Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Exam 2

Name:
Grade:
Rank:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Consider the following 4×7 matrix:

$$
A=\left(\begin{array}{lllllll}
1 & 2 & 3 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 1 & 0 & 6 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
c. Illustrate the rank-nullity theorem using the matrix A.

Answer: As a basis of $\operatorname{Im} A$, take the first, fourth and fifth columns, so that A has rank 3. The kernel of A is composed of the vectors

$$
\overrightarrow{\boldsymbol{x}}=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{6}\left(\begin{array}{c}
-4 \\
0 \\
0 \\
-6 \\
-8 \\
1 \\
0
\end{array}\right)+x_{7}\left(\begin{array}{c}
-5 \\
0 \\
0 \\
-7 \\
-9 \\
0 \\
1
\end{array}\right),
$$

so that A has nullity 4 . Since $3+4=7$ is the number of columns of A, we are in agreement with the Rank-Nullity Theorem.
2. Consider the following 3×3 matrix:

$$
A=\left(\begin{array}{ccc}
0 & 3 & 6 \\
0 & 0 & 0 \\
0 & 16 & 0
\end{array}\right)
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
c. Does the union of the two bases found in parts a) and b) span \mathbb{R}^{3} ? Substantiate your answer.

Answer: The second and third columns of A form a basis of $\operatorname{Im} A$, while Ker A consists of all multiples of the column vector ($1,0,0$). However,

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
0 \\
16
\end{array}\right),\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)\right\}
$$

is not a basis of \mathbb{R}^{3}, since two of these vectors are proportional.
3. Consider the following five vectors:

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
3 \\
5 \\
7
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{l}
1 \\
4 \\
7 \\
0
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{4}=\left(\begin{array}{r}
1 \\
-3 \\
-5 \\
7
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{5}=\left(\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right) .
$$

a. Argue why or why not $S=\left\{\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{v}}_{5}\right\}$ is a linearly independent set of vectors.
b. If S is not a linearly independent set of vectors, remove as many vectors as necessary to find a basis of its linear span and write the remaining vectors in S as a linear combination of the basis vectors.

Answer: One cannot have a basis of \mathbb{R}^{4} consisting of five vectors. Since the 5×4 matrix composed of the five vectors has rank 4 , we can in fact delete any of the five vectors to get a basis of \mathbb{R}^{4}. This can be substantiated by showing that the 4×4 matrix composed of the remaining four vectors is invertible.
4. Find the rank and nullity of the following linear transformations:
a. The orthogonal projection onto the plane $2 x_{1}-x_{2}+x_{3}=0$ in \mathbb{R}^{3}.
b. The reflection in \mathbb{R}^{3} with respect to the line passing through (31, 67, 97).

Answer: The problem can be done without doing any calculations. The projection P maps \mathbb{R}^{3} onto a plane (which has dimension 2) along
the line of vectors passing through the origin and perpendicular to the plane. Thus the rank of P is 2 and its nullity is 1 , in accordance with the Rank-Nullity Theorem $(2+1=3)$. The reflection R satisfies $R^{2}=I$ and hence R is represented by an invertible 3×3 matrix (with inverse R itself). Thus its rank is 3 and its nullity is 0 , in agreement with the Rank-Nullity Theorem $(3+0=3)$.
5. Compute the matrix of the linear transformation

$$
T(\overrightarrow{\boldsymbol{x}})=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 5 & 6
\end{array}\right) \overrightarrow{\boldsymbol{x}}, \quad \text { where } \overrightarrow{\boldsymbol{x}} \in \mathbb{R}^{3},
$$

with respect to the basis

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right) .
$$

Answer: The problem is to find the matrix B satisfying

$$
B\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)
$$

if

$$
T\left(c_{1} \overrightarrow{\boldsymbol{v}}_{1}+c_{2} \overrightarrow{\boldsymbol{v}}_{2}+c_{3} \overrightarrow{\boldsymbol{v}}_{3}\right)=d_{1} \overrightarrow{\boldsymbol{v}}_{1}+d_{2} \overrightarrow{\boldsymbol{v}}_{2}+d_{3} \overrightarrow{\boldsymbol{v}}_{3} .
$$

The latter can be written as

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 5 & 6
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 4 & -1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 4 & -1
\end{array}\right)\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 4 & -1
\end{array}\right) B\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

for any $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Hence,

$$
\begin{aligned}
B & =\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 4 & -1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 5 & 6
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 4 & -1
\end{array}\right) \\
& =\left(\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-7 & 4 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 5 & 6
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & 4 & -1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
11 & 4 & 0 \\
1 & -13 & 6
\end{array}\right) .
\end{aligned}
$$

6. Consider the following polynomials:

$$
1+x^{2}, \quad x-2 x^{3}, \quad(1+x)^{2}, \quad x^{3}+x
$$

Argue why or why not this set is a basis of the vector space of polynomials of degree ≤ 3. Answer: Let $\left\{1, x, x^{2}, x^{3}\right\}$ be the usual basis of the vector space V of polynomials of degree ≤ 3. Then $\left\{1+x^{2}, x-\right.$ $\left.2 x^{3},(1+x)^{2}, x^{3}+x\right\}$ can be written with respect to this "usual" basis as the column vectors

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{r}
0 \\
1 \\
0 \\
-2
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{4}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right) .
$$

We get a basis of V if and only if $\left\{\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{v}}_{4}\right\}$ is a basis of \mathbb{R}^{4}. The latter is true if and only the 4×4 matrix with these four columns is invertible (i.e., has hank 4), which requires us to show that its echelon form is the 4×4 identity matrix. However, its row reduced echelon form equals

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -\frac{3}{4} \\
0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & \frac{3}{4} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and hence its kernel consists of all multiples of the column vector (3, 2, -3, 4). Consequently,

$$
3\left(1+x^{2}\right)+2\left(x-2 x^{3}\right)-3(1+x)^{2}+4\left(x^{3}+x\right)=0
$$

and therefor $\left\{1+x^{2}, x-2 x^{3},(1+x)^{2}, x^{3}+x\right\}$ is not a basis of V.
7. Find a basis of the vector space of all 2×2 matrices S for which

$$
\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) S=S\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

Answer: Let $S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then the above equation reduces to

$$
\left(\begin{array}{ll}
a-c & b-d \\
c-a & d-b
\end{array}\right)=\left(\begin{array}{ll}
a+b & a+b \\
c+d & c+d
\end{array}\right)
$$

or

$$
a-c=a+b, \quad b-d=a+b, \quad c-a=c+d, \quad d-b=c+d .
$$

This amounts to $b=-c$ and $a=-d$. Thus S has the form

$$
S=\left(\begin{array}{cc}
a & b \\
-b & -a
\end{array}\right)=a\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Thus a basis of this vector space is

$$
\left\{\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\} .
$$

