Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Final Exam

1. Bring the following matrix to reduced row echelon form:

$$
A=\left(\begin{array}{rrrrr}
0 & 0 & 1 & 3 & -7 \\
1 & -5 & 0 & 2 & 4 \\
0 & 0 & 2 & 6 & -2 \\
0 & 0 & 0 & 0 & 9
\end{array}\right),
$$

and determine its rank and nullity. Solution: Interchange the first two rows and then subtract twice the second row from the third row:

$$
\left(\begin{array}{rrrrr}
1 & -5 & 0 & 2 & 4 \\
0 & 0 & 1 & 3 & -7 \\
0 & 0 & 2 & 6 & -2 \\
0 & 0 & 0 & 0 & 9
\end{array}\right) \Longrightarrow\left(\begin{array}{rrrrr}
1 & -5 & 0 & 2 & 4 \\
0 & 0 & 1 & 3 & -7 \\
0 & 0 & 0 & 0 & 12 \\
0 & 0 & 0 & 0 & 9
\end{array}\right) .
$$

Divide the third row by 12 and the fourth row by 9 and subtract the third row from the fourth row, thus creating a final row of zeros. Then add seven times the third row to the second row, subtract three times the third row from the first row:

$$
\left(\begin{array}{rrrrr}
1 & -5 & 0 & 2 & 4 \\
0 & 0 & 1 & 3 & -7 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rrrrr}
\mathbf{1} & -5 & 0 & 2 & 0 \\
0 & 0 & \mathbf{1} & 3 & 0 \\
0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which is the row reduced echelon form with the leading one's written in boldface. Thus the rank is 3 , the number of leading one's. The nullity is $5-3=2$, the number of columns not containing a leading 1 .
2. Find all solutions of the linear system $A \overrightarrow{\boldsymbol{x}}=\mathbf{0}$, where

$$
A=\left(\begin{array}{rrr}
3 & 6 & 7 \\
0 & 2 & -1
\end{array}\right) .
$$

Solution: Divide the first row by 3 and the second row by 2 , and then subtract twice the second row from the first row:

$$
\left(\begin{array}{ccc}
1 & 2 & 7 / 3 \\
0 & 1 & -1 / 2
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc}
1 & 0 & 10 / 3 \\
0 & 1 & -1 / 2
\end{array}\right)
$$

which is the row reduced echelon form. The variable x_{3} will be the unique parameter in the solution and the solution is given by

$$
x_{1}=-\frac{10}{3} x_{3}, \quad x_{2}=\frac{1}{2} x_{3} .
$$

3. Consider the following 4×4 matrix:

$$
A=\left(\begin{array}{rrrr}
0 & 1 & 1 & 3 \\
1 & 0 & 0 & -2 \\
0 & 0 & 2 & 6 \\
0 & 2 & 0 & 0
\end{array}\right)
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.

Solution: Interchange the first two rows and the last two rows, then interchange the second and third rows, and then divide the second and last rows by 2 ,

$$
\left(\begin{array}{rrrr}
1 & 0 & 0 & -2 \\
0 & 1 & 1 & 3 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 6
\end{array}\right) \Longrightarrow\left(\begin{array}{rrrr}
1 & 0 & 0 & -2 \\
0 & 2 & 0 & 0 \\
0 & 1 & 1 & 3 \\
0 & 0 & 2 & 6
\end{array}\right) \Longrightarrow\left(\begin{array}{rrrr}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 3 \\
0 & 0 & 1 & 3
\end{array}\right) .
$$

Next subtract the second row from the third row and then the third row from the last row, creating a last row of zeros:

$$
\left(\begin{array}{rrrr}
\mathbf{1} & 0 & 0 & -2 \\
0 & \mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} & 3 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

which is the row reduced echelon forms with the leading one's written in boldface. Thus the first three columns of the original matrix A form a basis of the image of A :

$$
\operatorname{Im} A=\operatorname{span}\left[\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right)\right]
$$

Using the above row reduced echelon form we now determine the kernel of A by solving the corresponding linear system with zero right-hand sides. This system $\left[x_{1}-2 x_{4}=0, x_{2}=0, x_{3}+3 x_{4}, 0=0\right]$ has the solution $x_{1}=2 x_{4}, x_{2}=0$, and $x_{3}=-3 x_{4}$, where x_{4} is a parameter. Thus

$$
\text { Ker } A=\operatorname{span}\left[\left(\begin{array}{r}
2 \\
0 \\
-3 \\
1
\end{array}\right)\right]
$$

4. Argue why or why not the set of polynomials

$$
1, \quad x, \quad 2 x^{2}-1, \quad 4 x^{3}-3 x, \quad 8 x^{4}-8 x^{2}+1,
$$

is a basis of the vector space of polynomials of degree ≤ 4. Solution: The vector space of all (real) polynomials of degree ≤ 4 has as a basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ and hence has dimension 5 . With respect to this basis, the five given polynomials can be represented by the five respective column vectors

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{r}
-1 \\
0 \\
2 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{r}
0 \\
-3 \\
0 \\
4 \\
0
\end{array}\right), \quad\left(\begin{array}{r}
1 \\
0 \\
-8 \\
0 \\
8
\end{array}\right) .
$$

The 5×5 matrix having these five vectors as columns,

$$
\left(\begin{array}{rrrrr}
1 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & -3 & 0 \\
0 & 0 & 2 & 0 & -8 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 8
\end{array}\right),
$$

is upper triangular with nonzero diagonal entries and hence invertible. Thus the five given polynomials form a basis of the vector space of polynomials of degree ≤ 4.
5. Find the matrix of the orthogonal projection of \mathbb{R}^{4} onto the hyperplane

$$
x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=0 .
$$

Solution: The orthogonal projection is given by

$$
\overrightarrow{\boldsymbol{u}}_{1}\left(\overrightarrow{\boldsymbol{u}}_{1}\right)^{T}+\overrightarrow{\boldsymbol{u}}_{2}\left(\overrightarrow{\boldsymbol{u}}_{2}\right)^{T}+\overrightarrow{\boldsymbol{u}}_{3}\left(\overrightarrow{\boldsymbol{u}}_{3}\right)^{T},
$$

where $\left\{\overrightarrow{\boldsymbol{u}}_{1}, \overrightarrow{\boldsymbol{u}}_{2}, \overrightarrow{\boldsymbol{u}}_{3}\right\}$ is an orthonormal basis of this hyperplane. However, the hyperplane consists of all vectors which are perpendicular to the column vector $(1,-2,3,-4)^{T}$. Dividing this vector by its length $\sqrt{30}$, we see that the orthogonal projection onto the line containing the column vector $(1,-2,3,-4)^{T}$ equals

$$
\frac{1}{30}\left(\begin{array}{r}
1 \\
-2 \\
3 \\
-4
\end{array}\right)\left(\begin{array}{llll}
1 & -2 & 3 & -4
\end{array}\right)=\frac{1}{30}\left(\begin{array}{rrrr}
1 & -2 & 3 & -4 \\
-2 & 4 & -6 & 8 \\
3 & -6 & 9 & -12 \\
-4 & 8 & -12 & 16
\end{array}\right)
$$

The orthogonal projection onto the hyperplane is obtained by subtraction the previous projection from the identity matrix, i.e.,

$$
P=\frac{1}{30}\left(\begin{array}{rrrr}
29 & 2 & -3 & 4 \\
2 & 26 & 6 & -8 \\
-3 & 6 & 21 & 12 \\
4 & -8 & 12 & 14
\end{array}\right)
$$

6. Apply the Gram-Schmidt process to the given basis vectors of

$$
V=\operatorname{span}\left[\left(\begin{array}{l}
3 \\
0 \\
4 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
5 \\
0
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
0 \\
3
\end{array}\right)\right]
$$

to obtain an orthonormal basis of V. Solution: Let us call the three basis vectors $\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}$, and $\overrightarrow{\boldsymbol{v}}_{3}$, respectively. The orthonormal basis of V,
$\left\{\overrightarrow{\boldsymbol{u}}_{1}, \overrightarrow{\boldsymbol{u}}_{2}, \overrightarrow{\boldsymbol{u}}_{3}\right\}$, is computed as follows:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{u}}_{1} & =\frac{\overrightarrow{\boldsymbol{v}}_{1}}{\left\|\overrightarrow{\boldsymbol{v}}_{1}\right\|}=\left(\begin{array}{c}
3 / 5 \\
0 \\
4 / 5 \\
0
\end{array}\right) \\
\overrightarrow{\boldsymbol{w}}_{2} & =\overrightarrow{\boldsymbol{v}}_{2}-\left(\overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}=\left(\begin{array}{l}
0 \\
0 \\
5 \\
0
\end{array}\right)-4\left(\begin{array}{c}
3 / 5 \\
0 \\
4 / 5 \\
0
\end{array}\right)=\left(\begin{array}{c}
-12 / 5 \\
0 \\
9 / 5 \\
0
\end{array}\right) \\
\overrightarrow{\boldsymbol{u}}_{2} & =\frac{\overrightarrow{\boldsymbol{w}}_{2}}{\left\|\overrightarrow{\boldsymbol{w}}_{2}\right\|}=\left(\begin{array}{c}
-4 / 5 \\
0 \\
3 / 5 \\
0
\end{array}\right) \\
\overrightarrow{\boldsymbol{w}}_{3} & =\overrightarrow{\boldsymbol{v}}_{3}-\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}-\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{2}\right) \overrightarrow{\boldsymbol{u}}_{2} \\
& =\left(\begin{array}{l}
4 \\
0 \\
0 \\
3
\end{array}\right)+\frac{16}{5}\left(\begin{array}{c}
-4 / 5 \\
0 \\
3 / 5 \\
0
\end{array}\right)-\frac{12}{5}\left(\begin{array}{c}
3 / 5 \\
0 \\
4 / 5 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
3
\end{array}\right) \\
\overrightarrow{\boldsymbol{u}}_{3} & =\frac{\overrightarrow{\boldsymbol{w}}_{3}}{\left\|\overrightarrow{\boldsymbol{w}}_{3}\right\|}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

7. Find a least-squares solution to the system

$$
\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) .
$$

Solution: Writing the system as $A \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{b}}$, a least squares solution is given by

$$
\left(A^{T} A\right)^{-1} A^{T} \overrightarrow{\boldsymbol{b}}
$$

where

$$
A^{T} A=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 3
\end{array}\right)=\left(\begin{array}{cc}
5 & 2 \\
2 & 10
\end{array}\right) .
$$

Thus a least squares solution is given by

$$
\begin{aligned}
& \left(\begin{array}{cc}
5 & 2 \\
2 & 10
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\frac{1}{46}\left(\begin{array}{cc}
10 & -2 \\
-2 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \\
& =\frac{1}{46}\left(\begin{array}{ccc}
10 & 18 & -6 \\
-2 & 1 & 15
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\frac{1}{46}\binom{14}{11} .
\end{aligned}
$$

8. Find the factors Q and R in the $Q R$ factorization of the matrix

$$
M=\left(\begin{array}{rr}
1 & 0 \\
2 & 4 \\
1 & -2
\end{array}\right)
$$

by using the Gram-Schmidt process. Solution: Use the Gram-Schmidt process to find an orthonormal basis of the linear span $\operatorname{Im} M$ of the columns $\overrightarrow{\boldsymbol{v}}_{1}$ and $\overrightarrow{\boldsymbol{v}}_{2}$ of M. We get successively

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{u}}_{1}=\frac{\overrightarrow{\boldsymbol{v}}_{1}}{\left\|\overrightarrow{\boldsymbol{v}}_{1}\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \\
& \overrightarrow{\boldsymbol{w}}_{2}=\overrightarrow{\boldsymbol{v}}_{2}-\left(\overrightarrow{\boldsymbol{v}}_{2} \cdot \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}=\overrightarrow{\boldsymbol{v}}_{2}-\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{r}
-1 \\
2 \\
-3
\end{array}\right), \overrightarrow{\boldsymbol{u}}_{2}=\frac{\overrightarrow{\boldsymbol{w}}_{2}}{\left\|\overrightarrow{\boldsymbol{w}}_{2}\right\|}=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
-1 \\
2 \\
-3
\end{array}\right) .
\end{aligned}
$$

Consequently,

$$
\underbrace{\left(\overrightarrow{\boldsymbol{v}}_{1} \overrightarrow{\boldsymbol{v}}_{2}\right)}_{=M}=\underbrace{\left(\overrightarrow{\boldsymbol{u}}_{1} \overrightarrow{\boldsymbol{u}}_{2}\right)}_{=Q} \underbrace{\left(\begin{array}{cc}
1 / \sqrt{6} & -1 / \sqrt{14} \\
0 & 1 / \sqrt{14}
\end{array}\right)}_{=R}=\underbrace{\left(\overrightarrow{\boldsymbol{u}}_{1}: \overrightarrow{\boldsymbol{u}}_{2}\right.}_{=Q}) \quad \underbrace{\left(\begin{array}{cc}
\sqrt{6} & \sqrt{6} \\
0 & \sqrt{14}
\end{array}\right)}_{=R}
$$

or in other words [by using $R=Q^{T} M$]

$$
\left(\begin{array}{rr}
1 & 0 \\
2 & 4 \\
1 & -2
\end{array}\right)=\left(\begin{array}{rr}
1 / \sqrt{6} & -1 / \sqrt{14} \\
2 / \sqrt{6} & 2 / \sqrt{14} \\
1 / \sqrt{6} & -3 / \sqrt{14}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{6} & \sqrt{6} \\
0 & \sqrt{14}
\end{array}\right) .
$$

9. Find the determinant of the 3×3 matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & -3 \\
2 & 0 & 5 \\
2 & 6 & 4
\end{array}\right)
$$

Solution: By Sarrus's rule,

$$
\begin{aligned}
\operatorname{det} A & =1 \cdot 0 \cdot 4+2 \cdot 5 \cdot 2+2 \cdot 6 \cdot(-3)-2 \cdot 0 \cdot(-3)-2 \cdot 2 \cdot 4-6 \cdot 5 \cdot 1 \\
& =0+20-36-0-16-30=-62 .
\end{aligned}
$$

10. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
5 & 3 \\
1 & 7
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible. Solution: The eigenvalues of A are the solutions of the quadratic equation $\operatorname{det}(\lambda I-A)=0$. In fact,

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\operatorname{det}\left(\begin{array}{cc}
\lambda-5 & -3 \\
-1 & \lambda-7
\end{array}\right)=(\lambda-5)(\lambda-7)-3 \\
& =\lambda^{2}-12 \lambda+32=(\lambda-4)(\lambda-8),
\end{aligned}
$$

hence the eigenvalues are 4 and 8. Having distinct eigenvalues, the matrix A is diagonalizable. Let us compute the eigenvectors:

$$
\begin{aligned}
& \lambda=4:\left(\begin{array}{ll}
-1 & -3 \\
-1 & -3
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)=\binom{0}{0} \Rightarrow \operatorname{Ker}(4 I-A)=\operatorname{span}\left[\binom{3}{-1}\right], \\
& \lambda=8:\left(\begin{array}{rr}
3 & -3 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)=\binom{0}{0} \Rightarrow \operatorname{Ker}(8 I-A)=\operatorname{span}\left[\binom{1}{1}\right] .
\end{aligned}
$$

Thus the diagonalizing transformation S is given as follows:

$$
A \underbrace{\left(\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right)}_{S}=\underbrace{\left(\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right)}_{S}\left(\begin{array}{ll}
4 & 0 \\
0 & 8
\end{array}\right)
$$

11. Find all eigenvalues (real and complex) of the matrix

$$
A=\left(\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & 0 \\
-9 & -9 & -1
\end{array}\right)
$$

Why or why not is it possible to diagonalize the matrix A ? Solution: The eigenvalues of A are the zeros of the cubic equation $\operatorname{det}(\lambda I-A)=0$. In fact,

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\operatorname{det}\left(\begin{array}{ccc}
\lambda & 0 & -1 \\
-1 & \lambda & 0 \\
9 & 9 & \lambda+1
\end{array}\right)=\lambda\left|\begin{array}{cc}
\lambda & 0 \\
9 & \lambda+1
\end{array}\right|-\left|\begin{array}{cc}
-1 & \lambda \\
9 & 9
\end{array}\right| \\
& =\lambda^{2}(\lambda+1)+(9+9 \lambda)=(\lambda+1)\left(\lambda^{2}+9\right) .
\end{aligned}
$$

Thus the eigenvalues of A are -1 and $\pm 3 i$. Since the eigenvalues of A are distinct, the matrix A is diagonalizable.
12. Find the solution of the discrete dynamical system

$$
x(n+1)=A x(n), \quad n=0,1,2,3, \ldots,
$$

where

$$
A=\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right), \quad x(0)=\binom{1}{0}
$$

Solution: The eigenvalues of A are the zeros of the quadratic equation $0=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\begin{array}{cc}\lambda-3 & -4 \\ -4 & \lambda+3\end{array}\right)=(\lambda-3)(\lambda+3)-16=\lambda^{2}-25$, hence $\lambda= \pm 5$. The eigenvectors are to be found as follows:

$$
\begin{gathered}
\lambda=-5:\left(\begin{array}{ll}
-8 & -4 \\
-4 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}(-5 I-A)=\operatorname{span}\left[\binom{1}{-2}\right], \\
\lambda=5:\left(\begin{array}{cc}
2 & -4 \\
-4 & 8
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}(5 I-A)=\operatorname{span}\left[\binom{2}{1}\right] .
\end{gathered}
$$

Now let us $x(0)$ as a linear combination of the eigenvectors:

$$
x(0)=\binom{1}{0}=\frac{1}{5}\binom{1}{-2}+\frac{2}{5}\binom{2}{1} .
$$

Consequently,

$$
x(n)=\frac{1}{5} A^{n}\binom{1}{-2}+\frac{2}{5} A^{n}\binom{2}{1}=\frac{1}{5}(-5)^{n}\binom{1}{-2}+\frac{2}{5} 5^{n}\binom{2}{1} .
$$

