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Linear discrete inverse problems and gradient methods

Linear discrete inverse problem

b = Ax + n, A ∈ Rp×n, n ∈ Rp, x ∈ Rn, p ≥ n

A and b known data, A ill-conditioned, with singular values decaying to
zero, and full rank

n unknown, representing perturbations in the data

x unknown, representing the object to be recovered

Reformulation as linear least squares problem: minimize
x∈Rn

1

2
‖b− Ax‖2

Exact least squares solution: x† = A†b =
n∑

i=1

uT
i b

σi
vi = xtrue +

n∑
i=1

uT
i n

σi
vi

A = UΣV T, U = [u1, . . . , up] ∈ Rp×p, V = [v1, . . . , vn] ∈ Rn×n, Σ = diag(σ1, . . . , σn) ∈ Rp×n

useless, because the noise is amplified!
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Linear discrete inverse problems and gradient methods

Filter factors and iterative regularization

Regularization by filter factors: xreg =
n∑

i=1

φi
uT

i b

σi
vi

choose φi ≈ 1 to preserve the components of the solution corresponding to
large σi ’s, and φi ≈ 0 to filter out the components corresponding to small σi ’s

Iterative regularization methods, with a suitable early stop, can provide useful
regularized solutions xreg

Widely investigated classical iterative methods (see, e.g., [Hanke ’95; Engl, Hanke &

Neubauer ’96; Nagy & Palmer ’05]):

Landweber and Steepest Descent (SD): very slow but “stable” convergence,
rarely used in practice unless they are coupled with ad hoc preconditioners

CG (CGLS, LSQR): fast in reducing the error, but too sensitive to stopping
criteria (an early or late stopping may significantly deteriorate the solution)
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Linear discrete inverse problems and gradient methods

Gradient methods for convex quadratic problems

General framework

choose x0 ∈ Rn; k = 0
while (not stop cond) do

gk = Qx− c
compute a suitable steplength αk

xk+1 = xk − αkgk

k = k + 1
end while

QP: minimize
x∈Rn

f (x) ≡ 1

2
xTQx− cTx

old origins [Cauchy 1847; Akaike 1959;

Forsythe 1968]

long considered bad and ineffective
because of slow convergence rate and
oscillatory behaviour

Starting from [Barzilai & Borwein ’88], several more efficient gradient methods have
been developed, with steplengths related to Hessian spectral properties

[Friedlander, Mart́ınez, Molina & Raydan ’99; Dai & Yuan ’03, ’05; Fletcher ’05, ’12; Dai, Hager,
Schittowski & Zhang ’06; Yuan ’06, ’08; Frassoldati, Zanni & Zanghirati ’08; De Asmundis, dS,
Riccio & Toraldo ’13; De Asmundis, dS, Hager, Toraldo & Zhang ’14; Gonzaga & Schneider ’15]

⇒ interest in the use of the new gradient methods as regularization methods
[Ascher, van den Doel, Huang & Svaiter ’09; Cornelio, Porta, Prato & Zanni ’13; De Asmundis,
dS & Landi ’16]
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Linear discrete inverse problems and gradient methods

Analysis of gradient methods (for linear least squares)

gk = AT (Axk − b), k = 0, 1, 2, . . .

Write gk in terms of the SVD of A: if g0 =
∑n

i=1 µ
0
i vi , then

gk =
n∑

i=1

µk
i vi , µk

i = µ0
i

k∏
j=0

(1− αjσ
2
i )

if at the k-th iteration µk
i = 0 for some i , then µl

i = 0 for l > k

µk
i = 0 iff µ0

i = 0 or αj = 1/σ2
i for some j ≤ k

αk ≈
1

σ2
i

=⇒


|µk+1

i | << |µk
i |

|µk+1
r | < |µk

r | if r > i

|µk+1
r | > |µk

r | if r < i and λr > 2σ2
i

Non-restrictive assumptions: σ1 > σ2 > · · · > σn, µ0
1 6= 0, µ0

n 6= 0
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Recent spectral gradient methods for QP: SDA and SDC

A framework for building fast gradient methods

A new steplength selection rule

αk =

{
αSD

k if mod(k , h + m) < h

ᾱs otherwise, with s = max{i ≤ k : mod(i , h + m) = h}

h ≥ 2

αSD
k classical (Cauchy) SD steplength

ᾱs “special” steplength with spectral properties

In other words: make h consecutive exact line searches and then compute a
different steplength, to be kept constant and applied in m consecutive gradient
iterations

Daniela di Serafino (II Univ. Naples) Regulariz. properties of gradient methods PING Workshop, April 6, 2016 6 / 24



Recent spectral gradient methods for QP: SDA and SDC

SDA method [De Asmundis, dS, Riccio & Toraldo ’13]

Set ᾱs = α̃s , where

α̃s =

(
1

αSD
s−1

+
1

αSD
s

)−1

Let {xk} be the sequence of iterates generated by the SD method applied to the
least squares problem, starting from any point x0. Then

lim
k→∞

α̃k =
1

σ2
1 + σ2

n

.

SDA (SD with Alignment) combines

the tendency of SD to choose its search direction in span{v1, vn}
the tendency of the gradient method with αk = 1/(σ2

1 + σ2
n) to align the

search direction with vn,

R-linear conv., but significant improvement of practical convergence speed over SD
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Recent spectral gradient methods for QP: SDA and SDC

SDC method [De Asmundis, dS, Hager, Toraldo & Zhang ’14]

Set ᾱs equal to the Yuan steplength [Yuan ’06]

αY
s = 2

√√√√( 1

αSD
s−1

− 1

αSD
s

)2

+ 4
‖gs‖2(

αSD
s−1‖gs−1‖

)2 +
1

αSD
s−1

+
1

αSD
s

−1

Let {xk} be the sequence generated by the SD method applied to the least
squares problem, starting from any point x0. Then

lim
k→∞

αY
k =

1

σ2
1

.

SDC (SD with Constant – Yuan – steps)

uses a finite sequence of Cauchy steps in order to force the search in span{v1, vn}
and to get a suitable approximation of 1/σ2

1

applies this approximation in multiple steps in order to drive toward zero the
component of the gradient along v1

R-linear convergence, but significant improvement of practical convergence speed over SD
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Recent spectral gradient methods for QP: SDA and SDC

Some remarks

If σ1 � σn, then 1/(σ2
1 + σ2

n) ≈ 1/σ2
1 and SDA fosters the elimination of the

component of gk corresponding to σ1

In the ideal case where the component of gk along v1 is completely removed,
the problem size decreases by 1, and SDA and SDC tend to drive toward zero
the component of gk along v2. The same reasoning applies to vi for i > 2

In general SDA and SDC are non-monotone. However,

I for small values of m, such as m = 2, 3, 4, SDA and SDC show
monotonicity in practice if h is sufficiently large

I when very low accuracy is required, as in the regularization of inverse
ill-posed problems, h is not required to be “too large” (h = 2, 3 and
m = 2 is a good combination)
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Regularization properties of SDA and SDC

Filter factors of SDA and SDC [De Asmundis, dS & Landi ’16]

Filter factors of gradient methods

xk+1 =
n∑

i=1

(
1−

k∏
r=0

(
1− αrσ

2
i

))
︸ ︷︷ ︸

φk+1
i

uT
i b

σi
vi , x0 = 0

The better αr approximates 1/σ2
i for some r , the closer φk+1

i will be to 1;
multiple values of αr close to 1/σ2

i push φk+1
i to quickly go toward 1

1/αr � σ2
i ⇒ φk

i ≈ 0

⇒ the tendency of SDA and SDC to push toward zero the components of the

gradient, according to the decreasing order of the singular values, translates into

the approximation of the most significant components of the solution

Daniela di Serafino (II Univ. Naples) Regulariz. properties of gradient methods PING Workshop, April 6, 2016 10 / 24



Regularization properties of SDA and SDC

Comparison of filter factors
heat problem from Regularization Tools [Hansen ’94], size(A) = 64×64, cond(A) ≈ 1028,
Gaussian noise, noise level 0.01, SDA/SDC with h = 3 and m = 2
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Regularization properties of SDA and SDC

Comparison of filter factors (cont’d)

and relative errors
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Regularization properties of SDA and SDC
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Regularization properties of SDA and SDC

Experiments on image restoration problems: paralleltomo
parallel-beam tomography – AIR Tools [Hansen & Saxild-Hansen ’12]

img size = 50× 50, 36 angles (0◦ − 179◦), 75 parallel rays, cond(A) ≈ 1015, h = 3,m = 2
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Regularization properties of SDA and SDC

Experiments on image restoration problems: peppers
image deblurring problem, image size = 256× 256

Gaussian PSF, noise level nl = 0.01, cond(A) ≈ 1018, h = 3,m = 2
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Extension to bound-constrained QP

Extending SDA and SDC to bound-constrained problems

BCQP: minimize f (x) =
1

2
xTQx− cTx

s. t. x ∈ Ω, Ω = {x : l ≤ x ≤ u}

Q ∈ Rn×n symmetric (positive definite), l ∈ {R ∪ {−∞}}n , u ∈ {R ∪ {+∞}}n

General framework

x0 ∈ Rn; k = 0
while (not stop cond) do

gk = Qxk − c
compute a suitable steplength αk

xk+1 = PΩ(xk − αkgk )
k = k + 1

end while

Gradient Projection (GP) methods
[Goldstein, 1964; Levitin & Polyak,

1966; Calamai & Moré, 1987]

PΩ(x) = argmin{‖x − z‖ : z ∈ Ω}

The spectral properties of SDA and SDC are not preserved!
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Extension to bound-constrained QP

Two-phase GP algorithm: basics
x, x∗ ∈ Ω

active set at x: A(x) = {i : xi = li opp. xi = ui}

projected gradient at x: (∇Ωf (x))i =


∂fi (x), xi ∈ (li , ui )
min{∂fi (x), 0}, xi = li
max{∂fi (x), 0}, xi = ui

binding set at x: B(x) = {i : (xi = li and ∂fi (x) ≥ 0) or (xi = ui e ∂fi (x) ≤ 0)}

x∗ nondegenerate stationary point: ∂fi (x
∗) 6= 0 ∀i ∈ A(x∗)

Identification of the active constraints at the solution [Calamai & Moré, 1987]:
if {xk} converges to nondegenerate x∗ ∈ Ω and {‖∇Ωf (xk )‖} converges to 0, then
A(xk ) = A(x∗) for all sufficiently large k

Basic idea (as in [Moré & Toraldo, 1991]):

use a GP method to select a “candidate” active set

use SDA/SDC to explore the face of Ω identified by GP (unconstr. subprob.)
=⇒ “preserve” the spectral properties of the new gradient methods
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min{∂fi (x), 0}, xi = li
max{∂fi (x), 0}, xi = ui

binding set at x: B(x) = {i : (xi = li and ∂fi (x) ≥ 0) or (xi = ui e ∂fi (x) ≤ 0)}

x∗ nondegenerate stationary point: ∂fi (x
∗) 6= 0 ∀i ∈ A(x∗)

Identification of the active constraints at the solution [Calamai & Moré, 1987]:
if {xk} converges to nondegenerate x∗ ∈ Ω and {‖∇Ωf (xk )‖} converges to 0, then
A(xk ) = A(x∗) for all sufficiently large k

Basic idea (as in [Moré & Toraldo, 1991]):

use a GP method to select a “candidate” active set

use SDA/SDC to explore the face of Ω identified by GP (unconstr. subprob.)
=⇒ “preserve” the spectral properties of the new gradient methods
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Extension to bound-constrained QP

Two-phase GP algorithm [dS, Toraldo, Viola, work in progress]

Sketch of the algorithm

x0 ∈ Rn; k = 0

while (not stop cond) do

• apply a GP method to BCQP:

starting from y0 = xk , generate {yj} until cond1 is satisfied

• x̄k = yjk , where yjk = last yj

• apply SDA/SDC to min{fk (d) ≡ f (x̄k + d) : di = 0 ∀ i ∈ A(x̄k )}:
starting from d0 = 0, generate {dj} until cond2 is satisfied

• xk+1 = PΩ(x̄k +αkdrk ), with drk = last dk and αk computed by a projected search

• if A(xk+1) = B(xk+1), then continue with SDA/SDC

end while

cond1: A(yj ) = A(yj−1) or f (yj−1)− f (yj ) ≤ η2 max{f (yl−1)− f (yl ), 1 ≤ l < j }

cond2: fk (dj−1)− fk (dj ) ≤ η1 max{fk (dl−1)− fk (dl ), 1 ≤ l < j }
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Extension to bound-constrained QP

Two-phase GP algorithm: convergence

Projected search along −∇f (xk ) e dk :

generate a sequence of “trial” steplengths such that

α
(l+1)
k ∈

[
γ1α

(l)
k , γ2α

(l)
k

]
, 0 < γ1 < γ2 < 1, α

(0)
k > 0

αk = α
(r)
k satisfying an Armijo-like condition for f

Convergence:

if Q is spd and x∗ is the solution of BCQP, then any sequence {xk} generated by
the two-phase GP algorithm is such that

either xk = x∗ after a finite number of iterations

or xk → x∗
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Extension to bound-constrained QP

Some numerical experiments (Matlab)

random Q with n = 104 and varying κ(Q); bounds: −β ≤ xi ≤ β, β = 1, 5, 9

x0 = 0; stop crit. ‖∇Ωf (xk )‖ ≤ 10−5‖∇f (x0)‖; SDC with h = m = 4

# MAT-VET PRODUCTS
κ(Q) η1 η2 10% active constr. 50% active constr. 90% active constr.

GPSDC GPCG GPSDC GPCG GPSDC GPCG

103 0.10 0.10 433 289 400 306 304 135
103 0.25 0.10 472 592 572 351 393 130
103 0.10 0.25 406 260 345 323 165 130
103 0.25 0.25 560 336 377 286 198 130

106 0.10 0.10 3781 4002 2453 5922 451 1160
106 0.25 0.10 3555 4708 3652 3322 548 477
106 0.10 0.25 3635 4612 3004 8127 561 1092
106 0.25 0.25 3815 4687 2836 4740 565 538

109 0.10 0.10 3470 3445 5780 12521 528 869
109 0.25 0.10 2697 3949 6730 7593 472 570
109 0.10 0.25 3524 3121 5484 15629 559 783
109 0.25 0.25 3267 3008 5109 7378 605 635

GPSDC competitive with GPCG, especially on the most difficult problems

GPSDC less sensitive to η1 ed η2 than GPCG
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Possible applications in solving nonlinear inverse problems

Exploiting gradient methods for QP/BCQP in nonlinear
inverse problems – 1

(h, b) = data, x = parameters to be estimated,

m(x, h) = model function, r(x) = b−m(x, h) = error in model prediction

minimize
x∈Rn

f (x), f (x) =
1

2
‖r(x)‖2

2 =
m∑

i=1

r 2
i (x)

Regularized Gauss-Newton method

x0 ∈ Rn; k = 0
while (not stop cond) do

compute Jk Jacobian of r at xk

compute dk regularized solution of minimize
d∈Rn

‖Jkd + r(xk )‖2
2

compute αk by a suitable line search
xk+1 = xk + αkdk

k = k + 1
end while
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Possible applications in solving nonlinear inverse problems

Exploiting gradient methods for QP/BCQP in nonlinear
inverse problems – 1 (cont’d)

Compute a regularized solution of

minimize
d∈Rn

‖Jkd + r(xk )‖2
2

[Deidda, Fenu & Rodriguez, 2014]:

compute a TSVD solution (or a TGSVD one, in order to introduce a
regularization matrix)

Possible alternative:

use SDA/SDC to compute a regularized solution

I Less sensitive to the estimate of the noise norm
I Easy to use in a matrix-free regime
I Effective? Efficient?
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Possible applications in solving nonlinear inverse problems

Exploiting gradient methods for QP/BCQP in nonlinear
inverse problems – 2

minimize f (u) ≡ f fit(u) + λf reg (u)
s. t. u ≥ 0

f fit(u) = KL(Au,b) Kullback-Leibler divergence

f reg (u) = TV (u) or f reg (u) = ‖Wu‖1 (frame-based regularization)

Solve the problem by combining

Iteratively Reweighted Norm approach
[Wolke & Schwetlick, 1988; Rodriguex & Wohlberg, 2009]

Weighted Least Squares approximation of KL fidelity term
[Shen, Yin, Zhang, 2015]

[Work in progress (just started), with G. Landi]
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Possible applications in solving nonlinear inverse problems

Exploiting gradient methods for QP/BCQP in nonlinear
inverse problems – 2 (cont’d)

Algorithm (sketch)

u0 ∈ Rn; k = 0

while (not stop cond) do

1. compute f fit
k (u) quadratic approx of f fit(u) (using uk )

2. compute f reg
k (u) quadratic approx of f reg (u) (using uk )

3. compute uk+1 ≈ argminu≥0 f
fit

k (u) + λf reg
k (u)

4. k = k + 1

end while

1. Weighted Least Squares approximation

2. Iteratively Reweighted Norm approach

3. Two-phase GP algorithm
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Possible applications in solving nonlinear inverse problems

CAN WE EFFICIENTLY EXPLOIT

SPECTRAL GRADIENT METHODS

IN THE PING PROJECT?
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