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Inverse Problem

By the knowledge of some “observed” data g (i.e., the effect),

find an approximation of some model parameters f (i.e., the cause).

Given the (noisy) data g ∈ G, find (an approximation of) the unknown
f ∈ F such that

A(f ) = g

where A : D ⊆ F −→ G is a known functional operator,
and F and G are two functional (here Hilbert or Banach) spaces.

Inverse problems are usually ill-posed, they need regularization techniques.



(A classical) Example of Inverse Problem: Image Deblurring

Forward operator (blurring model):

A blurred version g ∈ L2(R2) of a true image f ∈ L2(R2) is given by

g(x) =

∫
R2

h(x, y) f (y) dy

where x, y ∈ R2, and h(•, •) is the known impulse response of the imaging
system, i.e., the point spread function (PSF).

Inverse problem (image deblurring):

Given (a noisy version of) g, find (an approximation of) f ,
by solving the functional linear equation

Af = g .



(A classical) Example of Inverse Problem: Image Deblurring

Inverse problem (image deblurring):

Given (a noisy version of) g, find (an approximation of) f , by solving

Af = g .

True Image Blurred and noisy image Restored Image



Solution of inverse problems by optimization

Optimization techniques (by variational approaches) are very useful to solve
the functional equation A(f ) = g.

These methods minimize the functional Φ : F −→ R
Φ(f ) = ‖A(f )− g‖pG ,

or the Tikhonov-type variational regularization functional Φα

Φα(f ) = ‖A(f )− g‖pG + αR(f ) ,

where 1 < p < +∞ , R : F −→ [0, +∞) is a (convex) functional, and
α > 0 is the regularization parameter.

The “data-fitting” term ‖A(f )− g‖pY is called residual (usually in mathe-
matics) or cost function (usually in engineering).

The “penalty” term R(f ) is often ‖f‖pF , or ‖∇f‖pF or ‖Lf‖pF , for a dif-
ferential operator L which measures the “non-regularity” of f .



Some comments on regularization in Banach spaces.

Several regularization methods for ill-posed functional equations have been
formulated as minimization problems, first in the context of Hilbert spaces
(i.e., the classical approach) and later in Banach spaces (i.e., the more recent
approach).

Convex optimization in Banach spaces (such as L1 for sparse recovery or
Lp, p > 1 for smoother regularization) helps to derive new algorithms.

Hilbert spaces Banach spaces
Benefits Easier computation Better restoration

(Spectral theory, of the discontinuities;
eigencomponents) Sparse solutions

Drawbacks Over-smoothness Theoretical involving
(bad localization of edges) (Convex analysis required)



Minimization of the residual
by gradient-type iterative methods

For the Tikhonov-type functional Φα(f ) = ‖A(f ) − g‖pG + αR(f ) , the
basic minimization approach is the gradient-type, which reads as

fk+1 = fk − τkΨA(fk, g)

where
ΨA(fk, g) ≈ ∂

(
‖A(f )− g‖pG + αR(f )

)
,

is an approximation of the (sub-)gradient of the minimization functional at
point fk, and τk > 0 is the step length.

In Banach setting, these iterations are defined in the dual space and are
linked to the ( “wide”...) fixed point theory.

Schöpfer, Louis, Hein, Scherzer, Schuster, Kazimierski, Kaltenbacher, Q.
Jin, Tautenhahn, Neubauer, Hofmann, Daubechies, De Mol, Fornasier, Tomba.



The Landweber iterative method in Hilbert spaces

The (modified) Landweber algorithm is the simplest method for the mini-
mization of Φα(f ) = 1

2‖Af − g‖22 +α1
2‖f‖

2
2 , when the operator A is linear.

Since the gradient of Φα is

∇Φα(f ) = A∗(Af − g) + αf ,

we have the following iterative scheme:

Let f0 ∈ F be an initial guess (the null vector f0 = 0 ∈ F is often used in
the applications).

For k = 0, 1, 2, . . .

fk+1 = fk − τ (A∗(Afk − g) + αfk)

where τ ∈ (0, 2(‖A‖22 + α)−1) is a fixed step length.



The Landweber iterative method in Banach spaces

The Landweber algorithm in Hilbert spaces has been extended to Ba-
nach spaces setting. Again, it is the basic method for the minimization
of Φα(f ) = 1

p‖Af − g‖pG + α1
p‖f‖

p
F , where p > 1 is a fixed weight value.

Let f0 ∈ F be an initial guess (or simply the null vector f0 = 0).

For k = 0, 1, 2, . . .

fk+1 =JF ∗
p∗
(
JF
p fk − τk(A∗JG

p (Afk − g) + αJF
p fk)

)
where p∗ is the Hölder conjugate of p, that is, 1

p + 1
p∗ = 1.

The duality map JF
p : F −→ 2F ∗ acts on the iterates fk ∈ F , and the

duality map JF ∗
p∗ : F ∗ −→ 2F acts on the iterates f∗k ∈ F ∗.

N.B. Any duality map allow to associate an element of any Banach space
B with its dual in the dual space B∗. Here B is reflexive.



Landweber iterative method in Hilbert spaces

A : F −→ G A∗ : G −→ F H2(f ) = 1
2‖Af−g‖2G+ 1

2‖f‖
2
F

fk+1 = fk − τ (A∗(Afk − g) + αf )

Landweber iterative method in Banach spaces

A : F −→ G A∗ : G∗ −→ F ∗ Hp(f ) = 1
p‖Af −g‖pG + 1

p‖f‖
p
F

fk+1 = JF ∗
p∗
(
JF
p fk − τk(A∗JG

p (Afk − g) + αJF
p fk)

)

Some remarks.
In the Banach space Lp, by direct computation we have

JLp

r (f ) = ‖f‖r−p
p |f |p−1sgn(f ) .

It is a non-linear, single-valued, diagonal operator, which cost O(n) opera-
tions, and does not increase the global numerical complexity O(n log n) of
shift-invariant image restoration problems solved by FFT.



A numerical evidence: Hilbert vs. Banach
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Improvement of regularization effects
via operator-dependent penalty terms (I)

In the Tikhonov regularization functional Φα(f ) = ‖Af − g‖pG + αR(f ) ,
widely used penalty terms R(f ) include:

(i) ‖f‖p, or ‖f − f0‖p, where f0 is a priori guess for the true solution, whit
Lp-norm, 1 < p < +∞, or the Sobolev spaces W l,p-norm;

(ii) ‖f‖2S = (Sf, f ) in the Hilbertian case, where S : F → F is a fixed linear
positive definite (often is the Laplacian, S = 4).

(iii)
∫
|∇f | for Total Variation regularization;

(iv)
∑

i |(f, φi)| or the L1-norm
∫
|f | for regularization with sparsity con-

strains;

In the blue case (ii) with the S-norm, the Landweber iteration becomes:

fk+1 = fk − τ (A∗(Afk − g) + αSfk)



Improvement of regularization effects
via operator-dependent penalty terms (II)

All of the classical penalty terms do not depend on the operator A of the
functional equation Af = g, but only on f .

On the other hand, it is reasonable that the “regularity” of a solution de-
pends on the properties of the operator A too.

Recalling that, in inverse problems:

Spectrum of A∗A ←→ Subspace Components

λ(A∗A) small ←→ Noise Space High Frequencies
λ(A∗A) large ←→ Signal Space Low Frequencies

The idea: [T. Huckle and M. Sedlacek, 2012]
The penalty term should measure “how much” the solution f is in the noise
space, which depends on A.



Improvement of regularization effects
via operator-dependent penalty terms (III)

In [HS12], the key proposal is based on the following operator S

S =

(
I − A∗A
‖A‖2

)
,

so that ‖f‖2S ≈
{

large if f is heavily in the noise space of A
small if f is lightly in the noise space of A

The linear (semi-)definite operator S is a high pass-filter (please notice that
S is NOT a regularization filter, which are all low pass...).
This way, the S-norm is able to measure the “non-regularity” w.r.t. the
properties of the actual model-operator A.

In the previous literature, the Tikhonov regularization functional
Φα(f ) = ‖Af − g‖2 + α‖f‖2S is solved, only in Hilbert spaces, by direct
methods via Euler-Lagrange normal equations. This way, the direct solver
benefits of the very high regularization effects given by ‖f‖2S .



The Landweber method in Banach space for the Tikhonov
regularization functional with high-pass filter S

We apply the idea of the high-pass filter S to the iterative Landweber
method in Banach spaces for the minimization of the Tikhonov regularization
functional Φα(f ) = ‖Af − g‖pG + α‖f‖pS .
The iteration becomes:

fk+1 = JF ∗
p∗
(
JF
p fk − τk(A∗JG

p (Afk − g) + αSJF
p fk)

)
,

where

S =

(
I −

A∗JG
p A

‖A‖‖A∗‖

)
.

Drawback: The high-regularization effects of the S-norm slow down the
convergence of the iterations.

In general, the classical Landweber method is a slow iterative regularization
algorithm. The S-norm further reduces the convergence speed. Hence, the
S-norm is much more useful for direct solvers rather than iterative ones.



Acceleration of the Landweber method by S-norm

The operator S reduces the components in the signal space and keep the
component in the noise space. The operator −S does the opposite.

If we simply change the sign in the related term of the iteration, that is,
from

fk+1 = JF ∗
p∗
(
JF
p fk − τk(A∗JG

p (Afk − g) + αSJF
p fk)

)
,

to
fk+1 = JF ∗

p∗
(
JF
p fk − τk(A∗JG

p (Afk − g)−αSJF
p fk)

)
,

then the convergence speed is improved w.r.t. the classical Landweber
method.

The action of −S is a “ir-regularization” [Di Stefano, 2012], which reduces
the (over-smoothing) regularization effects of the iterative method.

The iteration is a descent method for the non-convex functional

Φ̃α(f ) = ‖Af − g‖pG−α‖f‖pS .



Minimization of difference of convex functions

The ir-regularization functional

Φ̃α(f ) = ‖Af − g‖pG−α‖f‖pS .

is not convex. However, it is composed by the difference of two convex
functional, ‖Af − g‖pG and ‖f‖pS.

These kind of functions, called DC -difference of convex- functions (or delta-
convex functions), have been exhaustively analyzed since about 1950.

The class of DC functions is a remarkable subclass of locally Lipschitz
functions that is of interest both in analysis and optimization.

It is naturally the smallest vector space containing all continuous convex
functions on a given set. And it is surprisingly “large”!

If you know the DC decomposition (as in our case), there exist algorithms
for the global minimum based on primality-duality.



The vector space of DC (difference of convex) functions

Let DC(X) be the vector space of scalar DC functions on the open convex
set X ⊂ Rn (Euclidean case). Let

h = h1 − h2 ∈ DC(X)

where both h1 and h2 are convex functions on X . Obviously h1 and h2 can
be chosen non-negative.

The class of DC functions is a subclass of locally Lipschitz functions.

(i) In the simplest case n = 1, h(x) is a DC function if and only if it has
left and right derivatives and these derivatives are of bounded variation
on every closed bounded interval interior to X (that is, f ′ is a difference
of two nondecreasing functions).

(ii) Thanks to (i), any polynomials on Rn is DC. Indeed, each polynomial
p can be decomposed as p = q − r where r, q are nonnegative convex
functions. Easy proof: x2n+1 = (x+)2n+1 − (x−)2n+1 and x2n are DC

(iii) Thanks to (ii), DC functions are dense uniformly in C(X) for compact
X . Any continuous function can be well approximated by DC functions.



DC decomposition of a random polynomial

h = h1 − h2



DC decomp. of the interp. polynomial of Runge function

h = h1 − h2



A sketch on linear algebra:
Eigenvalues and DC functions (I)

Let A be a n×n symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

(i) The quadratic form

R(x) =
1

2
xtAx

is DC on Rn.

Indeed, there are many decomposition with positive semi-definite A+ and
A− such that R(x) = 1

2x
tA+x− 1

2x
tA−x .

(ii) The kth-largest eigenvalue function

λk : A→ λk(A)

is DC on the space of symmetric matrices.

Proof: λk =
∑j=k

j=1 λj −
∑j=k−1

j=1 λj , and the sum of the first largest

eigenvalues is convex, i.e.,∑j=k
j=1 λj(tA1 + (1− t)A2) ≤ t

∑j=k
j=1 λj(A1) + (1− t)

∑j=k
j=1 λj(A2).



Eigenvalues and DC functions (II)

Let A be a n × n symmetric positive definite matrix with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

There are some further more involving facts. An example:

From the Rayleigh quotient, we know that the largest eigenvalues is

λ1 = max{xtAx : ‖x‖ ≤ 1} .

Via dualization schemes for convex constrains, the optimization theory for
DC function shows that

λ1 = −min{xtA−1x− 2‖x‖ : x ∈ Rn} , as well as

λ1 = −min{‖x‖2 − 2
√

xtAx : x ∈ Rn} .



Eigenvalues and DC functions (III)

We verify the first one (the second one is similar). Recall that A is a n×n
symmetric positive definite matrix with eigenvalues λ1 ≥ . . . ≥ λn > 0.

λ1 = −min{xtA−1x− 2‖x‖ : x ∈ Rn}

Indeed, let u be fixed, with ‖u‖ = 1, and consider x = %u, with % ≥ 0.

For xtA−1x− 2‖x‖ = (utA−1u)%2 − 2% := s(%), the minimum is attained
for s′(%̃) = 2(utA−1u)%̃− 2 = 0, that is, at %̃ = (utA−1u)−1 .

This minimum is:

s(%̃) = (utA−1u)(utA−1u)−2 − 2(utA−1u)−1 = −(utA−1u)−1.

Searching for the minimum of all the minima of s(%̃) (i.e, all over the
directions u), we obtain:

min{xtA−1x− 2‖x‖ : x ∈ Rn} = min‖u‖=1{−(utA−1u)−1} =

= −max‖u‖=1{(utA−1u)−1} = −(λmin(A−1))−1 = −λmax(A) = −λ1 .



Numerical results (I): The Landweber method in Banach
spaces with S-norm acceleration.

We consider the Landweber method in Banach spaces, with ir-regularization
penalty term (i.e., minim. of a DC func.). We write the iteration as follows:

fk+1 = JF ∗
p∗
(
JF
p fk − τA∗JG

p (Afk − g) + βkSJF
p fk

)
,

S =

(
I −

A∗JG
p A

‖A‖‖A∗‖

)
,

τ = (‖A‖‖̇A∗‖)−1 and βk is a (constant or decreasing) sequence of weights.

fk

A*Afk

(I-A*A)fk

(A*A-I)fk



Numerical results (I)

Relative Restoration Errors RRE(k) = ‖fk − f‖2/‖f‖2 vs. Iteration Number
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Numerical results (II): The preconditioned version

Next, we consider the preconditioned version of the method,
where the preconditioner D is a regularization preconditioner in the dual
space, that is, D : G∗ −→ G∗.

The dual-preconditioner D is built by means of (an extension to Banach
spaces of) a filtering procedure of the T.Chan preconditioner in Hilbert space.

fk+1 = JF ∗
p∗
(
JF
p fk − τkDA∗JG

p (Afk − g) + βkSJF
p fk

)
,

S =

(
I −

A∗JG
p A

‖A‖‖A∗‖

)
.

The preconditioners allow to speed up the convergence, but usually they
give rise to instability (that is, to a fast semi-convergence).

The classical preconditioned method is faster than the method with ir-
regularization. However, surprisingly enough, the ir-regularization improves
the stability of the preconditioned method.



Numerical results (II): preconditioner VS ir-regularization

Relative Restoration Errors RRE(k) = ‖fk − f‖2/‖f‖2 vs. Iteration Number
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Numerical results (II): preconditioner AND ir-regularization

Relative Restoration Errors RRE(k) = ‖fk − f‖2/‖f‖2 vs. Iteration Number
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Numerical results (III): A geophysical application (Hilbert)

Aim: To enhance the spatial resolution of simulated Special Sensor Microwave/Imager
(SSM/I) radiometer measurements (in Hilbert spaces).

Unknown: brightness temperature on a 1400 700 km Earth’s surface
Data: remotely sensed measurements via Fredholm integral operator

Noise: 10% Gaussian, zero mean



Numerical results (III): A geophysical application

TOP: 2-norm of the residual versus the iteration index k.
BOTTOM: Relative error between the k-reconstructed and the reference field versus k. c is
an upper bound related to the 2-norm of the noise.
ART = algebraic reconstruction technique (to compare with). βk = β0/2k.



Numerical results (III): A geophysical application

TOP: Reconstructed field using the conventional Landweber method (β0 = 0 , k = 175).
BOTTOM: Reconstructed field using the improved Landweber method (β0 = 23 , k = 120).
Relative restoration error: 0.53, both.



Conclusions

•Regularization iterative methods can be accelerated by ir-regularization.

• Theory for global minimization of DC functions via dualization should be
applied to obtain new iterative schemes.

• Extension to variable Lebesgue spaces will be analyzed.

Thank you for your attention.
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