
Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Exam 3

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Grade: . . . . . . . . . .Rank: . . . . . . . . . . .
To receive full credit, show all of your work. Neither calculators
nor computers are allowed.

1. Consider the two vectors

~u =

 1
−1

0

 , ~v =

3
0
4

 .

a. Compute the cosine of the angle between ~u and ~v.

b. Compute the distance between ~u and ~v.

c. Does there exist an orthogonal 3× 3 matrix A such that A~u = ~v?
If it exists, construct one. If it does not exist, explain why not.

Answer: a) We first compute

‖~u‖ =
√

12 + (−1)2 + 02 =
√

2, ‖~v‖ =
√

32 + 02 + 42 = 5,

~u · ~v = (1.3) + ((−1).0) + (0.4) = 3.

Thus ∠(~u, ~v) = (~u ·~v)/(‖~u‖ ‖~v‖) = (3/5
√

2). b) The distance between
~u and ~v equals ‖~u− ~v‖ =

√
(1− 3)2 + ((−1)− 0)2 + (0− 4)2 =

√
21.

c) Orthogonal matrices A preserve length in the sense that ‖A~u‖ = ‖~u‖
for any vector ~u ∈ R3. Since ~u and ~v do not have the same length,
such an orthogonal matrix A does not exist.

2. Find an orthonormal basis for

V = span




1
0
1
0

 ,


0
0
3
0

 ,


0
0
0
1




and use this information to write down the orthogonal projection of
R4 onto V . Answer: Denote the three above vectors spanning V



by ~v1, ~v2, and ~v3, respectively. Now apply the Gram-Schmidt pro-
cess. Compute ‖~v1‖ =

√
2 and define the unit vector ~u1 = ~v1/

√
2 =

(1/
√

2, 0, 1/
√

2, 0)T . Then put

~u2 =
~v2 − (~v2 · ~u1)~u1

‖~v2 − (~v2 · ~u1)~u1‖
=

1

‖(−3
2
, 0, 3

2
, 0)T‖


−3

2

0
3
2

0

 =
1√
2


−1
0
1
0

 .

Since ~v3 is orthogonal to ~v1 and ~v2 and hence to all of their linear
combinations (and hence in particular to ~u1 and ~u2) and ‖~v3‖ = 1, the
orthonormal basis of V is given by the three vectors in the right-hand
side of

V = span

 1√
2


1
0
1
0

 ,
1√
2


−1
0
1
0

 ,


0
0
0
1


 .

3. Find a least-squares solution to the system1 0
1 1
0 2

(x1

x2

)
=

0
0
1

 .

Answer: Writing the above system as A~x = ~b, we have to find the
vector ~x∗ which minimizes the distance ‖A~x∗ − ~b‖. We first compute

AT A =

(
1 1 0
0 1 2

)1 0
1 1
0 2

 =

(
2 1
1 5

)
.

Then the least-squares solution vector ~x∗ is given by

~x∗ = (AT A)−1AT~b =

(
2 1
1 5

)−1(
1 1 0
0 1 2

)0
0
1


=

1

9

(
5 −1
−1 2

)(
0
2

)
=

2

9

(
−1

2

)
=

(
−2

9
4
9

)
.



3.* (TO BE REPLACED) Find the factors Q and R in the QR factor-
ization of the matrix

M =

1 0
2 4
1 −2


by using the Gram-Schmidt process. Answer: Apply the Gram-Schmidt
process to find an orthonormal basis of the linear span Im M of the
columns ~v1 and ~v2 of M . We get successively

~u1 =
~v1

‖~v1‖
=

1√
6

1
2
1

 ,

~w2 = ~v2 − (~v2 · ~u1)~u1 = ~v2 − ~v1 =

−1
2
−3

 , ~u2 =
~w2

‖~w2‖
=

1√
14

−1
2
−3

 .

Consequently,(
~v1 ~v2

)
︸ ︷︷ ︸

=M

=
(

~u1 ~u2

)
︸ ︷︷ ︸

=Q

(
1/
√

6 −1/
√

14

0 1/
√

14

)−1

︸ ︷︷ ︸
=R

=
(

~u1 ~u2

)
︸ ︷︷ ︸

=Q

(√
6
√

6

0
√

14

)
︸ ︷︷ ︸

=R

or in other words1 0
2 4
1 −2

 =

1/
√

6 −1/
√

14

2/
√

6 2/
√

14

1/
√

6 −3/
√

14

(√6
√

6

0
√

14

)
.

4. Find the determinant of the 3× 3 matrix

A =

1 1 −5
0 2 4
3 6 9

 .

Describe the parallelepiped whose volume is given by this determinant.
Answer: By Sarrus’s rule, det(A) = (1.2.9) + (1.4.3) + ((−5).0.6) −
(3.2.(−5)) − (0.1.9) − (1.6.4) = 36. The vectors pointing from the
origin to the points with Cartesian coordinates (1, 0, 3), (1, 2, 6), and
(−5, 4, 9) span the parallelepiped whose volume is given by this de-
terminant. Instead of these three points, we may also take the paral-
lelepiped spanned by the vectors pointing from the origin to the points
with Cartesian coordinates (1, 1,−5), (0, 2, 4), and (3, 6, 9).



5. Find the determinants of the 4× 4 matrices

A =


0 0 0 3
0 0 1 3
0 2 5 −1
4 2 8 −2

 , B =


1 1 0 0
0 1 1 0
0 0 1 1
1 2 3 4

 .

Answer: In A we interchange the first and fourth columns and then
the second and third columns, which does not change the determinant.
Thus

det(A) =

∣∣∣∣∣∣∣∣
3 0 0 0
3 1 0 0
−1 5 2 0
−2 8 2 4

∣∣∣∣∣∣∣∣ = 3.1.2.4 = 24,

because the resulting matrix is lower triangular. To compute det(B),
we apply Laplace expansion down the fourth column and get

det(B) = 4×

∣∣∣∣∣∣
1 1 0
0 1 1
0 0 1

∣∣∣∣∣∣− 1×

∣∣∣∣∣∣
1 1 0
0 1 1
1 2 3

∣∣∣∣∣∣
= 4× (1× 1× 1)− {(1.1.3) + (1.1.1) + (0.0.2)

− (1.1.0)− (0.1.3)− (1.2.1)} = 2.

Here we used the fact that the first 3 × 3 determinant involved an
upper triangular matrix. The second 3× 3 determinant was computed
by applying Sarrus’s rule.

6. Let A be a 7× 7 matrix with det(A) = −3.

a. Compute det(−2A).

b. Compute det(AAT ).

c. Compute det(AT A−1).

d. Compute the determinant of the matrix obtained from A by first
interchanging the last two columns and then interchanging the
first two rows.

Answer:



a. det(−2A) = (−2)7 det(A) = 384.

b. det(AAT ) = det(A) det(AT ) = det(A) det(A) = 9.

c. det(AT A−1) = det(AT ) det(A−1) = det(A)/ det(A) = 1.

d. Each row or column interchange multiplies the determinant by−1.
Since two such interchanges are applies, the determinant does not
change and remains −3.


