the linear equation

$$Ax = b$$
,

where A is the blurring matrix and $b = A\bar{x} + \eta$ is the blurred and noisy image.

The associated system of normal equations

$$A^H A x = A^H b$$

is solved in order to find an approximated least squares solution.

A is a large ill-conditioned matrix

 $A (h_{PSF}, BCs)$ is a structured matrix

Structured matrices

- Zero BCs: Block Toeplitz with Toeplitz blocks (BTTB)
- Periodic BCs: Block circulant with circulant blocks (BCCB) $\Box \text{ FFT (Fast Fourier Transform)}$
- Reflective BCs: Block Toeplitz+Hankel with Toeplitz+Hankel blocks □ DCT (Discrete Cosine Transform) { for symmetric PSFs }
- Anti-Reflective BCs: Block Toeplitz+Hankel with Toeplitz+Hankel blocks + a low rank matrix
 - \Box ART (Anti-Reflective Transform) { for symmetric PSFs }

Research activity

- [1] P. DELL'ACQUA, M. DONATELLI, S. SERRA CAPIZZANO, D. SESANA, C. TABLINO POSSIO, Optimal preconditioning for image deblurring with Anti-Reflective boundary conditions, Linear Algebra and its Applications, in press (2015).
- [2] P. DELL'ACQUA, M. DONATELLI, C. ESTATICO, Preconditioners for image restoration by reblurring techniques, Journal of Computational and Applied Mathematics 272, pp. 313–333 (2014).
- [3] P. DELL'ACQUA, M. DONATELLI, C. ESTATICO, M. MAZZA, Structure preserving preconditioners for image deblurring, submitted.
- [4] P. DELL'ACQUA, C. ESTATICO, Acceleration of multiplicative iterative algorithms for image deblurring by duality maps in Banach spaces, Applied Numerical Mathematics 99, 121–136 (2016).
- [5] P. DELL'ACQUA, ν acceleration of statistical iterative methods for image restoration, Signal, Image and Video Processing, in press.

Optimal preconditioning

Let A = A(h) be the Anti-Reflective matrix generated by the generic PSF $h_{PSF} = [h_{i_1,i_2}]_{i_1=-q_1,...,q_1,i_2=-q_2,...,q_2}$ and let $P = P(s) \in \mathcal{AR}_n^{2D}$ be the Anti-Reflective matrix generated by the symmetrized PSF $s_{PSF} = [s_{i_1,i_2}]_{i_1=-q_1,...,q_1,i_2=-q_2,...,q_2}$.

We are looking for the optimal preconditioner $P^* = P^*(s^*)$ in the sense that

$$P^* = \underset{P \in \mathcal{AR}_n^{2D}}{\operatorname{arg}} \min \|A - P\|_{\mathcal{F}}^2 , \ s^* = \underset{s}{\operatorname{arg}} \min \|A(h) - P(s)\|_{\mathcal{F}}^2 ,$$

where $\|\cdot\|_{\mathcal{F}}$ is the Frobenius norm, defined as $\|A\|_{\mathcal{F}} = \sqrt{\sum_{i,j} |a_{i,j}|^2}$.

Optimal preconditioning

The result is known for Reflective BCs.

Given a generic PSF h_{PSF} , the optimal preconditioner in the DCT matrix algebra is generated by the strongly symmetric PSF s_{PSF} given by

1D:
$$s_{\pm i} = \frac{h_{-i} + h_i}{2}$$
,
2D: $s_{\pm i_1, \pm i_2} = \frac{h_{-i_1, -i_2} + h_{-i_1, i_2} + h_{i_1, -i_2} + h_{i_1, i_2}}{4}$,

which is a symmetrization of the original PSF.

Geometrical idea of the proof - 1D

A point R, its swapped point R^S , the optimal approximation of both Q^* .

We simply observe that if we consider in the Cartesian plane a point $R = (R_x, R_y)$, its optimal approximation Q^* , among the points $Q = (Q_x, Q_y)$ such that $Q_x = Q_y$, is obtained as the intersection between the line y = x with the perpendicular line that pass through R, that is

$$\begin{cases} y - R_y = -(x - R_x)\\ y = x \end{cases}$$

hence $Q_x^* = Q_y^* = (R_x + R_y)/2$. The same holds true if we consider the swapped point $R^S = (R_y, R_x)$, since they share the same distance, i.e. $d(R, Q^*) = d(R^S, Q^*)$. Clearly, due to linearity of obtained expression, this result can be extended also to the case of any linear combination of coordinates.

Geometrical idea of the proof - 1D

For the sake of simplicity we report a small example

$$A - P = \begin{bmatrix} \omega_0^y \ \nu_1^x \ \nu_2^x \ \nu_3^x \\ \omega_1^y \ \zeta_0^y \ \zeta_2^x \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_1^y \ \vartheta_0 \ \vartheta_1^x \ \vartheta_2^x \ \vartheta_3^x \\ \omega_3^y \ \vartheta_2^y \ \vartheta_1^y \ \vartheta_0 \ \vartheta_1^x \ \vartheta_2^x \ \omega_3^x \\ \vartheta_3^y \ \vartheta_2^y \ \vartheta_1^y \ \vartheta_0 \ \zeta_1^x \ \omega_2^x \\ \vartheta_3^y \ \vartheta_2^y \ \zeta_2^y \ \zeta_0^y \ \zeta_1^y \ \vartheta_0 \ \vartheta_1^x \ \vartheta_2^x \ \vartheta_3^x \\ \vartheta_3^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_1^y \ \vartheta_0 \ \zeta_1^x \ \omega_2^x \\ \vartheta_3^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_1^y \ \vartheta_0 \ \zeta_1^x \ \omega_2^x \\ \vartheta_3^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_1^y \ \vartheta_0 \ \zeta_1^x \ \omega_2^x \\ \vartheta_3^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_2^y \ \zeta_2^y \ \zeta_0^x \ \omega_1^x \\ \vartheta_3^y \ \vartheta_2^y \ \vartheta_2^y \ \vartheta_2^y \ \zeta_2^y \ \zeta_0^x \ \omega_1^x \\ 0 \ 0 \ 0 \ 0 \ \omega_0^x \end{bmatrix}$$

Here, we set the points

$$\begin{split} \Theta_{i} &= (\vartheta_{i}^{x}, \vartheta_{i}^{y}) = (h_{-i}, h_{i}) \\ \Omega_{i} &= (\omega_{i}^{x}, \omega_{i}^{y}) = (\vartheta_{i}^{x} + 2\sum_{j=i+1}^{q} \vartheta_{j}^{x}, \vartheta_{i}^{y} + 2\sum_{j=i+1}^{q} \vartheta_{j}^{y}) \\ N_{i} &= (\nu_{i}^{x}, \nu_{i}^{y}) = (h_{-i} - h_{i}, h_{i} - h_{-i}) = (\vartheta_{i}^{x} - \vartheta_{i}^{Sx}, \vartheta_{i}^{y} - \vartheta_{i}^{Sy}) \\ Z_{0} &= (\zeta_{0}^{x}, \zeta_{0}^{y}) = (h_{0} - h_{-2}, h_{0} - h_{2}) = (\vartheta_{0}^{x} - \vartheta_{2}^{x}, \vartheta_{0}^{y} - \vartheta_{2}^{y}) \\ Z_{1} &= (\zeta_{1}^{x}, \zeta_{1}^{y}) = (h_{-1} - h_{-3}, h_{1} - h_{3}) = (\vartheta_{1}^{x} - \vartheta_{3}^{x}, \vartheta_{1}^{y} - \vartheta_{3}^{y}) \\ Z_{2} &= (\zeta_{2}^{x}, \zeta_{2}^{y}) = (h_{-1} - h_{3}, h_{1} - h_{-3}) = (\vartheta_{1}^{x} - \vartheta_{3}^{Sx}, \vartheta_{1}^{y} - \vartheta_{3}^{Sy}) \end{split}$$

Geometrical idea of the proof - 2D

We simply observe that if we consider in the 4-dimensional space a point $R = (R_x, R_y, R_z, R_w)$, its optimal approximation Q^* among the points $Q = (Q_x, Q_y, Q_z, Q_w)$ belonging to the line \mathcal{L}

$$\begin{cases} x = t \\ y = t \\ z = t \\ w = t \end{cases}$$

is obtained by minimizing the distance

$$\mathbf{d}^{2}(\mathcal{L}, R) = (t - R_{x})^{2} + (t - R_{y})^{2} + (t - R_{z})^{2} + (t - R_{w})^{2}$$

= $4t^{2} - 2t(R_{x} + R_{y} + R_{z} + R_{w}) + R_{x}^{2} + R_{y}^{2} + R_{z}^{2} + R_{w}^{2}$

This is a trinomial of the form $\alpha t^2 + \beta t + \gamma$, with $\alpha > 0$ and we find the minimum by using the formula for computing the abscissa of the vertex of a parabola

$$t^* = -\frac{\beta}{2\alpha} = \frac{R_x + R_y + R_z + R_w}{4}.$$

Hence the point Q^* is defined as $Q_x^* = Q_y^* = Q_z^* = Q_w^* = t^*$. The same holds true if we consider any swapped point R^S , not unique but depending on the permutation at hand, since they share the same distance, i.e. $d(R, Q^*) = d(R^S, Q^*)$. Again, thanks to the linearity of obtained expression, this result can be extended also in the case of any linear combination of coordinates.

Iterative regularization methods

Van Cittert method $x_k = x_{k-1} + \tau(b - Ax_{k-1})$

Landweber method $x_k = x_{k-1} + \tau A^H (b - A x_{k-1})$

Steepest descent method

$$x_k = x_{k-1} + \tau_{k-1} A^H (b - A x_{k-1})$$

 $\tau_{k-1} = \|r_{k-1}\|_2^2 / \|Ar_{k-1}\|_2^2$, with $r_{k-1} = A^H (b - A x_{k-1})$

Lucy-Richardson method (LR) $x_k = x_{k-1} \cdot A^H \left(\frac{b}{Ax_{k-1}}\right)$

Image Space Reconstruction Algorithm (ISRA)

 $x_k = x_{k-1} \cdot \left(\frac{A^H b}{A^H A x_{k-1}}\right)$

The idea

All the algorithms presented base the update of the iteration on the "key" quantities

$$b - Ax_{k-1}$$
 or $\frac{b}{Ax_{k-1}}$,

which both give information on the distance between the blurred data b and the blurred iteration Ax_{k-1} .

 A^H can be seen as a *reblurring* operator, whose role is basically to help the method to manage the noise.

Our idea is to pick a new matrix Z, which will replace A^H .

We notice that in principle one can think to choose Z as another operator, not necessarily related to a blurring process.

Z variant

Z-Landweber method $x_k = x_{k-1} + \tau Z(b - Ax_{k-1})$

 $\begin{aligned} & \mathbf{Z} \text{-Steepest descent method} \\ & x_k = x_{k-1} + \tau_{k-1} \mathbf{Z} (b - A x_{k-1}) \\ & \tau_{k-1} = \frac{r_{k-1}^H r_{k-1}}{r_{k-1}^H \mathbf{Z} A r_{k-1}}, \text{ with } r_{k-1} = \mathbf{Z} (b - A x_{k-1}) \end{aligned}$

$$Z-LR$$
$$x_k = x_{k-1} \cdot Z\left(\frac{b}{Ax_{k-1}}\right)$$

 $\frac{Z}{x_k} = x_{k-1} \cdot \left(\frac{Zb}{ZAx_{k-1}}\right)$

Link with preconditioning

The conventional preconditioned system is the following $DA^{H}Ax = DA^{H}b,$

where D is the preconditioner, whose role is to suitably approximate the (generalized) inverse of the normal matrix $A^H A$. The new strategy leads to the new preconditioned system

 $ZAx = Zb\,,$

whose aim is to allow iterative methods to become faster and more stable.

• p Low Pass Filter

$$d_{j} = \begin{cases} 0 & \text{if } |\lambda_{j}| < \zeta \\ 1/|\lambda_{j}|^{p} & \text{if } |\lambda_{j}| \ge \zeta \end{cases}$$

 $\bullet~p$ Hanke Nagy Plemmons Filter

$$d_{j} = \begin{cases} 1 & \text{if } |\lambda_{j}| < \zeta \\ 1/|\lambda_{j}|^{p} & \text{if } |\lambda_{j}| \ge \zeta \end{cases}$$

 $\bullet~p$ Tyrtyshnikov Yeremin Zamarashkin Filter

$$d_j = \begin{cases} 1/\zeta & \text{if } |\lambda_j| < \zeta \\ 1/|\lambda_j|^p & \text{if } |\lambda_j| \ge \zeta \end{cases}$$

• Tikhonov Filter

$$d_j = \frac{1}{\left|\lambda_j\right|^2 + \alpha}$$

By using each filter we can define the eigenvalues of Z as

$$z_j = \bar{\lambda}_j d_j$$

BCCB preconditioning: D vs Z

Reflective and Anti-Reflective BCs

RRE vs regularization parameter for Tikhonov filter (α) and T.Y.Z. filter (ζ).

For all filters Z variant shows an higher *stability*, and with this word we mean that iterative methods compute a good restoration also when regularization parameters ζ and α are very small.

A general Z algorithm

Called c_j the eigenvalues of the BCCB matrix associated with $(h_{PSF},$ 'periodic'), for any BCs, we can perform the next algorithm.

 $Z \leftarrow \text{Algorithm}(h_{PSF}, \text{BCs})$

- $\cdot \text{get } \{c_j\}_{j=1}^{n^2}$ by computing FFT of h_{PSF}
- \cdot get z_j by applying a filter to c_j
- · get w_{PSF} by computing IFFT of $\{z_j\}_{j=1}^{n^2}$
- generate Z from (w_{PSF}, BCs)

The algorithm is consistent, in fact if the filter is identity, i.e. there is no filtering, we have $Z = A^H$. Clearly an analogous algorithm can be applied to create the preconditioner D.

ν acceleration

The so-called ν -method is defined as follows

$$x_k = \mu_k x_{k-1} + (1 - \mu_k) x_{k-2} + \omega_k A^H (b - A x_{k-1}),$$

where the coefficients μ_k and ω_k are given by

$$\mu_k = 1 + \frac{(k-1)(2k-3)(2k+2\nu-1)}{(k+2\nu-1)(2k+4\nu-1)(2k+2\nu-3)},$$

$$\omega_k = \frac{4(2k+2\nu-1)(k+\nu-1)}{(k+2\nu-1)(2k+4\nu-1)},$$

for k > 1, and with $\mu_1 = 1$, $\omega_1 = 1$.

ν acceleration

We rewrite LR in this way

$$x_k = x_{k-1} + \left[x_{k-1} \cdot A^H \left(\frac{b}{Ax_{k-1}} \right) - x_{k-1} \right],$$

whence we have

$$\begin{aligned} x_k &= \mu_k x_{k-1} + (1 - \mu_k) x_{k-2} + \omega_k \left[x_{k-1} \cdot A^H \left(\frac{b}{A x_{k-1}} \right) - x_{k-1} \right] \\ &= (\mu_k - \omega_k) x_{k-1} + (1 - \mu_k) x_{k-2} + \omega_k \left[x_{k-1} \cdot A^H \left(\frac{b}{A x_{k-1}} \right) \right] \end{aligned}$$

An analogous formula holds for ISRA

$$x_{k} = (\mu_{k} - \omega_{k})x_{k-1} + (1 - \mu_{k})x_{k-2} + \omega_{k} \left[x_{k-1} \cdot \left(\frac{A^{H}b}{A^{H}Ax_{k-1}} \right) \right]$$

Automatic acceleration

The most popular acceleration technique, introduced in 1997 by Biggs and Andrews.

It is a form of vector extrapolation that predicts subsequent points based on previous points.

$$\begin{split} y_k &= x_k + \alpha_k (x_k - x_{k-1}), \\ \alpha_k &= \frac{(g_{k-1})^T g_{k-2}}{(g_{k-2})^T g_{k-2}}, \\ g_{k-1} &= x_k - y_{k-1}, \\ g_{k-2} &= x_{k-1} - y_{k-2}, \\ x_{k+1} &= \text{it.method}(y_k), \end{split}$$

where $\alpha_1 = 0, \ \alpha_2 = 0, \ 0 \le \alpha_k \le 1, \ \forall k$.

Numerical results

of classical LR an	d ISRA	-		time of classical LR and ISRA							
	Time (s)	RRE	IT		Time (s)	RRE	IT				
LR	266.1	0.3484	2128	LR	57.6	0.0798	484				
ISRA	242.2	0.3451	1926	ISRA	74.5	0.0770	605				

Table 2 Cameraman test: best RRE with relative IT and computation

 Table 1
 Satellite test: best RRE with relative IT and computation time
 of classical L P and ISPA

Table 3 Satellite test: best RRE with relative IT, AF and computation time for accelerated methods

		Aut acc				v acc											
				$\nu = 0.7$				$\nu = 1$			$\nu = 2$						
		Time (s)	RRE	IT	AF	Time (s)	RRE	IT	AF	Time (s)	RRE	IT	AF	Time (s)	RRE	IT	AF
LR	\mathcal{P}	11.2	0.3646	83	10.1	5.9	0.3650	51	16.4	8.6	0.3526	69	20.4	11.4	0.3472	95	24.7
	\mathcal{Q}	15.2	0.3555	123	9.9	6.3	0.3601	55	18.2	8.6	0.3478	70	32.2	11.4	0.3471	95	25.0
ISRA	\mathcal{P}	9.3	0.3695	75	7.5	2.9	0.3840	24	15.0	7.9	0.3484	62	21.1	10.5	0.3443	89	23.8
	\mathcal{Q}	13.0	0.3560	109	8.4	5.8	0.3539	47	21.1	7.5	0.3458	65	24.9	10.9	0.3442	89	23.8

Table 4 Cameraman test: best RRE with relative IT, AF and computation time for accelerated methods

		Aut acc				v acc											
						v = 0.7				$\nu = 1$			v = 2				
		Time (s)	RRE	IT	AF	Time (s)	RRE	IT	AF	Time (s)	RRE	IT	AF	Time (s)	RRE	IT	AF
LR	\mathcal{P}	5.1	0.0836	41	5.2	3.3	0.0828	27	8.7	3.9	0.0814	31	9.3	5.0	0.0804	42	8.5
	\mathcal{Q}	5.8	0.0826	48	5.1	3.3	0.0824	27	9.3	3.9	0.0813	31	9.5	5.0	0.0804	42	8.5
ISRA	\mathcal{P}	5.9	0.0811	47	5.8	3.5	0.0802	29	10.4	4.5	0.0786	34	11.0	6.0	0.0775	48	9.8
	\mathcal{Q}	7.1	0.0791	58	6.0	3.6	0.0785	30	12.7	4.1	0.0779	35	12.1	6.0	0.0774	48	10.0

An alternative approach

Instead of considering A as a structured matrix (whose structure depends on BCs), an alternative approach consists in solving

$$Cx_{ext} = b_{ext}$$

where b_{ext} is the double-size extension of b, obtained following the BCs imposed, and C is the BCCB matrix associated with the double-size extension of the original PSF of the problem, obtained by a pad array of zeros. Clearly in this case the restored image will be the central part of x_{ext} corresponding to b.

Test 1: Gaussian blur

Exact BCs

Replicate BCs

Test 1: Gaussian blur

Test 2: motion blur

Exact BCs

Anti-Reflective BCs

Replicate BCs

Exact BCs

Replicate BCs

Test2: motion blur

