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The model problem

Consider the solution of ill-posed equations

Tx = y , (1)

where T : X → Y is a linear operator between Hilbert spaces.

◮ T is a compact operator, the singular values of T decay
gradually to zero without a significant gap.

◮ Assume that problem (1) has a solution x† of minimal norm.

Goal
Compute an approximation of x† starting from approximate data
y δ ∈ Y, instead of the exact data y ∈ Y, with

‖y δ − y‖ ≤ δ , (2)

where δ ≥ 0 is the corresponding noise level.



Image deblurring problems

y δ = T ∗ x + ξ

◮ T is doubly Toeplitz, large and severely ill-conditioned
(discretizzation of an integral equations of the first kind)

◮ y δ are known measured data (blurred and noisy image)

◮ ξ is noise; ‖ξ‖ = δ

−→ discrete ill-posed problems (Hansen, 90’s)



Regularization

◮ The singular values of T are large in the low frequencies,
decays rapidly to zero and are small in the high frequencies.

◮ The solution of Tx = y δ requires some sort of regularization:

x =T †y δ = x† + T †ξ,

where ‖T †ξ‖ is large.

x† =⇒ x = T †y δ



Tikhonov regularization

Balance the the data fitting and the “explosion” of the solution

min
x
{‖Tx − y δ‖2 + α‖x‖2}

which is equivalent to

x = (T ∗T + αI )−1T ∗y δ,

where α > 0 is a regularization parameter.



Iterative regularization methods (semi-convergence)

◮ Classical iterative methods firstly reduce the algebraic error
into the low frequencies (well-conditioned subspace), when
they arrive to reduce the algebraic error into the high frequen-
cies then the restoration error increases because of the noise.

◮ The regularization parameter is the stopping iteration.
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Preconditioned regularization

Replace the original problem Tx = y δ with

P−1Tx = P−1y δ

such that

1. inversion of P is cheap

2. P ≈ T but not too much (T † unbounded while P−1 must be
bounded!)

Alert!
Preconditioners can be used to accelerate the convergence, but an
imprudent choice of preconditioner may spoil the achievable quality
of computed restorations.



Classical preconditioner

◮ Historically, the first attempt of this sort was by Hanke, Nagy,
and Plemmons (1993): In that work

P = Cε,

where Cε is the optimal doubly circulant approximation of T ,
with eigenvalues set to be one for frequencies above 1/ε.
Very fast, but the choice of ε is delicate and not robust.

◮ Subsequently, other regularizing preconditioners have been
suggested: Bertero and Piana (1997), Kilmer and O’Leary
(1999), Estatico (2002), Egger and Neubauer (2005), Brianzi,
Di Benedetto, and Estatico (2008).



Hybrid regularization

◮ Combine iterative and direct regularization (Björck, O’Leary,
Simmons, Nagy, Reichel, Novati, . . . ).

◮ Main idea:

1. Compute iteratively a Krylov subspace by Lanczos or Arnoldi.
2. At every iteration solve the projected Tikhonov problem in the

small size Krylov subspace.

◮ Usually few iterations, and so a small Krylov subspace, are
enough to compute a good approximation.
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Nonstationary iterated Tikhonov regularization

Given x0 compute for n = 0, 1, 2, . . .

zn = (T ∗T + αnI )
−1T ∗rn , rn = y δ − Txn , (3a)

xn+1 = xn + zn . (3b)

This is some sort of regularized iterative refinement.

Choices of αn:

◮ αn = α > 0, ∀n, stationary.

◮ αn = αqn where α > 0 and 0 < q ≤ 1, geometric sequence
(fastest convergence), [Groetsch and Hanke, 1998].

T ∗T + αI and TT ∗ + αI could be expensive to invert!



The starting idea

The iterative refinement applied to the error equation Ten ≈ rn
is correct up to noise, hence consider instead

Cen ≈ rn , (4)

possibly tolerating a slightly larger misfit.

⇓

Approximate T by C and iterate

hn = (C ∗C + αnI )
−1C ∗rn , rn = y δ − Txn , (5)

xn+1 = xn + hn . (6)

Preconditioner ⇒ P = (C ∗C + αnI )
−1C ∗



Nonstationary preconditioning

Differences to previous preconditioners:

◮ gradual approximation of the optimal regularization parameter

◮ nonstationary scheme, not to be used in combination
with cgls

◮ essentially as fast as nonstationary iterated Tikhonov
regularization

An hybrid regularization

Instead of projecting into a small size Krylov subspace, project the
error equation in a nearby space of the same size but where the
operator is diagonal (for image deblurring). The projected linear
system (the rhs rn) changes at every iteration.



Estimation of αn

Assumption:

‖(C − T )z‖ ≤ ρ ‖Tz‖ , z ∈ X , (7)

for some 0 < ρ < 1/2.

Adaptive choice of αn

Choose αn s.t. the (4) is solved up to a certain relative amount:

‖rn − Chn‖ = qn‖rn‖ , (8)

where qn < 1, but not too small (qn > ρ+ (1 + ρ)δ/‖rn‖).



The Algorithm (AIT)

Choose τ = (1 + 2ρ)/(1 − 2ρ) and fix q ∈ (2ρ, 1).
While ‖rn‖ > τδ, let τn = ‖rn‖/δ, and compute αn s.t.

‖rn−Chn‖ = qn‖rn‖ , qn = max
{

q, 2ρ+(1+ρ)/τn
}

. (9a)

Then, update
hn = (C ∗C + αnI )

−1C ∗rn , (9b)

xn+1 = xn + hn , rn+1 = y δ − Txn+1 . (9c)

Details

◮ The parameter q prevents that rn decreases too rapidly.

◮ The unique αn can be computed by Newton iteration.



Theoretical results [D., Hanke, IP 2013]

Theorem
The norm of the iteration error en = x† − xn decreases
monotonically as long as

‖rn‖ ≤ τδ ≤ ‖rn−1‖, τ > 1 fixed.

Theorem
For exact data (δ = 0) the iterates xn converges to the solution of
Tx = y that is closest to x0 in the norm of X .

Theorem
For noisy data (δ > 0), as δ → 0, the approximation xδ converges
to the solution of Tx = y that is closest to x0 in the norm of X .



Extensions [Buccini, manuscript 2015]

◮ Projection into convex set Ω:

xn+1 = PΩ(xn + hn).

◮ In the computation of hn by Tikhonov, replace I with L,
where L is a regularization operator (e.g., first derivative):

hn = (C ∗C + αnL
∗L)−1C ∗rn ,

under the assumption that L and C have the same basis of
eigenvectors.

◮ In both cases the previous convergence analysis can be
extended even if it is not straightforward (take care of
N (L) . . . )
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Boundary Conditions (BCs)

zero Dirichlet Periodic

Reflective Antireflective



The matrix C

Space invariant point spread function (PSF)

⇓

T has a doubly Toeplitz-like structure that carries the “correct”
boundary conditions.

◮ doubly circulant matrix C diagonalizable by FFT, that
corresponds to periodic BCs.

◮ The boundary conditions have a very local effect

T − C = E + R , (10)

where E is of small norm and R of small rank.
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Synthesis approach

◮ Images have a sparse representation in the wavelet domain.

◮ Let W ∗ be a wavelet or tight-frame synthesis operator
(W ∗W = I ) and v the frame coefficients such that

x = W ∗v .

◮ The deblurring problem can be reformulated in terms of the
frame coefficients v as

min
v∈Rs

{

µ‖v‖1 +
1

2λ
‖v‖2 : v = arg min

v∈Rs
‖TW ∗v − y δ‖2P

}

.

(11)



Modified Linearized Bregman algorithm (MLBA)

◮ Denote by Sµ the soft-thresholding function

[Sµ(v)]i = sgn(vi )max {|vi | − µ, 0} . (12)

◮ The MLBA proposed in [Cai, Osher, and Shen, SIIMS 2009]

{

zn+1 = zn +WT ∗P(y δ − TW ∗vn),
vn+1 = λSµ(z

n+1),
(13)

where z0 = v0 = 0.

◮ Choosing P = (TT ∗ + αI )−1 ⇒ λ = 1 the iteration (13)
converges to the unique minimizer of (11).

◮ The authors of MLBA proposed to use P = (CC ∗ + αI )−1.

◮ If vn = zn the first equation (inner iteration) of MLBA is
preconditioned Landweber.



AIT + Bregman splitting

◮ Replace preconditioned Landweber with AIT.

◮ Usual assumption

‖(C − T )u‖ ≤ ρ ‖Tu‖ , u ∈ X .

◮ Further assumption

‖CW ∗(v − Sµ(v))‖ ≤ ρδ, ∀ v ∈ R
s , (14)

which is equivalent to consider the soft-threshold parameter
µ = µ(δ) and such that µ(δ) → 0 as δ → 0.



AIT + Bregman splitting – 2

Algorithm [Cai, D., Bianchi, Huang, 2016]

{

zn+1 = zn +WC ∗(CC ∗ + αnI )
−1(y δ − TW ∗vn),

vn+1 = Sµ(z
n+1),

(15)

where the parameter (αn, stopping iteration, etc.) are fixed as
in AIT.

Theorem
For noisy data (δ > 0), as δ → 0, the approximation xδ converges
to the solution of Tx = y that is closest to x0 in the norm of X .

If an estimation of the best α is available, we can fix αn = αopt.



Numerical Results

◮ W by linear B-spline.

◮ PSNR = 20 log10
255·n
‖x−x̃‖ , with x̃ the computed approximation.

◮ Best regularization parameter by hand for every method.

Compared methods

◮ MLBA: iteration (13) by Cai, Osher, and Shen.

◮ AIT–Breg: our nonstationary iteration (15).

◮ AIT–Breg–opt: our iteration (15) with a stationary αn = αopt

chosen by hand like in MLBA.

◮ FA–MD, TV–MD: ADMM [Almeida, Figueiredo, IEEE 2013]
for Frame-based Analysis and Total Variation, respectively.

◮ FTVd: extension of FTVd in [Wang et al. SIIMS 2008] to
deal with boundary artifacts [Bai et al., 2014].



Example 3 (Saturn)

ν = 1%, Zero BCs.

True image PSF Observed image



Restorations

Method PSNR CPU time
AIT–Breg 31.25 10.32

AIT–Breg–opt 31.49 16.56
MLBA 30.97 200.99
FA–MD 30.87 90.85
TV–MD 31.17 47.61
FTVd: 30.50 1.75

MLBA AIT–Breg FTVd



Example 4 (Boat)

ν = 1%, Antireflective BCs.

True image PSF Observed image



Restorations

Method PSNR CPU time
AIT–Breg 29.77 19.57

AIT–Breg–opt 30.17 3.67
MLBA 29.43 34.26
FA–MD 29.61 15.95
TV–MD 29.87 16.74
FTVd: 28.95 0.73

MLBA AIT–Breg–opt TV–MD



Conclusions

◮ Under the assumption that an approximation C of T is
available, our new scheme turns out to be fast and stable.

◮ The choice of ρ reflect how much we trust in the previous
approximation (a too small ρ can be detected by αn or ‖rn‖).

◮ Our scheme does not require T ∗.

◮ Projection into a convex set can be added.

◮ It is possible to include a regularization matrix.

◮ It can be used as inner least-square iteration in nonlinear
methods.
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