Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Exam 4
Name:
Grade:
.Rank:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
3 & -2 \\
15 & -10
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible. Solution: First we compute the characteristic polynomial
$\operatorname{det}\left(\lambda I_{2}-A\right)=\operatorname{det}\left(\begin{array}{cc}\lambda-3 & 2 \\ -15 & \lambda+10\end{array}\right)=(\lambda-3)(\lambda+10)+30=\lambda(\lambda+7)$.
The eigenvalues of A are its zeros 0 and -7 . The eigenspace corresponding to the eigenvalue $\lambda=0$ (which is $\operatorname{Ker} A$) consists of the multiples of the vector $\binom{2}{3}$. The eigenspace corresponding to the eigenvalue $-7\left(\right.$ which is $\left.\operatorname{Ker}\left(A+7 I_{2}\right)=\operatorname{Ker}\left(\begin{array}{ll}10 & -2 \\ 15 & -3\end{array}\right)\right)$ consists of the multiples of the vector $\binom{1}{5}$. Since the eigenvalues of A are distinct, we can diagonalize A. In fact,

$$
A \underbrace{\left(\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right)}_{=S}=\underbrace{\left(\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right)}_{=S}\left(\begin{array}{cc}
0 & 0 \\
0 & -7
\end{array}\right),
$$

where S is the (invertible) diagonalizing transformation.
2. Find a 2×2 matrix A such that $\binom{1}{2}$ and $\binom{2}{3}$ are eigenvectors of A, with eigenvalues -2 and 3 , respectively. Solution: We obviously have

$$
A\binom{1}{2}=-2\binom{1}{2}=\binom{-2}{-4}, \quad A\binom{2}{3}=3\binom{2}{3}=\binom{6}{9},
$$

or in other words

$$
A\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
-2 & 6 \\
-4 & 9
\end{array}\right)
$$

Hence,

$$
A=\left(\begin{array}{ll}
-2 & 6 \\
-4 & 9
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{-1}=\left(\begin{array}{ll}
-2 & 6 \\
-4 & 9
\end{array}\right)\left(\begin{array}{rr}
-3 & 2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{ll}
18 & -10 \\
30 & -17
\end{array}\right) .
$$

3. Find the solution of the discrete dynamical system

$$
x(n+1)=A x(n), \quad n=0,1,2,3, \ldots,
$$

where

$$
A=\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right), \quad x(0)=\binom{0}{1} .
$$

Solution: The solution is, in abstract form, $x(n)=A^{n} x(0)$, where $n=0,1,2, \ldots$. To find a more amenable solution we diagonalize A, $A S=S \operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$, put $y(n)=S x(n)$, and write the dynamical system in the simplified form

$$
y(n+1)=S x(n+1)=S A x(n)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) S x(n)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) y(n),
$$

which is easy to solve. Since A is upper triangular, its eigenvalues are its diagonal elements $\lambda_{1}=2$ and $\lambda_{2}=1$, while it is easily seen that $A\binom{1}{0}=2\binom{1}{0}$. To find the other eigenvector (which must be linearly independent and hence must have a nonzero second entry), we try

$$
A\binom{x}{1}=\binom{x}{1}
$$

which implies $2 x+3=x$ and $1=1$. Thus $x=-3$ and $\binom{-3}{1}$ is the eigenvector corresponding to the eigenvalue 1 . We now line up the two eigenvectors as column of a 2×2 matrix to get

$$
S=\left(\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right)
$$

Since $y(0)=S x(0)=\binom{-3}{1}$, we get

$$
y(n)=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{n}\binom{-3}{1}=\binom{-3 \cdot 2^{n}}{1} .
$$

Hence,

$$
x(n)=S^{-1} y(n)=\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right)\binom{-3 \cdot 2^{n}}{1}=\binom{3\left[1-2^{n}\right]}{1} .
$$

4. Find all eigenvalues (real and complex) of the matrix

$$
A=\left(\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -4 & 1
\end{array}\right)
$$

Why or why not is it possible to diagonalize the matrix A ? Solution: Let us compute the characteristic polynomial of A :

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{3}-A\right) & =\operatorname{det}\left(\begin{array}{ccc}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
-4 & 4 & \lambda-1
\end{array}\right) \\
& =\lambda \operatorname{det}\left(\begin{array}{cc}
\lambda & -1 \\
4 & \lambda-1
\end{array}\right)+\left(\begin{array}{cc}
0 & -1 \\
-4 & \lambda-1
\end{array}\right) \\
& =\lambda\{\lambda(\lambda-1)+4\}-4=\lambda^{3}-\lambda^{2}+4 \lambda-4 \\
& =\left(\lambda^{2}+4\right)(\lambda-1) .
\end{aligned}
$$

Since the eigenvalues $[1,2 i$, and $-2 i]$ are distinct, it is possible to diagonalize A.
5. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 3 & -3 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible. Solution: Let us compute
the characteristic polynomial

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{4}-A\right) & =\operatorname{det}\left(\begin{array}{cccc}
\lambda & 0 & 0 & -1 \\
0 & \lambda-3 & 3 & -1 \\
0 & -1 & \lambda & 0 \\
0 & 0 & -1 & \lambda
\end{array}\right)=\lambda \operatorname{det}\left(\begin{array}{ccc}
\lambda-3 & 3 & -1 \\
-1 & \lambda & 0 \\
0 & -1 & \lambda
\end{array}\right) \\
& =\lambda\left\{\lambda^{2}(\lambda-3)-1+3 \lambda\right\}=\lambda(\lambda-1)^{3} .
\end{aligned}
$$

Thus the eigenvalues are 0 and 1 , where 1 has algebraic multiplicity 3 . Since the first column of A has only zeros, the eigenvector corresponding to the zero eigenvalue is $(1,0,0,0)^{T}$. Now observe that

$$
\left(I_{4}-A\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & -2 & 3 & -1 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}-x_{4} \\
-2 x_{2}+3 x_{3}-x_{4} \\
-x_{2}+x_{3} \\
-x_{3}+x_{4}
\end{array}\right)
$$

which can only be the zero vector if $x_{1}=x_{2}=x_{3}=x_{4}=1$. Thus the eigenspace corresponding to the eigenvalue 1 is one-dimensional and hence 1 is an eigenvalue of geometric multiplicity 1 . Since algebraic and geometric multiplicities differ and hence there is no basis of \mathbb{R}^{4} consisting of eigenvectors of A, the matrix A cannot be diagonalizable.
6. Compute the eigenvalues (real and complex) and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Explain why your result is in full agreement with the values of $\operatorname{Tr}(A)$
and $\operatorname{det}(A)$. Solution: Let us compute the characteristic polynomial

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{4}-A\right) & =\operatorname{det}\left(\begin{array}{rrrr}
\lambda & 0 & 0 & -1 \\
-1 & \lambda & 0 & 0 \\
0 & -1 & \lambda & 0 \\
0 & 0 & -1 & \lambda
\end{array}\right) \\
& =\lambda \operatorname{det} \underbrace{\left(\begin{array}{rrr}
\lambda & 0 & 0 \\
-1 & \lambda & 0 \\
0 & -1 & \lambda
\end{array}\right)}_{\text {lower triangular }}+\left(\begin{array}{rrr}
0 & 0 & -1 \\
-1 & \lambda & 0 \\
0 & -1 & \lambda
\end{array}\right) \\
& =\lambda^{4}-1=(\lambda-1)(\lambda+1)(\lambda-i)(\lambda+i) .
\end{aligned}
$$

Thus the eigenvalues are $1,-1, i$, and $-i$. Their sum is $\operatorname{Tr} A=0$. Their product is $\operatorname{det}(A)=-1$.
7. Why is $45=1+2+3+4+5+6+7+8+9$ an eigenvalue corresponding to any 9×9 sudoku matrix? What is the corresponding eigenvector?

