Regularization preconditioners for frame-based deconvolution

MARCO DONATELLI

Dept. of Science and High Tecnology - U. Insubria (Italy)

Joint work with M. Hanke (U. Mainz), D. Bianchi (U. Insubria), Y. Cai, T. Z. Huang (UESTC, P. R. China)

PING - Inverse Problems in Geophysics - 2016

Outline

Ill-posed problems and iterative regularization

A nonstationary preconditioned iteration

Image deblurring

Combination with frame-based methods

Outline

Ill-posed problems and iterative regularization

A nonstationary preconditioned iteration

Image deblurring

Combination with frame-based methods

The model problem

Consider the solution of ill-posed equations

$$Tx = y, \qquad (1)$$

where $T : \mathcal{X} \to \mathcal{Y}$ is a linear operator between Hilbert spaces.

- ► *T* is a compact operator, the singular values of *T* decay gradually to zero without a significant gap.
- Assume that problem (1) has a solution x^{\dagger} of minimal norm.

Goal

Compute an approximation of x^{\dagger} starting from approximate data $y^{\delta} \in \mathcal{Y}$, instead of the exact data $y \in \mathcal{Y}$, with

$$\|y^{\delta} - y\| \leq \delta, \qquad (2)$$

where $\delta \geq 0$ is the corresponding noise level.

Image deblurring problems

- T is doubly Toeplitz, large and severely ill-conditioned (discretizzation of an integral equations of the first kind)
- y^{δ} are known measured data (blurred and noisy image)
- ξ is noise; $\|\xi\| = \delta$

 \rightarrow discrete ill-posed problems (Hansen, 90's)

Regularization

- ► The singular values of T are large in the low frequencies, decays rapidly to zero and are small in the high frequencies.
- The solution of $Tx = y^{\delta}$ requires some sort of regularization:

$$x = T^{\dagger} y^{\delta} = x^{\dagger} + T^{\dagger} \xi,$$

where $||T^{\dagger}\xi||$ is large.

Tikhonov regularization

Balance the the data fitting and the "explosion" of the solution

$$\min_{x} \{ \|Tx - y^{\delta}\|^2 + \alpha \|x\|^2 \}$$

which is equivalent to

$$x = (T^*T + \alpha I)^{-1}T^*y^{\delta},$$

where $\alpha > 0$ is a regularization parameter.

Iterative regularization methods (semi-convergence)

- Classical iterative methods firstly reduce the algebraic error into the low frequencies (well-conditioned subspace), when they arrive to reduce the algebraic error into the high frequencies then the restoration error increases because of the noise.
- ► The regularization parameter is the stopping iteration.

Preconditioned regularization

Replace the original problem $Tx = y^{\delta}$ with

$$P^{-1}Tx = P^{-1}y^{\delta}$$

such that

- 1. inversion of P is cheap
- 2. $P \approx T$ but not too much (T^{\dagger} unbounded while P^{-1} must be bounded!)

Alert!

Preconditioners can be used to accelerate the convergence, but an imprudent choice of preconditioner may spoil the achievable quality of computed restorations.

Classical preconditioner

Historically, the first attempt of this sort was by Hanke, Nagy, and Plemmons (1993): In that work

$$P = C_{\varepsilon}$$

where C_{ε} is the optimal doubly circulant approximation of T, with eigenvalues set to be one for frequencies above $1/\varepsilon$. Very fast, but the choice of ε is delicate and not robust.

 Subsequently, other regularizing preconditioners have been suggested: Bertero and Piana (1997), Kilmer and O'Leary (1999), Estatico (2002), Egger and Neubauer (2005), Brianzi, Di Benedetto, and Estatico (2008).

Hybrid regularization

- Combine iterative and direct regularization (Björck, O'Leary, Simmons, Nagy, Reichel, Novati, ...).
- Main idea:
 - 1. Compute iteratively a Krylov subspace by Lanczos or Arnoldi.
 - 2. At every iteration solve the projected Tikhonov problem in the small size Krylov subspace.
- Usually few iterations, and so a small Krylov subspace, are enough to compute a good approximation.

Ill-posed problems and iterative regularization

A nonstationary preconditioned iteration

Image deblurring

Combination with frame-based methods

Nonstationary iterated Tikhonov regularization

Given x_0 compute for n = 0, 1, 2, ...

$$z_n = (T^*T + \alpha_n I)^{-1} T^* r_n, \qquad r_n = y^{\delta} - T x_n,$$
 (3a)

$$x_{n+1} = x_n + z_n$$
. (3b)

This is some sort of regularized iterative refinement.

Choices of α_n :

- $\alpha_n = \alpha > 0, \forall n$, stationary.

 $T^*T + \alpha I$ and $TT^* + \alpha I$ could be expensive to invert!

The starting idea

The iterative refinement applied to the error equation $Te_n \approx r_n$ is correct up to noise, hence consider instead

$$Ce_n \approx r_n$$
, (4)

possibly tolerating a slightly larger misfit.

∜

Approximate T by C and iterate

$$h_n = (C^*C + \alpha_n I)^{-1}C^*r_n, \qquad r_n = y^{\delta} - Tx_n,$$
 (5)

$$x_{n+1} = x_n + h_n$$
. (6)

Preconditioner $\Rightarrow P = (C^*C + \alpha_n I)^{-1}C^*$

Nonstationary preconditioning

Differences to previous preconditioners:

- gradual approximation of the optimal regularization parameter
- nonstationary scheme, not to be used in combination with CGLS
- essentially as fast as nonstationary iterated Tikhonov regularization

An hybrid regularization

Instead of projecting into a small size Krylov subspace, project the error equation in a nearby space of the same size but where the operator is diagonal (for image deblurring). The projected linear system (the rhs r_n) changes at every iteration.

Estimation of α_n

Assumption:

$$\|(C-T)z\| \leq \rho \|Tz\|, \qquad z \in \mathcal{X},$$
(7)

for some 0 $< \rho < 1/2.$

Adaptive choice of α_n

Choose α_n s.t. the (4) is solved up to a certain relative amount:

$$||r_n - Ch_n|| = q_n ||r_n||,$$
 (8)

where $q_n < 1$, but not too small $(q_n > \rho + (1 + \rho)\delta/||r_n||)$.

The Algorithm (AIT)

Choose
$$\tau = (1 + 2\rho)/(1 - 2\rho)$$
 and fix $q \in (2\rho, 1)$.
While $||r_n|| > \tau \delta$, let $\tau_n = ||r_n||/\delta$, and compute α_n s.t.

$$||r_n - Ch_n|| = q_n ||r_n||, \qquad q_n = \max\{ q, 2\rho + (1+\rho)/\tau_n \}.$$
 (9a)

Then, update

$$h_n = (C^*C + \alpha_n I)^{-1} C^* r_n, \qquad (9b)$$

$$x_{n+1} = x_n + h_n$$
, $r_{n+1} = y^{\delta} - Tx_{n+1}$. (9c)

Details

- The parameter q prevents that r_n decreases too rapidly.
- The unique α_n can be computed by Newton iteration.

Theoretical results [D., Hanke, IP 2013]

Theorem

The norm of the iteration error $e_n = x^{\dagger} - x_n$ decreases monotonically as long as

$$\|r_n\| \le \tau \delta \le \|r_{n-1}\|, \qquad \tau > 1$$
 fixed.

Theorem

For exact data ($\delta = 0$) the iterates x_n converges to the solution of Tx = y that is closest to x_0 in the norm of \mathcal{X} .

Theorem

For noisy data ($\delta > 0$), as $\delta \to 0$, the approximation x^{δ} converges to the solution of Tx = y that is closest to x_0 in the norm of \mathcal{X} .

Extensions [Buccini, manuscript 2015]

Projection into convex set Ω:

$$x_{n+1}=P_{\Omega}(x_n+h_n).$$

In the computation of h_n by Tikhonov, replace I with L, where L is a regularization operator (e.g., first derivative):

$$h_n = (C^*C + \alpha_n L^*L)^{-1} C^* r_n,$$

under the assumption that L and C have the same basis of eigenvectors.

► In both cases the previous convergence analysis can be extended even if it is not straightforward (take care of N(L)...)

Outline

Ill-posed problems and iterative regularization

A nonstationary preconditioned iteration

Image deblurring

Combination with frame-based methods

Boundary Conditions (BCs)

zero Dirichlet

Periodic

Reflective

Antireflective

The matrix C

Space invariant point spread function (PSF) \downarrow

T has a doubly Toeplitz-like structure that carries the "correct" boundary conditions.

- doubly circulant matrix C diagonalizable by FFT, that corresponds to periodic BCs.
- The boundary conditions have a very local effect

$$T-C = E+R, \qquad (10)$$

where E is of small norm and R of small rank.

Outline

Ill-posed problems and iterative regularization

A nonstationary preconditioned iteration

Image deblurring

Combination with frame-based methods

Synthesis approach

- Images have a sparse representation in the wavelet domain.
- Let W^{*} be a wavelet or tight-frame synthesis operator (W^{*}W = I) and v the frame coefficients such that

$$x = W^* v.$$

The deblurring problem can be reformulated in terms of the frame coefficients v as

$$\min_{v \in \mathbb{R}^s} \left\{ \mu \|v\|_1 + \frac{1}{2\lambda} \|v\|^2 : v = \arg\min_{v \in \mathbb{R}^s} \|TW^*v - y^{\delta}\|_P^2 \right\}.$$
(11)

Modified Linearized Bregman algorithm (MLBA)

• Denote by S_{μ} the soft-thresholding function

$$[S_{\mu}(v)]_{i} = \operatorname{sgn}(v_{i}) \max \{ |v_{i}| - \mu, 0 \}.$$
 (12)

► The MLBA proposed in [Cai, Osher, and Shen, SIIMS 2009]

$$\begin{cases} z^{n+1} = z^n + WT^* P(y^{\delta} - TW^* v^n), \\ v^{n+1} = \lambda S_{\mu}(z^{n+1}), \end{cases}$$
(13)

where $z^0 = v^0 = 0$.

- Choosing P = (TT^{*} + αI)⁻¹ ⇒ λ = 1 the iteration (13) converges to the unique minimizer of (11).
- The authors of MLBA proposed to use $P = (CC^* + \alpha I)^{-1}$.
- ► If vⁿ = zⁿ the first equation (inner iteration) of MLBA is preconditioned Landweber.

AIT + Bregman splitting

- ► Replace preconditioned Landweber with AIT.
- Usual assumption

$$\|(C-T)u\| \leq \rho \|Tu\|, \qquad u \in \mathcal{X}.$$

Further assumption

$$\|CW^*(v - S_\mu(v))\| \le \rho \delta, \qquad \forall v \in \mathbb{R}^s,$$
 (14)

which is equivalent to consider the soft-threshold parameter $\mu = \mu(\delta)$ and such that $\mu(\delta) \to 0$ as $\delta \to 0$.

AIT + Bregman splitting - 2

Algorithm [Cai, D., Bianchi, Huang, 2016]

$$\begin{cases} z^{n+1} = z^n + WC^* (CC^* + \alpha_n I)^{-1} (y^{\delta} - TW^* v^n), \\ v^{n+1} = S_{\mu} (z^{n+1}), \end{cases}$$
(15)

where the parameter (α_n , stopping iteration, etc.) are fixed as in AIT.

Theorem

For noisy data ($\delta > 0$), as $\delta \to 0$, the approximation x^{δ} converges to the solution of Tx = y that is closest to x_0 in the norm of \mathcal{X} .

If an estimation of the best α is available, we can fix $\alpha_n = \alpha_{opt}$.

Numerical Results

- ▶ W by linear B-spline.
- ▶ $PSNR = 20 \log_{10} \frac{255 \cdot n}{\|x \tilde{x}\|}$, with \tilde{x} the computed approximation.
- Best regularization parameter by hand for every method.

Compared methods

- ▶ MLBA: iteration (13) by Cai, Osher, and Shen.
- ► AIT-Breg: our nonstationary iteration (15).
- ► AIT-Breg-opt: our iteration (15) with a stationary α_n = α_{opt} chosen by hand like in MLBA.
- FA-MD, TV-MD: ADMM [Almeida, Figueiredo, IEEE 2013] for Frame-based Analysis and Total Variation, respectively.
- FTVd: extension of FTVd in [Wang et al. SIIMS 2008] to deal with boundary artifacts [Bai et al., 2014].

Example 3 (Saturn)

$$\nu = 1$$
 %, Zero BCs.

True image

PSF

Observed image

Restorations

Method	PSNR	CPU time
AIT–Breg	31.25	10.32
AIT–Breg–opt	31.49	16.56
MLBA	30.97	200.99
FA-MD	30.87	90.85
TV–MD	31.17	47.61
FTVd:	30.50	1.75

Example 4 (Boat)

 $\nu=1$ %, Antireflective BCs.

True image

PSF

Observed image

Restorations

Method	PSNR	CPU time
AIT–Breg	29.77	19.57
AIT–Breg–opt	30.17	3.67
MLBA	29.43	34.26
FA-MD	29.61	15.95
TV-MD	29.87	16.74
FTVd:	28.95	0.73

MLBA

AIT-Breg-opt

TV-MD

Conclusions

- Under the assumption that an approximation C of T is available, our new scheme turns out to be fast and stable.
- ► The choice of ρ reflect how much we trust in the previous approximation (a too small ρ can be detected by α_n or ||r_n||).
- Our scheme does not require T^* .
- Projection into a convex set can be added.
- It is possible to include a regularization matrix.
- It can be used as inner least-square iteration in nonlinear methods.

References

M. Donatelli, M. Hanke

Fast nonstationary preconditioned iterative methods for ill-posed problems, with application to image deblurring, Inverse Problems, 29 (2013) 095008.

Y. Cai, M. Donatelli, D. Bianchi, T. Z. Huang Regularization preconditioners for frame-based image deblurring with reduced boundary artifacts, SIAM J. Sci. Comput., 38–1 (2016), pp. B164–B189.

