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FROM CLASSICAL APPROACHES TO C∗-ALGEBRA TECHNIQUES IN THE

NUMERICAL ANALYSIS OF SINGULAR INTEGRAL EQUATIONS

P. Junghanns
Chemnitz University of Technology

Department of Mathematics
Reichenhainer Straße 39, 09126 Chemnitz, Germany

peter.junghanns@mathematik.tu-chemnitz.de

The application of Cauchy singular and hypersingular integral equations, for example in
airfoil theory and elasticity theory, and the theory of their numerical solution have a long history.
The so-called classical collocation method for equations of the type

a(x)u(x) +
b(x)

π

∫ 1

−1

u(y) dy
y− x

+
∫ 1

−1
h(x, y)u(y) dy = f (x) , −1 < x < 1 , (1)

is based on formulas like

1
π

∫ 1

−1

Tn(y) dy
(y− x)

√
1− y2

= Un−1(x) , −1 < x < 1 , n = 0, 1, 2, . . . , (2)

where Tn(x) and Un(x) are the normalized Chebyshev polynomials of degree n and of first
and second kind, respectively. Originally, this method was restricted to equations (1) with
constant coefficients a(x) ≡ a and b(x) ≡ b .

Basically, there exist two different ways to generalize the classical collocation method for
equations with variable coefficients. The first one is by construction of generalized Jacobi
polynomials satisfying a relation like (2) which is closely connected with the coefficients a(x)
and b(x) . The second one is still based on classical Chebyshev polynomials and their zeros
independ from the coefficients in the equation (1). The numerical methods based on the first
approach need much time for preprocessing, namely for the computation of the nodes and
weights of generalized Jacobi polynomials. But the essential condition for their applicability
is only the unique solvability of equation (1). The preprocessing for the methods based on
the second approach is very cheap, but in general the invertibility of more than one operator is
necessary and sufficient for their applicability. The investigation of the stability of such methods
is based on the application of C∗-algebra techniques.

The talk gives an overview of these developments during the last 25 years and con-
centrates on recent results for equations of the form (1), where kernel functions h(x, y) =

k
(

1 + x
1 + y

)
1

1 + y
of Mellin type occur which are important in applications, for example in two-

dimensional elasticity theory.
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POLYNOMIAL APPROXIMATION OF FUNCTIONS WITH SINGULAR POINTS

G. Mastroianni
Department of Mathematics, Computer Sciences and Economics

University of Basilicata
viale dell’Ateneo Lucano 10, 85100 Potenza, Italy

Email: giuseppe.mastroianni@unibas.it

The polynomial approximation of non-continuous or non-Lp−integrable functions occurs
in several contexts. In many applications, functions may have a finite number of strong singu-
larities at the endpoints of the interval of definition and/or at some inner points.

A frequently used procedure consists of multiplying the function f by a suitable weight u
so that f u turns out to be continuous or belongs to Lp; then f u can be approximated by a
sequence of the form {Pmu}, where Pm is a polynomial of degree m. The choice of the weight
u is related to the “pathology” of the function f (see [2, 1]).

In this talk we are going to show the main results in the case of singularities at the endpoints
of the interval and we will mention the case of inner singularities. The behaviour of some
concrete approximation operators will be also illustrated.

References

[1] M. C. De Bonis, G. Mastroianni and I. Notarangelo, Elementi di Teoria
dell’Approssimazione Polinomiale, Mathematical and Computational Biology and Nu-
merical Analysis n. 3, Aracne, 2018. ISBN: 978-88-255-1177-2

[2] G. Mastroianni and G. V. Milovanović Interpolation Processes. Basic Theory and Applica-
tions, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. ISBN: 978-3-
540-68346-9
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NUMERICAL SOLUTIONS AND THEIR SUPERCONVERGENCE FOR FRACTIONAL

DIFFERENTIAL EQUATIONS

A. Pedas
Institute of Mathematics and Statistics

University of Tartu
J. Liivi 2, Tartu, Estonia

Email: arvet.pedas@ut.ee

We propose and analyze a numerical method for solving initial and boundary value prob-
lems for fractional differential equations with Caputo type fractional derivatives. Usually, we
cannot expect the solutions of such equations to be smooth on the whole interval of integra-
tion, which is a challenge to the convergence analysis of numerical methods. Therefore, using
an integral equation reformulation of the original problem, we first study the regularity of the ex-
act solution. Based on the obtained smoothness properties and spline collocation techniques,
the numerical solution of the problem is discussed. Optimal convergence estimates are de-
rived and aspects related to the superconvergence of the proposed algorithms are presented.
A numerical illustration is also given.
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UNDERSTANDING THE INTERACTION BETWEEN FINANCIAL MARKETS WITH

ECOLOGICAL MODELLING TECHNIQUES

J. A. Roberts, N. Kavallaris, and A. Rowntree
Mathematics

University of Chester
Thornton Science Park, Chester, England, CH2 4NU

Email: j.roberts@chester.ac.uk

A number of recent global and continent-wide events and decisions have brought financial
markets and how they interact under scrutiny. We compare the historical indices of two such
financial markets, which (on a global level) can be considered relatively close geographically
and could be considered two of the major markets (if not the major markets) within Europe:
The London FTSE100 and the Frankfurt DAX. The purpose of our comparison is to see if,
by treating these markets as different species operating in the same ecosystem some insight
can be gained by modelling the two markets with ecological models of interacting species. In
particular, we are looking to ascertain if, historically, we can identify periods of time where the
markets are exhibiting behaviour which may, in ecological terms be described as mutualistic,
competitive or predation by one species on the other. Furthermore, we ask the question as to
whether or not such information, when coupled with our knowledge of corresponding economic
events at the time can provide some indication as to future market behaviour and the types of
interactions to expect at key times between the two markets under consideration.

In order to seek answers to these questions we introduce delay and feedback into a number
of ecological models and consider the dynamical behaviour of such models, before considering
other aspects such as parameter estimation and the sensitivity of the system to changes in
those parameters.
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FAST SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS FOR THE POISSON

EQUATION

Y. Xu
Department of Mathematics and Statistics

Old Dominion University
2300 ENGR and COMP SCI BLDG NORFOLK, VA 3529, United States

Email: yxu06@syr.edu

We shall present recent development of fast solutions of boundary integral equations that
are reformations of the Poisson equation. By employing hyperbolic cross approximations for
the integral operators and the Newton potential, we develop a fast method for solving the
equation. Optimal convergence and computational complexity for the proposed method will be
presented and numerical results will be shown to verify the theoretical estimates.
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FINITE ELEMENT ERROR ANALYSIS FOR PROBLEMS WITH LOW REGULAR

SOLUTIONS

S. Barbeiro
CMUC, Department of Mathematics

University of Coimbra
Portugal

Email: silvia@mat.uc.pt

We consider the numerical solution with finite element methods of elliptic boundary value
problems with both inhomogeneous Dirichlet and Neumann boundary conditions. The focus
of this talk is to derive L2 error estimates without restrictive regularity assumptions on the so-
lutions of the original and adjoint problems. We analyze in particular the effect of the choice of
the discrete Dirichlet data on the estimates. To illustrate the theoretical results, some numerical
examples will be presented.
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ROBUST MESHFREE PDE SOLVER FOR SOURCE-TYPE FLOWS IN POROUS

MEDIA

R. Campagna, S. Cuomo, S. De Marchi, L. Ferrara, E. Perracchione and G. Toraldo
Department of Agricultural Sciences
University of Naples Federico II, Italy

Email: rosanna.campagna@unina.it

Radial Basis Function (RBF)-based methods, taking advantage of being meshfree, are
nowadays widely adopted tools for solving Partial Differential Equations (PDEs) via collocation
schemes, see e.g. [1]. Generally, the local approximants and consequently also the global
ones may suffer from instability due to the ill-conditioning of the interpolation matrices. To
avoid this drawback, which becomes even more evident when approximationg functions with
singularities or discontinuities, we suggest a methodology consisting in building the differenti-
ation matrices via the so-called Variably Scaled Kernels (VSKs). VSK were first introduced in
[2]. Furthermore, to manage the sparsity of the collocation systems we adopt the Partition of
Unity Method (PUM), refer e.g. to [3]. In this framework, we propose an efficient and robust
approach which turns out to be suitable in a realistic engineering problem where a steady state
flow is assumed determined by a pulse-like extraction of water at a constant volumetric rate
[4]. This leads to an elliptic PDE with a singular forcing term. Generally an adopted method-
ology is to use numerical schemes with fine grid level of discretizations near singularities. In
this work, conversely, we propose to apply an emerging strategy to tackle such a type of flow
configuration in porous formations.

References

[1] H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math.
vol. 17, Cambridge Univ. Press, 2005.

[2] M. Bozzini, L. Lenarduzzi, M. Rossini, R. Schaback, Interpolation with variably scaled
kernels, IMA J. Numer. Anal. 35 (2015), pp. 199–219.

[3] A. Heryudono, E. Larsson, A. Ramage, L. Von Sydow, Preconditioning for radial basis
function partition of unity methods, J. Sci. Comput. 67 (2016), pp. 1089–1109.

[4] G. Severino, Stochastic analysis of well-type flows in randomly heterogeneous
porous formations, Water Resources Research (2011) vol. 47, 3, W03520,
doi:10.1029/2010WR009840.
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SOME PROPERTIES OF THE LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS

PERTURBED BY THE FREDHOLM OPERATORS

E. V. Chistyakova, V. F. Chistyakov
Institute for System Dynamics and Control Theory
Siberian Branch of Russian Academy of Sciences

134 Lermontov St., Irkutsk, Russia
Email: elena.chistyakova@icc.ru

Systems of ordinary differential equations with a singular matrix multiplying the higher
derivative of the desired vector-function are commonly referred to as differential algebraic
equations (DAEs), and linear DAEs generally have the form

Λkx :=
k

∑
i=0

Ai(t)x(i)(t) = f (t), t ∈ T := [α, β], (3)

where Ai(t) are n× n-matrices, x(t) and f (t) are the desired and the given vector-functions,
correspondingly, x(i)(t) = (d/dt)ix(t), x(0)(t) = x(t), and

det Ak(t) = 0 ∀t ∈ T. (4)

Usually, a set of the initial data is given

x(j)(α) = aj, j = 0, k− 1, (5)

where aj are vectors from Rn. For k = 1 in (3), DAEs have been fairly well studied. In this talk
we consider properties of DAEs perturbed by the Fredholm operator when k > 1:

(Λk + λΦ)x :=
k

∑
i=0

Ai(t)x(i)(t) + λ

β∫
α

K(t, s)x(s)ds = f (t), (6)

where t ∈ T, λ is some parameter, K(t, s) is n× n-matrix, with the initial data (5). We focus
on the solvability conditions for the initial problem (6), (5) and propose a numerical algorithm
of solution based on the least squares method.

This work has been partially supported by the Russian Foundation for Basic Research,
Grants Nos. 18-51-54001, 18-01-00643.
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A QUADRATURE METHOD FOR A SINGULAR INTEGRO-DIFFERENTIAL EQUATION

IN WEIGHTED ZYGMUND SPACES WITH UNIFORM NORM

M. C. De Bonis and D. Occorsio
Department of Mathematics, Computer Science and Economics

University of Basilicata
Viale dell’Ateneo Lucano n. 18, Potenza, ITALY

Email: mariacarmela.debonis@unibas.it

This talk deals with the numerical solution of singular integro-differential equations of the
following type

σ(x)u(x) + au′(y) +
b
π

∫ 1

−1

u′(x)
x− y

dx +
1
π

∫ 1

−1
k(x, y)u(x)dx = g(y), |y| ≤ 1,

where the unknown solution u satisfies the additional conditions u(−1) = u(1) = 0, a, b ∈ R
are known and σ, k, g are given functions.
Several authors have studied this type of integro-differential equations and related numerical
methods (see, for example, [1], [2], [3, Section 3]).
We propose a numerical method of quadrature type and we prove that it is stable and conver-
gent giving error estimates in weighted spaces of continuous functions equipped with uniform
norm. Moreover we show some numerical tests that confirm the theoretical estimates.

References

[1] M. R. Capobianco, G. Criscuolo , P. Junghanns: A fast algorithm for Prandtl’s integro-
differential equation, J. Comp. Appl. Math. 77 (1997) 103-128.

[2] M. R. Capobianco, G. Criscuolo , P. Junghanns, U. Luther: Uniform convergence of the
collocation method for Prandtl’s integro-differential equation, ANZIAM J. 42 (2000), 151-
168

[3] P. Junghanns, B. Silbermann: The numerical treatment of singular integral equations
by means of polynomial approximations. I, preprint P-Math-35/86, AdW der DDR, Karl-
WeierstraB-Institut ffir Mathematik, Berlin, 1986.
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RECOVERING THE ELECTRICAL CONDUCTIVITY OF THE SOIL VIA A LINEAR

INTEGRAL MODEL

P. Dı́az de Alba, L. Fermo, C. Van der Mee, and G. Rodriguez
Department of Civil, Environmental, and Architectural Engineering

University of Cagliari, Italy
Email: patricia.diazdealba@gmail.com

This work investigates a linear model that involves Fredholm integral equations of the first
kind defined on the positive semiaxes used to describe the interaction of an electromagnetic
field with the soil [3]. The aim is to detect or infer, by non destructive investigation of soil
properties, inhomogeneities in the ground as well as the presence of particular conductive
substances.

To find the solution of the problem, we propose some numerical methods based on splines
and Bernstein polynomials, combined with a suitable regularization technique as the Truncated
(Generalized) Singular Value Decomposition [1, 2].

Finally, we test the effectiveness of the different approaches on synthetic data sets.

References

[1] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.

[2] R. Kress. Linear Integral Equation, Springer, 1999.

[3] J. D. McNeill. Electromagnetic terrain conductivity measurement at low induction numbers,
Technical Report TN-6 Geonics Limited, 1980.
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SEBASTIANO SEATZU’S CONTRIBUTION TO THE NUMERICAL TREATMENT OF

NONLINEAR EVOLUTION EQUATIONS

L. Fermo
Department of Mathematics and Computer Science

University of Cagliari, Italy
Email: fermo@unica.it

Sebastiano Seatzu has been full professor of numerical analysis at the University of Cagliari,
Italy, since 1980. He coauthored 3 books and 86 papers, mostly published in international jour-
nals, and he was coeditor of 3 books. Most of his publications were in numerical analysis, but
he also coauthored several papers in physics and chemical physics.

In the past 15 years, he worked mainly on the numerical solution of integral equations of the
first kind, numerical linear algebra of structured matrices, numerical treatment of ill-conditioned
systems of linear equations, numerical techniques for integral equations with structured ker-
nels, numerical solution of nonlinear evolution equations, and analytical and numerical meth-
ods related to the design of photonic crystals.

I was co-author, along with Cornelis van der Mee, of his last six papers. They are related to
nonlinear partial differential equations (NPDE) of integrable type, which have important phys-
ical applications. Indeed, they are used to describe electromagnetic waves in optical fibers,
surface wave dynamics, charge density waves, breaking wave dynamics, etc.

In this talk, we focus on the research that was currently in progress when he left us on
February 13th, 2018, namely, the numerical treatment of the Korteweg-de Vries (KdV) equa-
tion, which governs the propagation of surface water waves in long, narrow, shallow canals
[1] 

∂q(t, x)
∂t

− 6q(t, x)
∂q(t, x)

∂x
+

∂3q(t, x)
∂x3 = 0, x ∈ R, t ∈ R+,

q(0, x) = q(x).

References

[1] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a
rectangular channel and on a new type of long stationary waves, Phil. Mag. 39, 422-443
(1895).
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CHRISTOPHER T H BAKER (1939-2017): HIS CONTRIBUTION TO THE FIELD

N. J. Ford
Department of Mathematics

University of Chester
Chester, UK

Email: njford@chester.ac.uk

Christopher Baker was one of the first numerical analysts to investigate integral equations,
including those involving a singularity. He was the author of several key books on the subject
and was influential in shaping theoretical and numerical work on integral and integro-differential
equations, retarded functional differential equations and stochastic differential equations. More
recently, he developed a keen interest in modelling (problems ’with memory and after-effect’)
particularly in the biosciences and immunology. His focus was always on understanding both
the nature of the problem under consideration, and the useful questions to answer for applica-
tions purposes.

In this talk, by his former PhD student and collaborator of more than 30 years, we provide
a brief overview of his main contribution and then focus on some of his most recent (and
previously unpublished) results.
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THE PRODUCT INTEGRATION METHOD FOR A WEAKLY SINGULAR

HAMMERSTEIN EQUATION

H. Kaboul, S. Peaker, L. Garammont
Department of Mathematics

University of Biskra
Biskra, Algeria

Email: kaboul h@yahoo.fr

This talk deals with nonlinear Fredholm integral equations ”Hammerstein equation” of the
second kind. We study the case of a weakly singular kernel and we set the problem in the
space the space of integrable functions over closed interval in R, L1([a, b], C) . We extend
the product integration scheme from C0([a, b], C) to L1([a, b], C).
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DISCRETE MODIFIED PROJECTION METHOD FOR NONLINEAR INTEGRAL

EQUATIONS WITH NON-SMOOTH KERNELS

R. P. Kulkarni, and Gobinda Rakshit
Department of Mathematics

Indian Institute of Technology Bombay
I.I.T., Powai, Mumbai 400076, INDIA
Email: rpk@math.iitb.ac.in

Consider a nonlinear integral equation x − K(x) = f , where K is a Urysohn integral
operator with a Green’s function type kernel. Approximate solutions using the Galerkin and
the iterated Galerkin method based on the orthogonal projection onto a space of discontinu-
ous piecewise polynomials are investigated in [1]. Orders of convergence of the approximate
solution using the iterated modified projection method are obtained in [2]. In this paper we
consider the discrete versions of these methods and specify a choice of numerical quadra-
ture which preserves the orders of convergence. Numerical results are given to validate the
theoretical results.
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Problem of solving Fredholm integral equations of the first kind is a prototype of an ill-
posed problem of the form T(x) = y, where T is a compact operator between Hilbert spaces.
Regularizations and discretizations of such equations are necessary for obtaining stable ap-
proximate solutions for such problems. For ill-posed integral equations, a quadrature based
collocation method has been considered by Nair (2012) for obtaining discrete regularized ap-
proximations. As a generalization of that, a projection collocation method has been studied
in 2016. In both of the considered methods, the operator T is approximate by a sequence of
finite rank operators. In the present paper, the authors choose to approximate TT∗ by finite
rank operators. It is found that in some cases, the derived estimates are improvements over
the previous estmiates.

References

[1] M.T. Nair, Quadrature based collocation methods for integral equations of the first kind,
Adv Comput Math (2012) 36:315–329

[2] M.T. Nair, A discrete regularization method for ill-posed operator equations,
arXiv:1606.09266v1 [math.FA], (2016)

29
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In this talk we propose a new approach to the numerical solution of the mixed Dirichlet-
Neumann boundary value problem for the Laplace equation in planar domains with piecewise
smooth boundaries.

Using the single layer representation of the potential and employing the Dirichlet and Neu-
mann boundary conditions, the differential problem is reformulated in the form of a system of
boundary integral equations (BIE), whose unknown is the single layer density function on the
boundary.

Then, we consider an associated perturbed BIE system and present a Nyström-type method
for its numerical solution.

As Mellin type integral operators are involved, we need to modify the method close to the
corners in order to prove its stability and convergence.

Some numerical tests are given showing the efficiency of the proposed method.
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NUMERICAL SOLUTION OF A VOLTERRA INTEGRAL EQUATION OF THE THIRD
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In this work, an operational matrix of fractional integration based on an adjustment of hat
functions is used for solving a class of third-kind Volterra integral equations with weakly singylar
kernel. We show that the application of this numerical technique reduces the problem to
a linear system of equations that can be efficiently solved. Some numerical examples are
considered to demonstrate the accuracy and efficiency of the proposed method.
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Let us consider integral equations of the form

f (x)−
∫

I
k(x, y) f (y)w(y)dy = g(x) , x ∈ I ,

where k and g are given functions, f is the unknown functions, I is a bounded or unbounded
interval and w is a nonstandard weight function on I, for instance

w(x) = e−1(1−x2)α
, α > 0 , x ∈ I = (−1, 1)

or

w(x) = xαe−xβ
, α > −1 , β >

1
2

, x ∈ I = (0,+∞) .

This talk is devoted to the theoretical investigation of the Nyström methods based on a
suitable product quadrature rule in the case of a weakly singular kernel k and a locally smooth
g. In fact, if k has weak inner singularities along a line, the method based on the Gaussian rule
related to w cannot be used. So, replacing f by a suitable Lagrange polynomial we obtain a
sequence of operators {Km}m. We prove that this sequence converges to the integral operator
K and is collectively compact.
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In this talk we will consider suitable product integration rules for integrals of the type

I( f , y) :=
∫ 1

−1
f (x)K(x, y)w(x)dx,

where w(x) = (1− x)α(1+ x)β is a Jacobi weight, K is a given kernel presenting a patholog-
ical behaviour (for instance high oscillations or weak singularities). Denoting by {pm(w)}m the
sequence of the orthonormal polynomials w.r.t. w, let Lm,m+1(w, w, f ) be the extended La-
grange polynomial interpolating f at the zeros of Q2m+1 = pm+1(w)pm(w) and let Σ∗m,m( f , y)
be the extended product integration rule obtained by approximating f with Lm,m+1(w, w, f ), i.
e.

I( f , y) =
∫ 1

−1
Lm,m+1(w, w, f )K(x, y)w(x)dx + em( f , y),

:= Σ∗m,m( f , y) + em( f , y).

Denoting by Σm( f , y) the usual product integration rule based on the zeros of pm(w), i.e.
Σm( f , y) :=

∫ 1
−1 Lm(w, f , x)K(x, y)w(x)dx and assuming that both the sequences {Σm( f )}m

and {Σ∗m,m( f )}m approximate the integral with the same rate of convergence, it makes sense
to consider the mixed sequence {Σm( f ), Σ∗m,m( f )}m rather than the usual {Σm( f )}m. In this
way we can double the number of nodes of the quadrature formula, by reusing m samples of
the function f . This approach is especially relevant when m is “large” and the procedure for
computing the zeros and the coefficients of the quadrature rule can fail. Moreover, also the
coefficients of the extended rule Σ∗m,m( f ) can be computed through those of Σm( f ). We will
show the stability and convergence of the mixed scheme, giving also some numerical tests,
which confirm the theoretical estimates.
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Mellin singular integral equations arise in several applications. For instance they occur in
crack problems in linear elasticity, or in the so called planar radiosity equation, relating the
radiosity at points of a surface to the reflectivity and the emissivity at such points (see for
instance [1, 2]).

The Mellin singular integral equations have the following form:

f (y) +
∫ 1

−1
K(x, y) f (x)dx +

∫ 1

−1
H(x, y) f (x)dx = g(y)

where K(x, y) = ±
k
(

1+y
1+x

)
1+x , s.t.

∫ ∞
0

k(x)
x dx < ∞, and H(x, y), g are known continuous func-

tions in [−1, 1]2 and [−1, 1], respectively, while f is the unknown solution. The main difficulty
in treating this kind of singular equation is that the Mellin operator

∫
−11K(x, y) f (x)dx is not

compact.
The proposed method consists in a discrete collocation method based on the Lagrange

interpolation. The interpolation process is constructed on the zeros of the Legendre polyno-
mials and on the additional knots ±1. Moreover the integrals involved in the construction of
the matrix of coefficients of the linear system of the method are approximated by means of
the standard Gauss-Legendre rule, if the collocation point is far from −1, and with a dilation
tecnique if the collocation point is close to −1.
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In this talk we investigate the numerical treatment of the bisingular integral equation of the
first kind, defined on the square S = [−1, 1]× [−1, 1], having the following form

(D + K) f = g

where f is the bivariate unknown function, g is a given right-hand side, D is the dominant
operator

D f (t, s) =
1

π2

∮
S

f (x, y)
(x− t)(y− s)

√
1− x
1 + x

√
1− y
1 + y

dxdy

and K is the perturbation operator

K f (t, s) =
∫

S
f (x, y)k(x, y, t, s)

√
1− x
1 + x

√
1− y
1 + y

dxdy

with k a given kernel function.
We propose two different methods: the first is a direct method, the second an indirect one.

In both cases, we examine the stability, discuss the convergence and analyze the conditioning
of the involved linear systems. Moreover, some numerical tests, which confirm the theoretical
estimates, are proposed.
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NUMERICAL SOLUTION OF DIFFERENTIAL-ALGEBRAIC EQUATIONS WRITTEN IN
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Consider
q(t)A(t)x

′
(t) + B(t)x(t) = f (t), x(0) = x0, t ∈ [0, T], (7)

where q(t) ≡ 1 or q(t) = tα, 0 < α < 1, A(t), B(t) are (n × n)-matrices, f (t) and
x(t) are the given and unknown n-dimensional vector-functions, respectively. It is assumed
that detA ≡ 0 and the initial condition are consistent with the right-hand part. Systems (7)
are called differential-algebraic equations (DAEs). If q(t) = tα, then such problems are called
DAEs with a weakly singular point.

We propose to rewrite (7) as

A(t)x(t) +
∫ t

0
(q−1(τ)B(τ)− A

′
(τ))x(τ)dτ = (8)

=
∫ t

0
q−1(τ) f (τ)dτ + A(0)x(0).

Special algorithms are proposed for numerical solution of problem (8). Advantages of these
methods are discussed.

The research is supported by RFBR , projects No. 18-01-00643-a, 18-51-54001-Viet-a.
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APPROXIMATING THE SOLUTION OF INTEGRO-DIFFERENTIAL PROBLEMS VIA

THE SPECTRAL TAU METHOD
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The Lanczos’ Tau method is examined in detail from a variety of aspects to provide a stable
implementation for its operational version. We concentrate on avoiding basis transformation,
on performing polynomial evaluations directly on the orthogonal basis, on tackling nonlinear
problems and how to effectively compute polynomial approximations from non-polynomial co-
efficient functions. The ultimate goal is to deploy a robust and efficient numerical library, the
Tau Toolbox, able to deliver approximate solutions of integro-differential problems.
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