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The model problem

Consider the solution of ill-posed equations
Tx =y, (1)

where T : X — ) is a linear operator between Hilbert spaces.

» T is a compact operator, the singular values of T decay
gradually to zero without a significant gap.

» Assume that problem (1) has a solution x of minimal norm.

Goal
Compute an approximation of x' starting from approximate data
y% € )), instead of the exact data y € ), with

Iy’ =yl <6, (2)

where § > 0 is the corresponding noise level.




Image deblurring problems

» T is doubly Toeplitz, large and severely ill-conditioned
(discretizzation of an integral equations of the first kind)

» y9 are known measured data (blurred and noisy image)
» £ is noise; ||£]| =0

— discrete ill-posed problems (Hansen, 90's)
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Regularization

» The singular values of T are large in the low frequencies,
decays rapidly to zero and are small in the high frequencies.

» The solution of Tx = y9 requires some sort of regularization:
x =TTy =xt + TT¢,

where || TT¢|| is large.




Tikhonov regularization

Balance the the data fitting and the “explosion” of the solution
min{[| T — ¥ | + ax|[2}

which is equivalent to
x=(T*T+al) ' Ty,

where o > 0 is a regularization parameter.




lterative regularization methods (semi-convergence)

» Classical iterative methods firstly reduce the algebraic error
into the low frequencies (well-conditioned subspace), when
they arrive to reduce the algebraic error into the high frequen-
cies then the restoration error increases because of the noise.

» The regularization parameter is the stopping iteration.
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Preconditioned regularization

Replace the original problem Tx = y° with
P 1Tx = P1y°

such that
1. inversion of P is cheap

2. P = T but not too much (T unbounded while P~! must be
bounded!)

Alert!
Preconditioners can be used to accelerate the convergence, but an

imprudent choice of preconditioner may spoil the achievable quality
of computed restorations.




Classical preconditioner

» Historically, the first attempt of this sort was by Hanke, Nagy,
and Plemmons (1993): In that work

P=C,

where C. is the optimal doubly circulant approximation of T,
with eigenvalues set to be one for frequencies above 1/e.
Very fast, but the choice of € is delicate and not robust.

» Subsequently, other regularizing preconditioners have been
suggested: Bertero and Piana (1997), Kilmer and O’Leary
(1999), Estatico (2002), Egger and Neubauer (2005), Brianzi,
Di Benedetto, and Estatico (2008).




Hybrid regularization

» Combine iterative and direct regularization (Bjorck, O'Leary,
Simmons, Nagy, Reichel, Novati, ...).

» Main idea:
1. Compute iteratively a Krylov subspace by Lanczos or Arnoldi.
2. At every iteration solve the projected Tikhonov problem in the

small size Krylov subspace.
> Usually few iterations, and so a small Krylov subspace, are
enough to compute a good approximation.
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Nonstationary iterated Tikhonov regularization

Given xg compute for n =0,1,2,...
Zo = (T*T + o) Ty, =y — Txp, (3a)

X+l = Xn + Zn- (3b)
This is some sort of regularized iterative refinement.

Choices of a,:

> a, =« >0, Vn, stationary.

» a, = aq” where @ > 0 and 0 < g < 1, geometric sequence
(fastest convergence), [Groetsch and Hanke, 1998].

T*T + al and TT* + «al could be expensive to invert!




The starting idea

The iterative refinement applied to the error equation Te, ~ r,
is correct up to noise, hence consider instead

Ce, ~ rp, (4)

possibly tolerating a slightly larger misfit.

(2
Approximate T by C and iterate
hy = (C°CHan) 1 C 1=y~ Txy,  (5)
Xnt1 = Xp+ hp. (6)

Preconditioner = P = (C*C + a,/)"*C*




Nonstationary preconditioning

Differences to previous preconditioners:

» gradual approximation of the optimal regularization parameter
» nonstationary scheme, not to be used in combination
with cGLS

» essentially as fast as nonstationary iterated Tikhonov
regularization

An hybrid regularization

Instead of projecting into a small size Krylov subspace, project the
error equation in a nearby space of the same size but where the
operator is diagonal (for image deblurring). The projected linear
system (the rhs r,) changes at every iteration.




Estimation of «,
Assumption:
[(C—=T)z|| < plIT2||, zexX, (7)

for some 0 < p < 1/2.

Adaptive choice of «,

Choose a, s.t. the (4) is solved up to a certain relative amount:

llra — Chall = qnllrall s (8)

where g, < 1, but not too small (g, > p+ (1 + p)d/||ral])-



The Algorithm (AIT)

Choose 7 = (14 2p)/(1 — 2p) and fix g € (2p, 1).
While ||ry|| > 79, let 7, = ||rs]| /6, and compute «, s.t.

[ra— Chnll = qnllrall, an = max{ q, 2p+(1+p)/7'n}‘ (92)
Then, update

hy = (C*C + apl) 1C*ry, (9b)

Xp+1 = Xp + hn7 fn+1 = }/5 - TXn-l—l . (9C)

Details

» The parameter g prevents that r, decreases too rapidly.

» The unique a, can be computed by Newton iteration.




Theoretical results [D., Hanke, IP 2013]

Theorem
The norm of the iteration error e, = x' — x,, decreases
monotonically as long as

HrnH < T < Hrn—1||’ 7 > 1 fixed.

Theorem
For exact data (6 = 0) the iterates x, converges to the solution of
Tx = y that is closest to xy in the norm of X.

Theorem
For noisy data (§ > 0), as § — 0, the approximation x° converges
to the solution of Tx = y that is closest to xy in the norm of X.




Extensions [Buccini, manuscript 2015]

» Projection into convex set €2:
Xn+1 = Pa(xn + hp).

> In the computation of h, by Tikhonov, replace | with L,
where L is a regularization operator (e.g., first derivative):

h, = (C*C—i—anL*L)_lC*rn,

under the assumption that L and C have the same basis of
eigenvectors.

» In both cases the previous convergence analysis can be
extended even if it is not straightforward (take care of

N(L)...)
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Boundary Conditions (BCs)
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The matrix C

Space invariant point spread function (PSF)

I

T has a doubly Toeplitz-like structure that carries the “correct”
boundary conditions.

» doubly circulant matrix C diagonalizable by FFT, that
corresponds to periodic BCs.

» The boundary conditions have a very local effect
T—-C=E+R, (10)

where E is of small norm and R of small rank.
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Synthesis approach

» Images have a sparse representation in the wavelet domain.

> Let W™ be a wavelet or tight-frame synthesis operator
(W*W = 1) and v the frame coefficients such that

x = W*v.

» The deblurring problem can be reformulated in terms of the
frame coefficients v as

. 1 . * 4112
min { vl + 5517 v = ang i | TW* = ).

(11)




Modified Linearized Bregman algorithm (MLBA)

» Denote by S, the soft-thresholding function

[Si(V)li = sgn(vi) max {|vj| — p, O} . (12)

» The MLBA proposed in [Cai, Osher, and Shen, SIIMS 2009]

n+l _ _n * 5 E ]
{ z zZ"+ WT*P(y° — TW*v"), (13)

vt =25, (2",

where 20 = 0 = 0.

» Choosing P = (TT* 4+ al)™! = X\ = 1 the iteration (13)
converges to the unique minimizer of (11).

» The authors of MLBA proposed to use P = (CC* + al)~ .

» If v = z" the first equation (inner iteration) of MLBA is
preconditioned Landweber.




AIT + Bregman splitting

» Replace preconditioned Landweber with AIT.

» Usual assumption
(C =Tl < pllTull, wveX.
» Further assumption
JCW* (v~ Su ()l < pb.  VveRS,  (18)

which is equivalent to consider the soft-threshold parameter
i = p(d) and such that p(6) — 0 as 6 — 0.




AIT + Bregman splitting — 2

Algorithm [Cai, D., Bianchi, Huang, 2016]

2 = 21 WCH(CC* + anl) " (y® — TW*v7),
vn+1 — Su(2n+1), (15)

where the parameter («,, stopping iteration, etc.) are fixed as

in AIT.

Theorem

For noisy data (§ > 0), as 6 — 0, the approximation x% converges
to the solution of Tx = y that is closest to xy in the norm of X.

If an estimation of the best « is available, we can fix o, = cvopy.




Numerical Results

>

>

>

W by linear B-spline.
PSNR = 20logq ”2 51 with X% the computed approximation.

=X
Best regularization parameter by hand for every method.

Compared methods

>

>

>

MLBA: iteration (13) by Cai, Osher, and Shen.

AlIT-Breg: our nonstationary iteration (15).

AIT-Breg—opt: our iteration (15) with a stationary a, = aopt
chosen by hand like in MLBA.

FA-MD, TV-MD: ADMM [Almeida, Figueiredo, IEEE 2013]
for Frame-based Analysis and Total Variation, respectively.

FTVd: extension of FTVd in [Wang et al. SIIMS 2008] to
deal with boundary artifacts [Bai et al., 2014].




Example 3 (Saturn)

v =1%, Zero BCs.

True image PSF Observed image



Restorations

Method PSNR  CPU time
AlIT—Breg 31.25 10.32
AIT-Breg—opt 31.49 16.56
MLBA 30.97 200.99
FA-MD 30.87 90.85
TV-MD 31.17 47.61
FTVd: 30.50 1.75

o\ 2

MLBA AlT-Breg FTVd



Example 4 (Boat)

v = 1%, Antireflective BCs.

True image PSF Observed image



Restorations

Method PSNR  CPU time
AlT-Breg  29.77  19.57
AlT-Breg—opt ~ 30.17 3.67
MLBA 2043 34.26
FA-MD 2061  15.95
TV-MD 2087  16.74
FTVd: 28.95 0.73

AlIT-Breg—opt

URI0,,
\~

RSIT,
Pt

(r{%
“RsRAv

K



Conclusions

» Under the assumption that an approximation C of T is
available, our new scheme turns out to be fast and stable.

» The choice of p reflect how much we trust in the previous
approximation (a too small p can be detected by a, or ||r,|]).

» Qur scheme does not require T*.
» Projection into a convex set can be added.
> It is possible to include a regularization matrix.

> It can be used as inner least-square iteration in nonlinear
methods.
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